Molar anchorage loss has been shown to occur

Similar documents
The Tip-Edge appliance and

Intraoral molar-distalization appliances that

2007 JCO, Inc. May not be distributed without permission.

INDICATIONS. Fixed Appliances are indicated when precise tooth movements are required

MBT System as the 3rd Generation Programmed and Preadjusted Appliance System (PPAS) by Masatada Koga, D.D.S., Ph.D

Forsus Class II Correctors as an Effective and Efficient Form of Anchorage in Extraction Cases

REPRINTED FROM JOURNAL OF CLINICAL ORTHODONTICS 1828 PEARL STREET, BOULDER, COLORADO Dr. Nanda Dr. Marzban Dr. Kuhlberg

Space Closure Biomechanics Applied Using The MBT System Technique

ORTHOdontics SLIDING MECHANICS

Treatment of Class II, Division 2 Malocclusion in Adults: Biomechanical Considerations FLAVIO URIBE, DDS, MDS RAVINDRA NANDA, BDS, MDS, PHD

Orthodontic Treatment Using The Dental VTO And MBT System

System Orthodontic Treatment Program By Dr. Richard McLaughlin, Dr. John Bennett and Dr. Hugo Trevisi

The Tip-Edge Concept: Eliminating Unnecessary Anchorage Strain

Experience with Contemporary Tip-Edge plus Technique A Case Report.

Crowded Class II Division 2 Malocclusion

Sliding mechanics in an extraction case treated with 3M Clarity ADVANCED Ceramic Brackets and the 3M MBT Appliance System.

A Modified Three-piece Base Arch for en masse Retraction and Intrusion in a Class II Division 1 Subdivision Case

Gentle-Jumper- Non-compliance Class II corrector

Treatment of Class II, Division 2 Malocclusion with Miniscrew Supported En-Masse Retraction: Is Deepbite Really an Obstacle for Extraction Treatment?

The 20/20 Molar Tube. Ronald M. Roncone, D.D.S., M.S.

Crowding and protrusion treated by unusual extractions

THE MBT VERSATILE+ APPLIANCE SYSTEM

A New Fixed Interarch Device for Class II Correction

Keeping all these knowledge in mind I will show you 3 cases treated with the Forsus appliance.

Use of a Tip-Edge Stage-1 Wire to Enhance Vertical Control During Straight Wire Treatment: Two Case Reports

2015 JCO, Inc. May not be distributed without permission.

Case Report. profile relaxed relaxed smiling. How would you treat this malocclusion?

INCLUDES: OVERVIEW ON CLINICAL SITUATIONS FREQUENTLY ENCOUNTERED IN ORTHODONTIC TREATMENTS MECHANOTHERAPY USED TO RESOLVE THESE SITUATIONS

Angle Class II, division 2 malocclusion with deep overbite

Canine Extrusion Technique with SmartClip Self-Ligating Brackets

With judicious treatment planning, the clinical

The effectiveness of laceback ligatures: A randomized controlled clinical trial

ortho case report Sagittal First international magazine of orthodontics By Dr. Luis Carrière Special Reprint

From Plan B to Plan A : Using Forsus Class II Correctors as a Regular Mode of Treatment

2008 JCO, Inc. May not be distributed without permission. Correction of Asymmetry with a Mandibular Propulsion Appliance

Low-Force Mechanics Nonextraction. Estimated treatment time months (Actual 15 mos 1 week). Low-force mechanics.

Lingual correction of a complex Class III malocclusion: Esthetic treatment without sacrificing quality results.

Unilateral Horizontally Impacted Maxillary Canine and First Premolar Treated with a Double Archwire Technique

6. Timing for orthodontic force

3M Incognito Appliance System extraction case study.

