Knockdown of lncrna TP73 AS1 inhibits gastric cancer cell proliferation and invasion via the WNT/β catenin signaling pathway

Similar documents
Supplementary Table 3. 3 UTR primer sequences. Primer sequences used to amplify and clone the 3 UTR of each indicated gene are listed.

Supplementary Appendix

c Tuj1(-) apoptotic live 1 DIV 2 DIV 1 DIV 2 DIV Tuj1(+) Tuj1/GFP/DAPI Tuj1 DAPI GFP

Long noncoding RNA linc-ubc1 promotes tumor invasion and metastasis by regulating EZH2 and repressing E-cadherin in esophageal squamous cell carcinoma

CircHIPK3 is upregulated and predicts a poor prognosis in epithelial ovarian cancer

Expression of mir-1294 is downregulated and predicts a poor prognosis in gastric cancer

Supplementary Figures

Long noncoding RNA CASC2 inhibits metastasis and epithelial to mesenchymal transition of lung adenocarcinoma via suppressing SOX4

Supplemental Data. Shin et al. Plant Cell. (2012) /tpc YFP N

Abbreviations: P- paraffin-embedded section; C, cryosection; Bio-SA, biotin-streptavidin-conjugated fluorescein amplification.

Expression of long non-coding RNA linc-itgb1 in breast cancer and its influence on prognosis and survival

BHP 2-7 and Nthy-ori 3-1 cells were grown in RPMI1640 medium (Hyclone) supplemented with 10% fetal bovine serum (Gibco), 2mM L-glutamine, and 100 U/mL

CD31 5'-AGA GAC GGT CTT GTC GCA GT-3' 5 ' -TAC TGG GCT TCG AGA GCA GT-3'

Prognostic significance of overexpressed long non-coding RNA TUG1 in patients with clear cell renal cell carcinoma

Nature Structural & Molecular Biology: doi: /nsmb Supplementary Figure 1

a) Primary cultures derived from the pancreas of an 11-week-old Pdx1-Cre; K-MADM-p53

Supplementary Document

Overexpression of long-noncoding RNA ZFAS1 decreases survival in human NSCLC patients

Supplementary Figure 1 MicroRNA expression in human synovial fibroblasts from different locations. MicroRNA, which were identified by RNAseq as most

Figure S1. Analysis of genomic and cdna sequences of the targeted regions in WT-KI and

Supplementary Materials

Long noncoding RNA LINC01510 is highly expressed in colorectal cancer and predicts favorable prognosis

Low levels of serum mir-99a is a predictor of poor prognosis in breast cancer

Plasmids Western blot analysis and immunostaining Flow Cytometry Cell surface biotinylation RNA isolation and cdna synthesis

Supplementary Figure 1 a

Toluidin-Staining of mast cells Ear tissue was fixed with Carnoy (60% ethanol, 30% chloroform, 10% acetic acid) overnight at 4 C, afterwards

Supplementary Figure 1. ROS induces rapid Sod1 nuclear localization in a dosagedependent manner. WT yeast cells (SZy1051) were treated with 4NQO at

lncrna LINC01296 regulates the proliferation, metastasis and cell cycle of osteosarcoma through cyclin D1

Long non-coding RNA Loc is a potential prognostic biomarker in non-small cell lung cancer

CircMTO1 inhibits cell proliferation and invasion by regulating Wnt/β-catenin signaling pathway in colorectal cancer

Original Article Increased LincRNA ROR is association with poor prognosis for esophageal squamous cell carcinoma patients

Expression of lncrna TCONS_ in hepatocellular carcinoma and its influence on prognosis and survival

SUPPLEMENTARY DATA. Supplementary Table 1. Primer sequences for qrt-pcr

Table S1. Oligonucleotides used for the in-house RT-PCR assays targeting the M, H7 or N9. Assay (s) Target Name Sequence (5 3 ) Comments

Mir-595 is a significant indicator of poor patient prognosis in epithelial ovarian cancer

Supplementary Table 2. Conserved regulatory elements in the promoters of CD36.

Downregulation of long non-coding RNA LINC01133 is predictive of poor prognosis in colorectal cancer patients

LncRNA RGMB-AS1 is activated by E2F1 and promotes cell proliferation and invasion in papillary thyroid carcinoma

SUPPLEMENTARY INFORMATION

Long noncoding RNA DARS-AS1 acts as an oncogene by targeting mir-532-3p in ovarian cancer

Supplementary Materials and Methods

Down-regulation of long non-coding RNA MEG3 serves as an unfavorable risk factor for survival of patients with breast cancer

Citation for published version (APA): Oosterveer, M. H. (2009). Control of metabolic flux by nutrient sensors Groningen: s.n.

