La deshidratación elimina una Molécula de agua y forma un Enlace nuevo. Polímero más largo Reacción de deshidratación en la síntesis de un polímero

Similar documents
Short polymer. Dehydration removes a water molecule, forming a new bond. Longer polymer (a) Dehydration reaction in the synthesis of a polymer

Four Classes of Biological Macromolecules. Biological Macromolecules. Lipids

Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Chapter 5: Structure and Function of Macromolecules AP Biology 2011

Objective: You will be able to explain how the subcomponents of

Biological systems interact, and these systems and their interactions possess complex properties. STOP at enduring understanding 4A

Slide 1. Slide 2. Slide 3. So far... All living things are primarily made up of four classes of Macromolecules

Macromolecules Structure and Function

The Structure and Function of Large Biological Molecules

The Structure and Function of Large Biological Molecules

The Structure and Function of Macromolecules

AP Bio. Protiens Chapter 5 1

The Structure and Function of Large Biological Molecules

The Structure and Function of Large Biological Molecules

Methionine (Met or M)

The Structure and Function of Large Biological Molecules

The Structure and Function of Large Biological Molecules

The Structure and Function of Large Biological Molecules Part 4: Proteins Chapter 5

Cells. Variation and Function of Cells

The Structure and Function of Large Biological Molecules

The Structure and Function of Large Biological Molecules

The Structure and Function of Large Biological Molecules

The Structure and Function of Large Biological Molecules

The Structure and Function of Large Biological Molecules

The Structure and Function of Large Biological Molecules

Lipids: diverse group of hydrophobic molecules

A. Lipids: Water-Insoluble Molecules

BIOLOGY. Chapter 3 BIOLOGICAL MACROMOLECULES

9/16/15. Properties of Water. Benefits of Water. More properties of water

The Structure and Function of Large Biological Molecules

Lecture Series 2 Macromolecules: Their Structure and Function

Lecture Series 2 Macromolecules: Their Structure and Function

1. Polymers. What are Polymers? 2/13/2016. Chapter 5: The Structure and Function of Large Biological Molecules

Lecture Series 2 Macromolecules: Their Structure and Function

BIOLOGY. The Structure and Function of Large Biological Molecules. Outline. Overview: The Molecules of Life

BIOLOGY. The Structure and Function of Large Biological Molecules. Outline. Overview: The Molecules of Life

Outline. Overview: The Molecules of Life. Macromolecules are polymers, built from monomers. The Synthesis and Breakdown of Polymers.

Biology 5A Fall 2010 Macromolecules Chapter 5

Macromolecules (Learning Objectives)

Chapter 5 The Structure and Function of Macromolecules

Biology. Lectures winter term st year of Pharmacy study

Properties of amino acids in proteins

The Chemical Building Blocks of Life. Chapter 3

Biological Molecules

CARBOHYDRATES. Produce energy for living things Atoms? Monomer Examples? Carbon, hydrogen, and oxygen in 1:2:1 ratio.

Moorpark College Chemistry 11 Fall Instructor: Professor Gopal. Examination # 5: Section Five May 7, Name: (print)

The Structure and Function of Macromolecules (Chapter Five)

3 Carbon and the Molecular Diversity of Life

Macromolecules. 3. There are several levels of protein structure, the most complex of which is A) primary B) secondary C) tertiary D) quaternary

The Structure and Function of Large Biological Molecules. Chapter 5

Biological Molecules

Chapter 5: The Structure and Function of Large Biological Molecules

Organic molecules are molecules that contain carbon and hydrogen.

(30 pts.) 16. (24 pts.) 17. (20 pts.) 18. (16 pts.) 19. (5 pts.) 20. (5 pts.) TOTAL (100 points)

Biological Molecules. Carbohydrates, Proteins, Lipids, and Nucleic Acids

Chapter 5 THE STRUCTURE AND FUNCTION OF LARGE BIOLOGICAL MOLECULES

The building blocks of life.