Angle Class II, division 2 malocclusion with severe overbite and pronounced discrepancy*

An estimated 25-30% of all orthodontic patients can benefit from maxillary

04 Inserting the HYCON TUBE

The management of impacted

Delta Force. Bracket System. Putting you in the driver s seat for ultimate control

SnapLink Re-Convertible Tube

Correction of Crowding using Conservative Treatment Approach

Case Report Unilateral Molar Distalization: A Nonextraction Therapy

Dual Force Cuspid Retractor

Angle Class I malocclusion with bimaxillary dental protrusion and missing mandibular first molars*

Treatment of a Patient with Class I Malocclusion and Severe Tooth Crowding Using Invisalign and Fixed Appliances

MemRx Orthodontic Appliances

Honing Damon System Mechanics for the Ultimate in Efficiency and Excellence Jeff Kozlowski, DDS East Lyme, CT

Case Report: Long-Term Outcome of Class II Division 1 Malocclusion Treated with Rapid Palatal Expansion and Cervical Traction

Outline the significance of the pre-adjusted Edgewise appliance system and useful bracket variations in orthodontics

EUROPEAN SOCIETY OF LINGUAL ORTHODONTISTS

Extractions of first permanent molars in orthodontics: Treatment planning, technical considerations and two clinical case reports

Integrative Orthodontics with the Ribbon Arch By Larry W. White, D.D.S., M.S.D.

Controlled Space Closure with a Statically Determinate Retraction System

Angle Class I malocclusion with anterior open bite treated with extraction of permanent teeth

An Effectiv Rapid Molar Derotation: Keles K

Class II Correction with Invisalign Molar rotation.

ISW for the treatment of adult anterior crossbite with severe crowding combined facial asymmetry case

New Class of Appliance

An Innovative Treatment Approach with Atypical Orthodontic Extraction Pattern in Bimaxillary Protrusion Case

eral Maxillary y Molar Distalization with Sliding Mechanics: Keles Slider

The Science Behind The System Clinical Abstracts, Volume 2

Transverse malocclusion, posterior crossbite and severe discrepancy*

Many orthodontists have discovered the utility

Holy Nexus of Variable Wire Cross-section: New Vistas in Begg s Technique

We Give Back. Reduce Emergency Visits! ATTACHMENTS. No More Poking Archwires! Crimpable Mini Stops. Tooth Tone Crimpable Mini Stops

A New Low-Friction Ligation System

The Inman Aligner. The Inman Aligner,* a versatile removable

EUROPEAN SOCIETY OF LINGUAL ORTHODONTICS

Enhanced Control in the Transverse Dimension using the Unitek MIA Quad Helix System by Dr. Sven G. Wiezorek

clinical orthodontics article

UNILATERAL UPPER MOLAR DISTALIZATION IN A SEVERE CASE OF CLASS II MALOCCLUSION. CASE PRESENTATION. 1*

Nonextraction Treatment of Upper Canine Premolar Transposition in an Adult Patient

EUROPEAN SOCIETY OF LINGUAL ORTHODONTISTS

Correction of Class II Division 2 Malocclusion by Fixed Functional Class II Corrector Appliance: Case Report

Advantages. Fantastic. systems. Together with Unitek Lateral Development Archwires, this system puts you in control to

Advantages. Fantastic. Treatment. Finishes. 3M Self-Ligating Appliances Lateral Development System. Unitek Lateral Development Archwires

KJLO. A Sequential Approach for an Asymmetric Extraction Case in. Lingual Orthodontics. Case Report INTRODUCTION DIAGNOSIS

Deep bite can be corrected by intrusion of anterior

(12) Patent Application Publication (10) Pub. No.: US 2005/ A1

Plus Combines Traditional Twin Bracket Treatment With Self-Ligation Convenience

Non Extraction philosophy: Distalization using Jone s Jig appliance- a case report

Anterior Open Bite Correction with Invisalign Anterior Extrusion and Posterior Intrusion.

A Novel Method of Altering the Buccal Segment Relationship

Hypodontia is the developmental absence of at

A finite element analysis of the effects of archwire size on orthodontic tooth movement in extraction space closure with miniscrew sliding mechanics

TURN CLASS II INTO SIMPLE CLASS I PATIENTS.