BIOLOGY 621 Identification of the Snorks

Downregulation of serum mir-17 and mir-106b levels in gastric cancer and benign gastric diseases

A smart acid nanosystem for ultrasensitive. live cell mrna imaging by the target-triggered intracellular self-assembly

IJBM. Long non-coding RNA PVT1 as a novel potential biomarker for predicting the prognosis of colorectal cancer

mir-218 tissue expression level is associated with aggressive progression of gastric cancer

Decreased expression of mir-490-3p in osteosarcoma and its clinical significance

Long noncoding AFAP1-antisense RNA 1 is upregulated and promotes tumorigenesis in gastric cancer

MicroRNA 761 is downregulated in colorectal cancer and regulates tumor progression by targeting Rab3D

Increased long noncoding RNA LINP1 expression and its prognostic significance in human breast cancer

Effects of VEGF/VEGFR/K-ras signaling pathways on mirna21 levels in hepatocellular carcinoma tissues in rats

Up-regulation of long non-coding RNA SNHG6 predicts poor prognosis in renal cell carcinoma

SNHG20 serves as a predictor for prognosis and promotes cell growth in oral squamous cell carcinoma

Long non-coding RNA CCHE1 overexpression predicts a poor prognosis for cervical cancer

Small hairpin RNA-mediated Krüppel-like factor 8 gene knockdown inhibits invasion of nasopharyngeal carcinoma

Circular RNA_LARP4 is lower expressed and serves as a potential biomarker of ovarian cancer prognosis

Long non-coding RNA ROR is a novel prognosis factor associated with non-small-cell lung cancer progression

Original Article Tissue expression level of lncrna UCA1 is a prognostic biomarker for colorectal cancer

Expression of Selected Inflammatory Cytokine Genes in Bladder Biopsies

Long non coding RNA NEAT1 promotes migration and invasion of oral squamous cell carcinoma cells by sponging microrna 365

Effects of AFP gene silencing on Survivin mrna expression inhibition in HepG2 cells

Original Article High serum mir-203 predicts the poor prognosis in patients with pancreatic cancer

Long non coding RNA XIST serves an oncogenic role in osteosarcoma by sponging mir 137

Supplementary Figure 1

Mir-138-5p acts as a tumor suppressor by targeting pyruvate dehydrogenase kinase 1 in human retinoblastoma

Analysis of circulating long non-coding RNA UCA1 as potential biomarkers for diagnosis and prognosis of osteosarcoma

Nature Immunology: doi: /ni.3836

Long non-coding RNA (lncrna) small nucleolar RNA host gene 1 (SNHG1) promote cell proliferation in colorectal cancer by affecting P53

Clinical significance of up-regulated lncrna NEAT1 in prognosis of ovarian cancer

Long non-coding RNA XLOC_ correlates with poor prognosis and promotes tumorigenesis of hepatocellular carcinoma

Long non-coding RNA TUSC7 expression is independently predictive of outcome in glioma

Am J Cancer Res 2018;8(10): /ISSN: /ajcr Luming Wang, Di Meng, Yiqing Wang, Jian Hu

RNA extraction, RT-PCR and real-time PCR. Total RNA were extracted using

MicroRNA 124 3p inhibits cell growth and metastasis in cervical cancer by targeting IGF2BP1

High levels of long non-coding RNA DICER1-AS1 are associated with poor clinical prognosis in patients with osteosarcoma

Effect of lncrna LET on proliferation and invasion of osteosarcoma cells

Association between downexpression of mir-1301 and poor prognosis in patients with glioma

Plasma Bmil mrna as a potential prognostic biomarker for distant metastasis in colorectal cancer patients

Cross-talk between mineralocorticoid and angiotensin II signaling for cardiac

Supplementary Figure 1

SUPPORTING INFORMATION

LncRNA AB promotes the proliferation and inhibits apoptosis of cervical cancer cells by repressing RBM5

Original Article Long non-coding RNA PANDAR overexpression serves as a poor prognostic biomarker in oral squamous cell carcinoma

Increased expression of the lncrna BANCR and its prognostic significance in human osteosarcoma

MicroRNA 216a inhibits the growth and metastasis of oral squamous cell carcinoma by targeting eukaryotic translation initiation factor 4B

High Expression of Forkhead Box Protein C2 is Related to Poor Prognosis in Human Gliomas

Long non-coding RNA ZEB2-AS1 promotes proliferation and inhibits apoptosis in human lung cancer cells