The Structure and Function of Large Biological Molecules

AP BIOLOGY: READING ASSIGNMENT FOR CHAPTER 5

Macro molecule = is all the reactions that take place in cells, the sum of all chemical reactions that occur within a living organism Anabolism:

Structure and Function of Macromolecules Chapter 5 Macromolecules Macromolecules Multiple Units Synthesis of Dimers and Polymers

Carbon. Isomers. The Chemical Building Blocks of Life

9/6/2011. Amino Acids. C α. Nonpolar, aliphatic R groups

CS612 - Algorithms in Bioinformatics

Carbon: The Backbone of Life

BIOCHEMISTRY. How Are Macromolecules Formed? Dehydration Synthesis or condensation reaction Polymers formed by combining monomers and removing water.

PROTEINS. Amino acids are the building blocks of proteins. Acid L-form * * Lecture 6 Macromolecules #2 O = N -C -C-O.

Chapter 2. Chemical Composition of the Body

For questions 1-4, match the carbohydrate with its size/functional group name:

Molecular Biology. general transfer: occurs normally in cells. special transfer: occurs only in the laboratory in specific conditions.

INTRODUCTION TO ORGANIC COMPOUNDS. Copyright 2009 Pearson Education, Inc.

The Structure and Function of Large Biological Molecules

Campbell's Biology, 9e (Reece et al.) Chapter 5 The Structure and Function of Large Biological Molecules

Chemistry 121 Winter 17

Chapter 5: The Structure and Function of Large Biological Molecules

Macromolecules. Note: If you have not taken Chemistry 11 (or if you ve forgotten some of it), read the Chemistry Review Notes on your own.

Honors Biology Chapter 3: Macromolecules PPT Notes

Macromolecules. Macromolecules. Polymers. How to build a polymer 9/11/2015. Building Blocks of Life

Composed of long chains of smaller molecules Macromolecules are formed through the process of polymerization

Chapter 3- Organic Molecules

Macromolecules of Life -3 Amino Acids & Proteins

Organic Molecules: Proteins

Moorpark College Chemistry 11 Fall Instructor: Professor Gopal. Examination #5: Section Five December 7, Name: (print) Section:

Fatty acids and phospholipids

2.2 Cell Construction

For questions 1-4, match the carbohydrate with its size/functional group name:

Chapter 3 Guided Reading Notes Carbon and the Molecular Diversity of Life

Macromolecules. copyright cmassengale

Macromolecules. Ch. 5 Macromolecules BIOL 222. Overview: The Molecules of Life. Macromolecules

Organic Compounds. Compounds that contain CARBON are called organic. Macromolecules are large organic molecules.

Lesson 2. Biological Molecules. Introduction to Life Processes - SCI 102 1

Chapter 3: Macromolecules. 1. Carbohydrates. Polysaccharides. Maltose is a disaccharide. Macromolecules (in general) Most macromolecules are polymers

Structure & Function of Large Biological Molecules (Ch. 5)

The Carbon Atom (cont.)

CHAPTER 3. Carbon & the Molecular Diversity of Life

The Star of The Show (Ch. 3)

Biomolecules. Biomolecules. Carbohydrates. Biol 219 Lec 3 Fall Polysaccharides. Function: Glucose storage Fig. 2.2

Campbell Biology in Focus (Urry) Chapter 3 Carbon and the Molecular Diversity of Life. 3.1 Multiple-Choice Questions

Transcription:

Figure 5-01

LE 5-2 Polímerto corto Monómero no unido La deshidratación elimina una Molécula de agua y forma un Enlace nuevo Polímero más largo Reacción de deshidratación en la síntesis de un polímero La hidrólisis agrega una Molécula de agua y rompe un enlace Hidrólisis de un polímero

LE 5-2a Polímero corto Monómero no unido La deshidratación elimina una Molécula de agua y forma un Enlace nuevo polímero más largo Reacción de deshidratación en la síntesis de un polímero

LE 5-2b La hidrólisis agrega una Molecula de agua y rompe un enlace Hidrólisis de un polímero