Response of the maxillary dentition to a statically determinate one-couple system with tip-back mechanics: A prospective clinical trial

EUROPEAN SOCIETY OF LINGUAL ORTHODONTISTS

rocky mountain orthodontics functionaleducation

Archwire Insertion and Disengagement Instruments Technique Guide

Sample Case #1. Disclaimer

Clinical efficacy of Invisalign treatment with weekly aligner changes: Two case reports

Dr Robert Drummond. BChD, DipOdont Ortho, MChD(Ortho), FDC(SA) Ortho. Canad Inn Polo Park Winnipeg 2015

The conservative treatment of Class I malocclusion with maxillary transverse deficiency and anterior teeth crowding

Transcription:

2015 JCO, Inc. May not be distributed without permission. www.jco-online.com Clinical pplication of the PSS Technique SI CHEN, DDS, MSD, PhD GUI CHEN, DDS, PhD TINMIN XU, DDS, PhD Molar anchorage loss has been shown to occur during the early stages of alignment with preadjusted appliances. 1,2 The most commonly used archwires for initial alignment are made of nickel titanium, which has the elasticity to provide light, continuous forces but cannot accommodate the tipback bends needed to preserve molar anchorage. mong the methods developed to reinforce anchorage, headgear was once widely used but has not been entirely effective, even in compliant patients. 3 Temporary anchorage devices (TDs) are more reliable but may be rejected by some patients and can only be placed in sites with optimal bone condition. In recent years, self-ligating brackets have been advocated as a means of reducing wire-bracket friction, as well as allowing longer appointment intervals and fewer visits. 4,5 Low friction is most advantageous during initial alignment, however, whereas friction is needed for control in finishing and torque expression. If the friction level of a bracket could be adjusted for different treatment stages, orthodontic tooth movement would be more efficient. The Physiological nchorage Spee-wire System (PSS)* was designed to optimize natural anchorage preservation while controlling friction and utilizing the elasticity of nickel titanium wires for initial alignment. 6,7 Fig. 1 Components of Physiological nchorage Spee-wire System (PSS).*. Crossed buccal tube (XT).. Multilevel low-friction (MLF) bracket. 508 2015 JCO, Inc. JCO/UGUST 2015

Dr. Si Chen Dr. Gui Chen Dr. Xu Dr. Si Chen is a Clinical ssociate Professor, Dr. Gui Chen is a Research ssistant, and Dr. Xu is a Professor, Department of Orthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South venue, Haidian District, eijing 100081, China. Dr. Xu is the inventor of the PSS system; e-mail him at tmxuortho@163.com. Fig. 2 Conventional preadjusted appliance.. Passive archwire lies below anterior brackets.. When archwire is engaged in anterior brackets, counterclockwise tip-forward moment is created on molar while incisors are extruded. *Hangzhou Shinye Orthodontic Products Co., Zhengjiang, China; www.shinye-ortho.com. ppliance Design The PSS appliance has two main components: a crossed buccal tube (XT) consisting of a 7 main tube and a 25 tipback tube, crossing at the mesial end of the molar (Fig. 1); and a multilevel low-friction (MLF) bracket (Fig. 1). In normal occlusion, the molars are tipped slightly forward, so that the mesiodistal angulation of the upper first molar is about 5. Hence, the molar tube in the classic Straight-Wire ppliance, based on ndrews s six keys to normal occlusion, 8 has a prescription of +5. This prescription makes no allowance for molar anchorage preservation, however, and can be especially detrimental in extraction cases where the molars need to be maintained in an upright position or tipped back slightly before space closure. In a conventional preadjusted appliance, with the buccal tube positioned parallel to the line of buccal cusps, the passive archwire will lie below the anterior brackets because of the curve of Spee (Fig. 2). When the anterior teeth are engaged, a counterclockwise tipforward moment will be created on the molar while the anterior teeth are extruded (Fig. 2). In the PSS technique, the initial archwire is inserted into the tipback tube, generating a protective moment for the anchor molars from the beginning of treatment (Fig. 3). Engaging the wire into the anterior brackets from the gingival direction VOLUME XLIX NUMER 8 509

Clinical pplication of the PSS Technique will help maintain the anterior overbite, which is important in most extraction cases (Fig. 3). Molar anchorage is reinforced even when a light nickel titanium wire is used, without any wire bending. The double-tube design also facilitates the early use of a piggyback wire to control the upper-incisor vertical position during alignment and to promote bite opening in deep-bite cases (Fig. 4). The MLF bracket has a constricted cervical area that can hold the ligature and keep it from compressing the archwire. lighter archwire therefore experiences low friction during the align- Fig. 3 PSS technique.. Passive archwire inserted into tipback tube lies above anterior bracket.. When archwire is engaged from gingival direction, protective moment for anchor molar is created and anterior overbite is maintained. Fig. 5. With small initial archwire in MLF bracket, ligature is held in constricted cervical area, avoiding archwire compression and thus reducing friction.. With larger finishing archwire, ligature exerts controlled force to express bracket prescription. Fig. 4.018" stainless steel piggyback wire can be inserted into main molar tube to control upper-incisor vertical position and promote bite opening in deep-bite case. 510 JCO/UGUST 2015