Effects of stathmin 1 silencing by sirna on sensitivity of esophageal cancer cells Eca-109 to paclitaxel

Original Article High expression of mir-20a predicated poor prognosis of hepatocellular carcinoma

Original Article Increased expression of lncrna HULC indicates a poor prognosis and promotes cell metastasis in osteosarcoma

Up-regulation of long non-coding RNA BCAR4 predicts a poor prognosis in patients with osteosarcoma, and promotes cell invasion and metastasis

Supplementary Figure 1a

Long non coding RNA MALAT1 drives gastric cancer progression by regulating HMGB2 modulating the mir 1297

The LINC01186 suppresses cell proliferation and invasion ability in papillary thyroid carcinoma

MiR-508-5p is a prognostic marker and inhibits cell proliferation and migration in glioma

Supplementary Information. Bamboo shoot fiber prevents obesity in mice by. modulating the gut microbiota

Development of RT-qPCR-based molecular diagnostic assays for therapeutic target selection of breast cancer patients

mir 491 5p inhibits osteosarcoma cell proliferation by targeting PKM2

Transcription:

3248 Knockdown of lncrna TP73 AS1 inhibits gastric cancer cell proliferation and invasion via the WNT/β catenin signaling pathway YUFENG WANG, SHUAI XIAO, BINGYI WANG, YANG LI and QUANNING CHEN Department of General Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China Received June 5, 2017; Accepted January 3, 2018 DOI: 10.3892/ol.2018.9040 Abstract. Long non coding RNAs (lncrnas) function as tumor suppressors or oncogenes in tumor development and progression. The purpose of the present study was to investigate the clinical significance and functional role of lncrna TP73 AS1 in gastric cancer (GC). Reverse transcription quantitative polymerase chain reaction analysis demonstrated that TP73 AS1 was significantly upregulated in GC tissues compared with adjacent normal tissues. The higher expression of TP73 AS1 was closely associated with lymph node metastasis and tumor node metastasis stage in patients with GC. Those patients with GC showing a higher expression of TP73 AS1 were predicted to have shorter disease free survival and overall survival rates. The knockdown of TP73 AS1 was shown to markedly inhibit cell proliferation, cell colony formation and cell invasion. In addition, the downregulation of TP73 AS1 suppressed the expression of transcription factor 4 and β catenin, which suggested that a decrease in TP73 AS1 suppressed the WNT/β catenin signaling pathway in GC. Therefore, these results indicated that TP73 AS1 may be a target for GC treatment. Introduction Gastric cancer (GC) is the second most common cause of cancer associated mortality worldwide. There are ~100,0000 new cases of GC annually, and >700,000 cases of GC associated mortality (1). It is reported that ~50% of patients with GC exhibit metastasis at the time of diagnosis (2). Therefore, it is important to identify novel early diagnostic markers and therapeutic targets of tumor invasion and metastasis. Correspondence to: Dr Quanning Chen, Department of General Surgery, Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Putuo, Shanghai 200065, P.R. China E mail: chenquanningw@126.com Key words: gastric cancer, TP73 AS1, WNT/β catenin, prognosis, cell proliferation Long non coding RNAs (lncrnas) have been identified as a class of non protein coding transcripts, which are 200 nucleotides in length. Previous studies have reported that the abnormal expression of lncrnas is significantly involved in cancer development and progression (3,4). In GC, the overexpression of lncrna SPRY4 IT1 promotes tumor cell proliferation and invasion by activating enhancer of zeste homolog 2 in hepatocellular carcinoma (HCC) (5). The decreased expression of lncrna LINC00261 predicts a poor prognosis in patients with GC and suppresses tumor metastasis by affecting the epithelial mesenchymal transition (6). The overexpression of metastasis associated lung adenocarcinoma transcript 1 promotes cell invasion and metastasis of GC by increasing the expression of epidermal growth factor like domain 7 (7). The increased expression of lncrna taurine upregulated 1 also predicts a poor prognosis of GC and regulates cell proliferation by epigenetically silencing p57 (8). Previous studies have shown that TP73 AS1 is involved in tumor progression. For example, the silencing of lncrna TP73 AS1 inhibits cell proliferation and induces apoptosis in esophageal squamous cell carcinoma (9). The TP73 AS1 interacts with microrna (mir) 142 to modulate brain glioma growth through the high mobility group box 1 (HMGB1)/receptor for advanced glycation end products (RAGE) pathway (10). lncrna TP73 AS1 modulates HCC cell proliferation through mir 200a dependent HMGB1/RAGE regulation (11); however, the expression and molecular mechanism underlying lncrna TP73 AS1 in GC remains to be elucidated. In the present study, it was shown that TP73 AS1 was upregulated in GC tissues. The higher expression of TP73 AS1 was associated with poor prognosis in patients with GC. The downregulation of TP73 AS1 suppressed cell proliferation and invasion. Additionally, the knockdown of TP73 AS1 suppressed the WNT/β catenin signaling pathway in GC. These results indicated that TP73 AS1 may be a target for GC treatment. Materials and methods Patient tissue specimens. A total of 64 paired human GC tissue specimens and corresponding adjacent normal tissues were obtained from patients who underwent surgical resection between January 2010 and March 2013 in the Department