LE 5-3 Triose sugars (C 3 H 6 O 3 ) Pentose sugars (C 5 H 10 O 5 ) Hexose sugars (C 5 H 12 O 6 ) Glyceraldehyde Ribose Glucose Galactose Dihydroxyacetone Ribulose Fructose

LE 5-4 Forma lineal y anular Estructura anular abreviada

LE 5-4a Forma lineal Y anular

LE 5-4b Estructura anular abreviada

LE 5-5 Dehydration reaction in the synthesis of maltose 1 4 glycosidic linkage Glucose Glucose Maltose Dehydration reaction in the synthesis of sucrose 1 2 glycosidic linkage Glucose Fructose Sucrose

LE 5-5a Enlace Glucosídico 1 4 Glucose Glucose Maltose Reacción de deshidratación en la síntesis de maltosa

LE 5-5b Enlace Glucosídico 1 2 Glucose Fructose Sucrose Reacción de deshidratación en la síntesis de sacarosa

LE 5-6 Chloroplast Starch Mitochondria Glycogen granules 0.5 µm 1 µm Amylose Amylopectin Glycogen Starch: a plant polysaccharide Glycogen: an animal polysaccharide

LE 5-6a Chloroplast Starch 1 µm Amylose Amylopectin Almidón: un polisacárido vegetal

LE 5-6b Mitochondria Glycogen granules 0.5 µm Glycogen Glucógeno: un polisacárido animal

LE 5-7 a Glucose b Glucose a and b glucose ring structures Starch: 1 4 linkage of a glucose monomers. Cellulose: 1 4 linkage of b glucose monomers.

LE 5-7a a Glucose b Glucose Estructuras anulares de a y b glucosa

LE 5-7b Almidón: unión 1-4 de monómeros de a glucosa

LE 5-7c Celulosa: unión 1-4 de monómeros de b glucosa.

LE 5-8 Paredes celulares Microfibrillas de celulosa En una pared celular vegetal Microfibril 0.5 µm Plant cells Moléculas De celulosa Monómeros de B glucosa

Figure 5-09

LE 5-10 La estructura del Monómero de quitina. La quitina forma el exoesqueleto de los artrópodosla quitina se utiliza para fabricar un hili quirúrgico Esta cigarra está mudando despojándose de su Fuerte y flexible que se descomponedespués de que Viejo exoesqueleto y emergiendo como forma La herida o incisión se cura adulta

LE 5-11 Fatty acid (palmitic acid) Dehydration reaction in the synthesis of a fat Ester linkage Fat molecule (triacylglycerol)

LE 5-11a Ácido graso (ácido palmítico) Glycerol Reacción de deshidratación en la síntesis de una grasa

LE 5-11b Ester linkage Molécula de grasa (triacilglicerol)

LE 5-12 Stearic acid Saturated fat and fatty acid. Oleic acid Unsaturated fat and fatty acid. cis double bond causes bending

LE 5-12a Ácido esteárico Grasa saturada y ácido graso.

LE 5-12b Oleic acid Unsaturated fat and fatty acid. cis double bond causes bending

LE 5-13 Choline Phosphate Glycerol Fatty acids Cabeza hidófila Colas hidrófobas Fórmula estructural Modelo espacial Símbolo de fosfolípido

LE 5-13a Choline Phosphate Glycerol Fatty acids Structural formula Space-filling model

LE 5-13b Hydrophilic head Hydrophobic tails Phospholipid symbol

LE 5-14 Hydrophilic head WATER Hydrophobic tails WATER

Figure 5-15

Table 5-1

LE 5-UN78 a carbon Amino group Carboxyl group

LE 5-16 Substrate (sucrose) Glucose Enzyme (sucrose) Fructose

LE 5-17a Glycine (Gly) Alanine (Ala) Valine (Val) Leucine (Leu) Isoleucine (Ile) Nonpolar Methionine (Met) Phenylalanine (Phe) Tryptophan (Trp) Proline (Pro)