Chen, Chen, and Xu ment stage (Fig. 5). s the archwire progresses to a larger size, the ligature contacts the wire and generates a controlled force for better expression of the bracket prescription (Fig. 5). In addition, the vertical slots are sized at.020" for the incisors, allowing better torque control, and.022" for the rest of the teeth, providing optimal sliding mechanics. In a low-friction environment, gentle forces from lip pressure and tissue regeneration of extraction sites may be utilized to assist tooth movement. 9 ecause of the unique design of the XT, the moment generated on a labially positioned canine as commonly seen in a patient with anterior crowding will result in guided distal drift of the canine without the use of laceback ties (Fig. 6). Posterior anchorage is thus preserved while anterior crowding is relieved. 10 The premolars are usually not bracketed for two to three months to allow a favorable molar-canine moment to be created. In the vertical dimension, the reaction force from molar tipback is diminished by the canine and balanced by lip pressure, similar to the effect of light-force self-ligating systems. Therefore, no J-hook headgear (as in the Tweed technique) or Class II elastics (as in the egg technique) are needed to prevent the incisor flaring that would otherwise occur under the heavy tipback forces generated by stainless steel archwires. Case Report 33-year-old female presented with the chief complaint of irregular teeth (Fig. 7). She displayed a Class I malocclusion with severe anterior crowding 10mm in the upper arch and 8mm in the lower and the two upper lateral incisors in crossbite. Chronic periodontitis-related gingival recession was found, with the upper left canine the most affected: obvious bone loss had occurred on its buccal side, and the remaining attachment was fragile. fter routine periodontal treatment and observation for inflammation control, the four first premolars were extracted to provide space for orthodontic movement. To avoid placing a heavy load on the periodontally compromised teeth, we prescribed the PSS technique with its low-force mechanics and guided distal canine drift. During initial alignment,.014" and.016" round nickel titanium archwires were inserted into the 25 tipback tubes (Fig. 8). Distal canine movement occurred without laceback ties, and initial upper alignment was achieved in six months (Fig. 8). Only minor upper-molar tipback was observed. In a total 23 months of treatment, the position of the upper molars was well maintained and the extraction space was efficiently used, not only for anterior alignment but also for retraction, thus improving the profile (Fig. 9). Cephalometric superimpositions confirmed maximum molar anchorage control (Fig. 9). The panoramic x-ray showed root parallelism without obvious root resorption. Further surgical and periodontal treatment was recommended to restore the upper-leftcanine defect and improve its attachment status. Fig. 6 Optimized molar-canine moment created by insertion of nickel titanium archwire into tipback tube; in low-friction environment, guided distal canine drift relieves anterior crowding without taxing molar anchorage. Discussion ccording to Su and colleagues, the upper first molars tend to be more distally tipped in younger patients, with more distally located lower molars and increased mandibular plane angles. 6 In other words, high-angle Class II adolescent patients have the most desirable physiological conditions for natural anchorage preservation. VOLUME XLIX NUMER 8 511

Clinical pplication of the PSS Technique Fig. 7 33-year-old female patient with anterior crowding and periodontally compromised condition before treatment. 512 JCO/UGUST 2015