WANG et al: KNOCKDOWN OF lncrna TP73-AS1 INHIBITS GC CELL PROLIFERATION AND INVASION 3249 of General Surgery of Shanghai Tongji Hospital (Shanghai, China). All GC tissue specimens were immediately snap frozen in liquid nitrogen until total RNA extraction. Informed consent was obtained from all patients and the study was approved by the Medical Ethics Committee of Shanghai Tongji Hospital. Cell culture. The human GC, MGC 803, the BGC 823 cell lines, and a normal gastric epithelium cell line (GES 1) were purchased from the Shanghai Institute of Biochemistry and Cell Biology (Shanghai, China). All cells were cultured in DMEM supplemented with 10% FBS (Gibco; Thermo Fisher Scientific, Inc., Waltham, MA, USA) with 5% CO 2 at 37 C. Cell transfection. The small interfering RNA si TP73 AS1 1 sense, 5' GAT CGC GTT CTG TGT GGA ACT TAC TGG ATC AAG AGT CCA GTA AGT TCC ACA CAG AAT TTT TTC CAA A 3' and antisense, 5' AGC TTT TGG AAA AAA TTC TGT GTG GAA CTT ACT GGA CTC TTG ATC CAG TAA GTT CCA CAC AGA ACG C 3'; si TP73 AS1 2 sense, 5' GAT CGC GTA GAC AGA GGT CAT CAG CCA GTC AAG AGC TGG CTG ATG ACC TCT GTC TAT TTT TTC CAA A 3' and antisense, 5' AGC TTT TGG AAA AAA TAG ACA GAG GTC ATC AGC CAG CTC TTG ACT GGC TGA TGA CCT CTG TCT ACG C 3'; and si negative control (NC) were synthesized and purchased from GenePharma Co. Ltd. (Shanghai, China). Cell transfection was performed using Lipofectamine 2000 reagent (Invitrogen; Thermo Fisher Scientific, Inc., Waltham, MA, USA) according to the manufacturer's protocol. RNA extraction and reverse transcription quantitative polymerase chain reaction (RT qpcr) analysis. The GC tissues and cells were used to extract total RNA using TRIzol reagent (Invitrogen; Thermo Fisher Scientific, Inc., Waltham, MA, USA) according to the manufacturer's protocol. The RNA was measured using the Nano Drop 2000 Spectrophotometer (Nano Drop Technologies; Thermo Fisher Scientific, Inc., Wilmington, DE, USA) and the ratio of absorbance was at 260 to 280 nm (260/280 ratio). The 1 µg RNA samples were transcribed to cdna using a First Strand cdna Synthesis kit (Tiangen Biotech Co., Ltd., Beijing, China). The reverse transcription reaction condition was as follows: 37 C for 15 min, 85 C for 5 sec and 4 C for 2 min. The mrna was detected using TaqMan MicroRNA PCR kit (Takara Biotechnology Co., Ltd., Dalian, China) on ABI 7500 fast system (Applied Biosystems; Thermo Fisher Scientific, Inc., Carlsbad, CA, USA). To quantify the mrna expression, the SYBR Premix Ex Taq (Takara Biotechnology Co., Ltd., Dalian, China) was used to amplifying the mrna expression. The qrt PCR reaction conditions were as follows: 95 C for 30 sec, followed by 40 cycles at 95 C for 5 sec and 60 C for 34 sec. GAPDH was used as the internal control. The RT qpcr results were calculated using the 2 Cq method (12). The primer sequences were as follows: LnRNATP73 AS1 forward, 5' CCG GTT TTC CAG TTC TTG CAC 3' and reverse, 5' GCC TCA CAG GGA AAC TTC ATG C 3'; GAPDH forward, 5' GGT GAA GGT CGG AGT CAA CG 3' and reverse, 5' CAA AGT TGT CAT GGA TGH ACC 3'. Cell proliferation and cell colony formation assay. Cell proliferation was evaluated with Cell Counting kit 8 (CCK 8) solution (Dojindo Molecular Technologies, Inc., Kumamoto, Japan) in accordance with the manufacturer's protocol. Briefly, the MGC 803 and BGC 823 cells (2x10 3 cells/well) were seeded into 96 well plates in triplicate. The proliferative activity of cells was detected at 0, 24, 48, and 72 h, and 10 µl of CCK 8 solution was added to each well and cultured for 2 h at room temperature. Subsequently, cellular proliferation was detected at the absorbance of the converted dye at 450 nm. For the cell colony assay, the MGC 803 and BGC 823 cells (200 cells/well) were seeded into 6 well plates in triplicate. The cells were cultured for 3 weeks at 37 C in 5% CO 2. The cells were then fixed with 100% methanol for 20 min at room temperature and stained with 0.1% crystal violet for 10 min at room temperature, and the numbers of cell colonies were calculated under a light microscope (DP72; Olympus Corporation, Tokyo, Japan). Cell invasion assay. The cell invasion assays were performed using Transwell chambers with a pore size of 8 µm (Corning Incorporated, Cambridge, MA, USA) and coated with Matrigel (BD Biosciences, San Jose, CA, USA). A total of 5x10 4 transfected MGC 803 and BGC 823 cells were resuspended in 300 µl of medium and seeded in the upper chamber, with 500 µl of medium supplemented with 10% FBS added to the lower chamber. Following culture of the cells for 24 h, the cells in the lower chamber were fixed with methanol for 10 min (Beyotime Institute of Biotechnology, Shanghai, China) and stained with 0.1% crystal violet (Beyotime Institute of Biotechnology) for 10 min. The cells were counted under an inverted microscope in five randomly selected fields (Olympus Corporation, Tokyo, Japan). Western blot analysis. The cells were lysed with RIPA buffer (Beyotime Institute of Biotechnology). Protein quantity was detected using a bicinchoninic acid assay kit (Beyotime Institute of Biotechnology), according to the manufacture's protocol. The cell protein lysates (40 µg) were separated via 10% SDS polyacrylamide gel electrophoresis and transferred onto PVDF membranes (EMD Millipore, Billerica, MA, USA). The PVDF membranes were blocked with 5% skimmed milk for 2 h at room temperature. The PVDF membranes were then incubated with the following specific antibodies: Transcription factor 4 (TCF4; cat. no. 2566; 1:1,000 dilution); β catenin (cat. no. 9562; 1:1,000 dilution); and GAPDH (cat. no. 5174; 1:3,000 dilution; all Cell Signaling Technology, Inc., Beverly, MA, USA) overnight at 4 C. Subsequently, the secondary antibody (goat anti rabbit IgG; cat. no. sc 2004; 1:1,000 dilution; Santa Cruz Biotechnology, Inc., Santa Cruz, CA, USA) was added to the PVDF membranes and for incubated for 1.5 h at room temperature. The blots were determined using a chemiluminescence detection kit (GE Healthcare Life Sciences, Piscataway, NJ, USA). The gray bands were analyzed using Image J software (version 1.46; National Institutes of Health, Bethesda, MD, USA). The GAPDH protein expression was used as the internal control. Statistical analysis. Statistical analysis was performed using SPSS software (version 17.0; SPSS, Inc., Chicago, IL, USA). All data are shown as the mean ± standard deviation. Comparison of means between different samples was analyzed using Student's t test and one way analysis of variance. P<0.05 was considered to indicate a statistically significant difference.