LE 5-17b Polar Serine (Ser) Threonine (Thr) Cysteine (Cys) Tyrosine (Tyr) Asparagine (Asn) Glutamine (Gln)

LE 5-17c Acidic Basic Electrically charged Aspartic acid (Asp) Glutamic acid (Glu) Lysine (Lys) Arginine (Arg) Histidine (His)

LE 5-18 Peptide bond Cadenas laterales Peptide bond Columna vertebral Amino acid (N-terminus) Carboxyl end (C-terminus)

LE 5-19 Groove A ribbon model Groove A space-filling model

LE 5-19a Groove A ribbon model

LE 5-19b Groove A space-filling model

LE 5-20 + H 3 N Amino end Amino acid subunits b pleated sheet a helix

LE 5-20a Amino end Amino acid subunits Carboxyl end

LE 5-20b b pleated sheet Amino acid subunits a helix

LE 5-20c Abdominal glands of the spider secrete silk fibers that form the web. The spiral strands (capture strands) are elastic, stretching in response to wind, rain, and the touch of insects. The radiating strands, made of dry silk fibers, maintain the shape of the web. Spider silk: a structural protein Containing b pleated sheets

LE 5-20d Hydrophobic interactions and van der Waals interactions Polypeptide backbone Hydrogen bond Disulfide bridge Ionic bond

LE 5-20db Hydrophobic interactions and van der Waals interactions Polypeptide backbone Hydrogen bond Disulfide bridge Ionic bond

LE 5-20e Polypeptide chain b Chains Iron Heme Polypeptide chain Collagen a Chains Hemoglobin

LE 5-21a 10 µm 10 µm Red blood cell shape Normal cells are full of individual hemoglobin molecules, each carrying oxygen. Red blood cell shape Fibers of abnormal hemoglobin deform cell into sickle shape.

LE 5-21b Normal hemoglobin Sickle-cell hemoglobin Primary structure Val His Leu 1 2 3 Thr 4 Pro 5 Glu 6 Glu 7 Primary structure Val His Leu 1 2 3 Thr 4 Pro 5 Val 6 Glu 7 Secondary and tertiary structures b subunit Secondary and tertiary structures Exposed hydrophobic region b subunit Quaternary structure Normal hemoglobin (top view) a b a b Quaternary structure Sickle-cell hemoglobin a b b a Function Molecules do not associate with one another; each carries oxygen. Function Molecules interact with one another to crystallize into a fiber; capacity to carry oxygen is greatly reduced.

LE 5-22 Denaturation Normal protein Denatured protein Renaturation

LE 5-23a Cap Hollow cylinder Chaperonin (fully assembled)

LE 5-23b Polypeptide Correctly folded protein Steps of Chaperonin Action: An unfolded polypeptide enters the cylinder from one end. The cap attaches, causing the cylinder to change shape in such a way that it creates a hydrophilic environment for the folding of the polypeptide. The cap comes off, and the properly folded protein is released.

LE 5-24a X-ray source Photographic film Diffracted X-rays X-ray beam X-ray diffraction pattern Crystal

LE 5-24b Nucleic acid Protein X-ray diffraction pattern 3D computer model

LE 5-25 DNA Synthesis of mrna in the nucleus mrna NUCLEUS CYTOPLASM mrna Movement of mrna into cytoplasm via nuclear pore Ribosome Synthesis of protein Polypeptide Amino acids

LE 5-26a 5 end Nucleoside Nitrogenous base Phosphate group Pentose sugar Nucleotide 3 end Polynucleotide, or nucleic acid

LE 5-26b Nitrogenous bases Pyrimidines Cytosine C Thymine (in DNA) T Uracil (in RNA) U Purines Adenine A Guanine G Pentose sugars Deoxyribose (in DNA) Ribose (in RNA) Nucleoside components

LE 5-27 5 end 3 end Sugar-phosphate backbone Base pair (joined by hydrogen bonding) Old strands Nucleotide about to be added to a new strand 5 end New strands 3 end 5 end 5 end 3 end