Chen, Chen, and Xu Fig. 8..014" nickel titanium archwire inserted into XT tipback tubes to facilitate distal canine drift.. fter six months of treatment, initial upper alignment achieved using.016" nickel titanium archwire, with minor upper-molar tipback but no periodontal deterioration. Clinically, however, this kind of patient is most predisposed to anchorage loss. The PSS technique avoids the need for mechanical anchorage reinforcement by taking advantage of the patient s physiological anchorage, while the pretreatment molar positions are maintained during initial alignment with small nickel titanium archwires inserted in the XT tipback tubes. 2 Maintenance of the physiological curve of Spee during and after orthodontic treatment is emphasized in the PSS technique because this normal occlusal curvature is required for an efficient masticatory system. geometrical curve of Spee that produces the most efficient pattern for maximizing tooth contacts during chewing has been considered an important goal of denture construction. 11 It has been suggested that the curve of Spee performs a biomechanical function by increasing the crush-shear ratio between the posterior teeth, thus improving the efficiency of occlusal forces in food processing. 12 From an anchorage-control perspective, an increased crush-shear ratio may enhance intermaxillary resistance to mesial molar movement, as in a lowangle case compared to a high-angle case. In a prospective clinical trial, the upper first molar tipped forward an average of 7.2 in the group treated with headgear 3 ; therefore, keeping the upper first molar upright with the 7 XT tube would save about 2mm of anchorage nearly one-third of the premolar-extraction space in a maximum-anchorage case. The main difference between the MLF bracket and conventional self-ligating brackets is that instead of using a clip, the MLF provides more clearance for the archwire inside the slot. ccording to Kusy and Whitley, adding more clearance increases the critical contact angle for binding and thus reduces sliding resistance. 13 lthough the situation may not be ideal for every tooth as orthodontic correction proceeds, overall friction will still be reduced. We have observed free sliding of the MLF bracket along an.014" archwire with an.008" ligature in vitro, but in vivo studies are still needed to substantiate these findings. VOLUME XLIX NUMER 8 513

Clinical pplication of the PSS Technique Fig. 9. Patient after 23 months of treatment.. Superimposition of pre- and post-treatment cephalometric tracings. 514 JCO/UGUST 2015

Chen, Chen, and Xu REFERENCES 1. Rajesh, M.; Kishore, M.; and Shetty, K.S.: Comparison of anchorage loss following initial leveling and aligning using Roth and MT prescription clinical prospective study, J. Int. Oral Health 6:16-21, 2014. 2. Su, H.; Han,.; Li, S.; Na,.; Ma, W.; and Xu, T.: Factors predisposing to maxillary anchorage loss: retrospective study of 1403 cases, PLoS One 9:e10956, 2014. 3. Xu, T.; Zhang, X.; Oh, H.S.; oyd, R.L.; Korn, E.L.; and aumrind, S.: Randomized clinical trial comparing control of maxillary anchorage with 2 retraction techniques, m. J. Orthod. 138:544.e1-544.e9, 2010. 4. Damon, D.H.: The rationale, evolution and clinical application of the self-ligating bracket, Clin. Orthod. Res. 1:52-61, 1998. 5. Shivapuja, P.K. and erger, J.: comparative study of conventional ligation and self-ligation bracket systems, m. J. Orthod. 106:472-480, 1994. 6. Su, H.; Han,.; Li, S.; Na,.; Ma, W.; and Xu, T.M.: Compensation trends of the angulation of first molars: Retrospective study of 1403 malocclusion cases, Int. J. Oral Sci. 6:175-181, 2014. 7. nchorage, in Fixed Orthodontic ppliances: Principles and Practice, ed. J.K. Williams, P.. Cook, K.G. Isaacson, and.r. Thom, Wright, Oxford, U.K., 1995, pp. 7-14. 8. ndrews, L.F.: The six keys to normal occlusion, m. J. Orthod. 62:296-309, 1972. 9. Erikson,.E.; Kaplan, H.; and isenberg, M.S.: histological interpretation of repair phenomena following the removal of first premolars with retraction of the anterior segment, m. J. Orthod. Oral Surg. 31:1-20, 1945. 10. Irvine, R.; Power S.; and McDonald F.: The effectiveness of laceback ligatures: randomized controlled clinical trial, J. Orthod. 31:303-311, 2004. 11. Marshall, S.D.; Caspersen, M.; Hardinger R.R.; Franciscus, R.G.; quilino, S..; and Southard, T.E.: Development of the curve of Spee, m. J. Orthod. 134:344-352, 2008. 12. Kumar, K.P. and Tamizharasi, S.: Significance of curve of Spee: n orthodontic review, J. Pharm. ioallied Sci. 4:S323-S328, 2012. 13. Kusy, R.P. and Whitley J.Q.: Influence of archwire and bracket dimensions on sliding mechanics: Derivations and determinations of the critical contact angles for binding, Eur. J. Orthod. 21:199-208, 1999. VOLUME XLIX NUMER 8 515