3250 Figure 1. Expression of TP73 AS1 is significantly upregulated in GC tissues compared with adjacent normal tissues. (A) TP73 AS1 was significantly upregulated in 64 pairs of GC tissues when compared with adjacent normal tissues using reverse transcription quantitative polymerase chain reaction analysis. (B) Disease free survival rate was statistically higher in the lower TP73 AS1 expression group, compared with that in the higher TP73 AS1 expression group in the 64 GC patients. (C) Overall survival rate was statistically higher in the lower TP73 AS1 expression group, compared with that in the higher TP73 AS1 expression group in the 64 GC patients. (D) TP73 AS1 expression was higher in MGC803 and BGC-823 cells than that in GES-1 cells. * P<0.05, ** P<0.01. GC, gastric cancer. Results Expression of TP73 AS1 is upregulated in GC tissues. The present study first detected the expression of TP73 AS1 in 64 paired human GC tissue specimens and corresponding adjacent normal tissues using RT qpcr analysis. As shown in Fig. 1A, the expression of TP73 AS1 was higher in the GC tissues than the corresponding adjacent normal tissues. Furthermore, the association between the expression of TP73 AS1 and clinicopathologic factors in patients with GC was evaluated. The results of the statistical analysis showed that a higher expression of TP73 AS1 was correlated with lymph node metastasis (P=0.001) and tumor node metastasis (TNM) stage (P=0.003; Table I); however, no association existed with other clinicopathologic features, including sex, age and tumor size (P>0.05; Table I). The results of the Kaplan Meier analysis indicated that a higher expression of TP73 AS1 in patients with GC predicted a shorter disease free survival (DFS; log rank=5.412, P<0.05; Fig. 1B) and overall survival (OS; log rank=4.506, P<0.05; Fig. 1C). In addition, it was demonstrated that the expression of TP73 AS1 was significantly higher in two GC cell lines (MGC 803 and BGC 823), compared with that in the normal gastric epithelium cell line (GES 1; Fig. 1D). Downregulation of the expression of TP73 AS1 decreases cell proliferation in GC. To clarify the functional effects of the expression of TP73 AS1 on cell proliferation, CCK 8 and cell colony formation assays were performed. First, two sirnas against TP73 AS1 were applied to knock down TP73 AS1 in MGC 803 and BGC 823 cells. The results showed that si TP73 AS1 2 had a higher silencing efficiency than TP73 AS1 2, and was selected for use in the following experiments (Fig. 2A and B). The results of the CCK 8 assays showed that the cell proliferation rate was significantly reduced at 48 and 72 h in the MGC 803 and BGC 823 cells following knockdown (Fig. 2C and D). Additionally, the number of cell colonies following cell transfection with si TP73 AS1 on day 14 was markedly reduced in the MGC 803 and BGC 823 cells (Fig. 3A and B). These results showed that the downregulation of TP73 AS1 decreased the proliferation of GC cells. Downregulation of the expression of TP73 AS1 decreases the invasion of GC cells. To detect the effects of the expression of TP73 AS1 on cell invasion, Transwell invasion assays were performed. Following cell transfection with si NC or si TP73 AS1 for 48 h, the cell invasion was significantly decreased, compared with that in the si NC group in the MGC 803 and BGC 823 cells (Fig. 3C and D). Therefore, downregulation of the expression of TP73 AS1 decreased cell invasion in GC. Downregulation of the expression of TP73 AS1 inhibits the WNT/β catenin signaling pathway in GC cells. According to the above findings, a higher level of TP73 AS1 contributed to the progression of GC. The present study examined the potential mechanism by which TP73 AS1 regulates GC cell proliferation and invasion. The WNT/β catenin signaling pathway is significantly associated with GC cell proliferation and invasion (13). Following cell transfection with si NC or si TP73 AS1 for 48 h, the downregulated expression of

WANG et al: KNOCKDOWN OF lncrna TP73-AS1 INHIBITS GC CELL PROLIFERATION AND INVASION 3251 Table I. Association between the expression of TP73 AS1 and the clinicopathological factors of 64 patients with gastric cancer. Expression of TP73 AS1 ----------------------------------------------------------------------------------------------------------------------------------------------------------------------- Clinicopathologic factor Patients (n) Lower (n=34) Higher (n=30) P value Sex 0.223 Male 42 20 22 Female 22 14 8 Age (years) 0.934 55 43 23 20 >55 21 11 10 Tumor size 0.924 <3 cm 38 20 18 >3 cm 26 14 12 Histological differentiation 0.375 High, middle 39 23 16 Low 25 11 14 Lymph node metastasis No 36 26 10 0.001 a Yes 28 8 20 Local invasion 0.090 T1 T2 37 23 14 T3 T4 27 11 16 TNM stage I/II 38 26 12 III/IV 26 8 18 a P<0.05 was considered statistically significant. TNM, tumor node metastasis. 0.003 a Figure 2. Downregulation of the expression of TP73 AS1 inhibits cell proliferation ability in gastric cancer. Expression of TP73 AS1 was significantly downregulated following transfection of cells with si TP73 AS1 1 or si TP73 AS1 2 in (A) MGC 803 and (B) BGC 823 cells. Cell viability was detected at 0, 24, 48 and 72 h when cells were transfected with si NC or si TP73 AS1 in (C) MGC 803 and (D) BGC 823 cells. * P<0.05, vs. si NC. si, small interfering RNA; NC, negative control.

3252 Figure 3. Downregulation of the expression of TP73 AS1 inhibits cell colony formation and cell invasion in gastric cancer. (A) Images of colonies; (B) numbers of cell colonies were calculated at 48 h when the cells were transfected with si NC or si TP73 AS1 in MGC 803 or BGC 823 cells. Magnification, x200. (C) Images of the cell invasion assay; (D) numbers of invading cells were evaluated at 48 h when cells were transfected with si NC or si TP73 AS1 in MGC 803 or BGC 823 cells, Magnification, x200. * P<0.05, vs. si NC. si, small interfering RNA; NC, negative control. Figure 4. Downregulated expression of TP73 AS1 inhibits the WNT/β catenin signaling pathway in gastric cancer cells (A) Images of blots were captured and (B) relative protein expression was evaluated at 48 h when cells were transfected with si NC or si TP73 AS1 in MGC 803 cells. (C) Images of blots were captured and (D) relative protein expression was evaluated at 48 h when cells were transfected with si NC or si TP73 AS1 in BGC 823 cells. * P<0.05, vs. si NC. TCF4, transcription factor 4; si, small interfering RNA; NC, negative control. TP73 AS1 suppressed the protein expression of TCF4 and β catenin in the MGC 803 and BGC 823 cells (Fig. 4A D), which suggested that the knockdown of TP73 AS1 suppressed the WNT/β catenin signaling pathway in GC.

WANG et al: KNOCKDOWN OF lncrna TP73-AS1 INHIBITS GC CELL PROLIFERATION AND INVASION 3253 Discussion Deregulation of the expression of lncrna in various types of cancer is essential for tumorigenesis and development. Previously, studies have demonstrated that lncrnas may be applied to serve as prognostic markers and therapeutic targets in tumors. In GC, the lncrna, highly upregulated in liver cancer, acts as a novel serum biomarker for the diagnosis and prognostic prediction of GC (14). The overexpression of lncrna homeobox A transcript at the distal tip enhances tumor invasion and predicts poor prognosis in GC (15). The plasma level of H19 is also significantly higher in patients with GC and serves as a potential biomarker for diagnosis (16). The decreased expression of the lncrna LINC00261 indicates poor prognosis in GC and suppresses GC metastasis by affecting the epithelial mesenchymal transition (6). In the present study, it was shown that TP73 AS1 was upregulated in GC tissues compared with adjacent normal tissues. The higher expression if TP73 AS1 was associated with lymph node metastasis, TNM stage, and poor DFS and OS rates in patients with GC. Therefore, TP73 AS1 functions as a biomarker for predicting the prognosis of patients with GC. Previous studies have indicated that decreased TP73 AS1 inhibits cell proliferation and induces apoptosis in esophageal squamous cell carcinoma (9). The knockdown of TP73 AS1, an lncrna of one triplet, not only reduced the expression of regulatory factor X1, an mrna of this triplet, but also induced apoptosis in U87 cells (17). In the present study, it was demonstrated that the knockdown of TP73 AS1 suppressed cell proliferation, cell colony formation and cell invasion, which suggested that TP73 AS1 exerts a tumor promoting function in GC cells. Studies have found that the Wnt/β catenin signaling pathway is involved in oncogenesis, including the initiation and progression of GC (18). Wnt/β catenin signaling enhances the transcriptional activity of cyclooxygenase 2 in GC cells (19), and aquaporin 3 promotes the stem like properties of GC cells via the Wnt/glycogen synthase kinase 3β/β catenin pathway (20). In the present study, downregulation of the expression of TP73 AS1 suppressed the expression of TCF4 and β catenin in GC cells, which suggested that the reduction in TP73 AS1 suppressed the WNT/β catenin signaling pathway in GC. These results indicated that TP73 AS1 promotes cell proliferation and invasion via regulation of the WNT/β catenin signaling pathway in GC. In conclusion, the present study showed that the expression of TP73 AS1 was higher in GC, and that the knockdown of TP73 AS1 suppressed cell proliferation and invasion. Furthermore, the knockdown of TP73 AS1 suppressed the WNT/β catenin signaling pathway in GC. These results indicated that TP73 AS1 may be a therapeutic target for GC. Acknowledgements Not applicable. Funding No funding was received. Availability of data and materials The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request. Authors' contributions YW, BW and SX analyzed and interpreted the patient data. QC and YL conceived and designed the study. YW, BW and SX performed the experiments. QC rafted the manuscript. All authors read and approved the final manuscript. Ethics approval and consent to participate The present study was approved by the Medical Ethics Committee of Shanghai Tongji Hospital and informed consent was obtained from all participants. Patient consent for publication Informed consent was obtained from all patients. Competing interests The authors declare that they have no competing interests. References 1. Jemal A, Bray F, Center MM, Ferlay J, Ward E and Forman D: Global cancer statistics. CA Cancer J Clin 61: 69 90, 2011. 2. Ohtsu A: Chemotherapy for metastatic gastric cancer: Past, present, and future. J Gastroenterol 43: 256 264, 2008. 3. Wang KC and Chang HY: Molecular mechanisms of long noncoding RNAs. Mol Cell 43: 904 914, 2011. 4. Li Y and Wang X: Role of long noncoding RNAs in malignant disease (Review). Mol Med Rep 13: 1463 1469, 2016. 5. Zhou M, Zhang XY and Yu X: Overexpression of the long non coding RNA SPRY4 IT1 promotes tumor cell proliferation and invasion by activating EZH2 in hepatocellular carcinoma. Biomed Pharmacother 85: 348 354, 2017. 6. Fan Y, Wang YF, Su HF, Fang N, Zou C, Li WF and Fei ZH: Decreased expression of the long noncoding RNA LINC00261 indicate poor prognosis in gastric cancer and suppress gastric cancer metastasis by affecting the epithelial mesenchymal transition. J Hematol Oncol 9: 57, 2016. 7. Deng QJ, Xie LQ and Li H: Overexpressed MALAT1 promotes invasion and metastasis of gastric cancer cells via increasing EGFL7 expression. Life Sci 157: 38 44, 2016. 8. Zhang E, He X, Yin D, Han L, Qiu M, Xu T, Xia R, Xu L, Yin R and De W: Increased expression of long noncoding RNA TUG1 predicts a poor prognosis of gastric cancer and regulates cell proliferation by epigenetically silencing of p57. Cell Death Dis 7: e2109, 2016. 9. Zang W, Wang T, Wang Y, Chen X, Du Y, Sun Q, Li M, Dong Z and Zhao G: Knockdown of long non coding RNA TP73 AS1 inhibits cell proliferation and induces apoptosis in esophageal squamous cell carcinoma. Oncotarget 7: 19960 19974, 2016. 10. Zhang R, Jin H and Lou F: The long non coding RNA TP73 AS1 interacted with mir 142 to modulate brain glioma growth through HMGB1/RAGE pathway. J Cell Biochem 119: 3007 3016, 2018. 11. Li S, Huang Y, Huang Y, Fu Y, Tang D, Kang R, Zhou R and Fan XG: The long non coding RNA TP73 AS1 modulates HCC cell proliferation through mir 200a dependent HMGB1/RAGE regulation. J Exp Clin Cancer Res 36: 51, 2017. 12. Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real time quantitative PCR and the 2( Delta Delta C(T)) method. Methods 25: 402 408, 2001. 13. Wu F, Li J, Guo N, Wang XH and Liao YQ: MiRNA 27a promotes the proliferation and invasion of human gastric cancer MGC803 cells by targeting SFRP1 via Wnt/β catenin signaling pathway. Am J Cancer Res 7: 405 416, 2017.

3254 14. Jin C, Shi W, Wang F, Shen X, Qi J, Cong H, Yuan J, Shi L, Zhu B, Luo X, et al: Long non coding RNA HULC as a novel serum biomarker for diagnosis and prognosis prediction of gastric cancer. Oncotarget 7: 51763 51772, 2016. 15. Ye H, Liu K and Qian K: Overexpression of long noncoding RNA HOTTIP promotes tumor invasion and predicts poor prognosis in gastric cancer. Onco Targets Ther 9: 2081 2088, 2016. 16. Zhou X, Yin C, Dang Y, Ye F and Zhang G: Identification of the long non coding RNA H19 in plasma as a novel biomarker for diagnosis of gastric cancer. Sci Rep 5: 11516, 2015. 17. Wang JB, Liu FH, Chen JH, Ge HT, Mu LY, Bao HB and Lin ZG: Identifying survival associated modules from the dysregulated triplet network in glioblastoma multiforme. J Cancer Res Clin Oncol 143: 661 671, 2017. 18. Clevers H and Nusse R: Wnt/β catenin signaling and disease. Cell 149: 1192 1205, 2012. 19. Nuñez F, Bravo S, Cruzat F, Montecino M and De Ferrari GV: Wnt/β catenin signaling enhances cyclooxygenase 2 (COX2) transcriptional activity in gastric cancer cells. PLoS One 6: e18562, 2011. 20. Zhou Y, Wang Y, Wen J, Zhao H, Dong X, Zhang Z, Wang S and Shen L: Aquaporin 3 promotes the stem like properties of gastric cancer cells via Wnt/GSK 3β/β catenin pathway. Oncotarget 7: 16529 16541, 2016.