Year 10 Biology Revision List - COMBINED

Similar documents
Year 10 Biology Revision List - SEPARATE

4.2.1 Principles of organisation Animal tissues, organs and organ systems The human digestive system

4.2 Organisation Principles of organisation Animal tissues, organs and organ systems The human digestive system.

How many lessons is it?

Organisation. AQA Biology topic 2

2. Complete this table to give the function of the following organelles:

The human digestive system

2015 New biology assessment framework KS4. Year 9A2 9A8. Success criteria for all assessments (assessments will be every 6 weeks): 9 = 90% +

Part 3- Biology Paper 1 Infection and Response Knowledge Questions

The human digestive system

Stem cells. Stem cells can be found in embryos, in adult animals and in the meristems in plants.

17. What are lipids made from? Fatty acids and glycerol 18. What are proteins used in the body for? (What is their function?) Growth and repair 19.

B2.1 Cells and simple cell transport. B2.2 Tissues, organs and organ systems

Year 10 AQA GCSE Biology Revision Checklist

Part 2- Biology Paper 1 Organisation Knowledge Questions

Y10 POS Combined BIOLOGY 3Y

UR Revision Guide. igcse Biology. Page 1

What is the function of ribosomes? Draw and label a Bacteria cell.

A summary of topics for 3 rd Year igcse Biology

GraspIT AQA GCSE Organisation Questions

COMBINED SCIENCE GCSE. Biology: Paper 1 Higher Tier. Time allowed: 1 hour 15 minutes. Materials. For this paper you must have: Instructions all

GCSE Combined Science. Biology Paper 1

(a) (i) Describe how the structure of an artery is different from the structure of a vein.

Contact us:

NCERT SOLUTIONS OF Life Processes

Time allowed: 1 hour 45 minutes

Chapter 6---Life Processes

GCSE BIOLOGY. Materials For this paper you must have: a ruler a scientific calculator. Please write clearly in block capitals. Surname.

Website: Page 1. Page 113»Exercise» Question 1:

Angel International School - Manipay

Where in the cell are proteins made? Which part of a cell controls its activities? ribosomes. nucleus Where in the cell do chemical reactions occur?

Many people suffer from stomach ulcers caused by a species of bacteria called Helicobacter pylori.

The diagram below shows the parts of the body that digest and absorb food.

Revision Question Bank

Transport Systems in Plants and Animals

Year 11 Biology Revision List - COMBINED

KS3 Science Assessment Framework: Year 7 Cells September 2015

Year 9 Biology Learning Cycle 2 Overview What are our bodies capable of?

B1 EXAM BRIEFING. Tuesday 15 th May 2018, 1.30PM

2 Organisation higher (import)

Separate Science: Biology Paper 1 Higher. Knowledge Organisers. Biology Paper 1 15 th May PM 1h 45min

CELL STRUCTURE / QUESTIONS. Q1. Figure 1 shows an animal cell. Figure 1. alex-mit/istock/thinkstock. (a) What is structure A? Tick one box.

Year 9 AQA GCSE Biology Revision Checklist

Use words from the box to complete Figure 1 by putting the parts of the body in order of size from smallest to largest.

Exampro GCSE Biology. B2.1 Cells. Name: Class: Foundation tier. Author: Date: Time: 81. Marks: 81. Comments: Page 1 of 27

CHAPTER6. Multiple Choice Questions NCERT

Year 10A2 10A7. Success criteria for all assessments (assessments will be every 6 weeks): A* = 90% + A = 80 89% B = 70 79% C = 60 69% D = 50 59%

Q2: What is the circulatory system composed of? The heart and blood vessels (arteries, veins & capillaries).

B2 Cells and simple transport

Proteins their functions and uses revision 4

CHAPTER 2: BLOOD CIRCULATION AND TRANSPORT

Chapter 2: Human Body Systems Work Independently and Together

4-3 Infection and Response Trilogy

Part 3- Biology Paper 1 Infection and Response Application Questions Triple Science

1) Autotrophic nutrition in plants 2) Nutrition in Human Beings. 3) transportation in human being 4) Excretion in human being

OCR (A) Biology GCSE. Topic 1: Cell Level Systems

Why is diffusion insufficient to meet the oxygen requirements of multi-cellular organisms like

Animal cells: label the main parts. Plant and algal cells: label the parts Cell wall. Cell membrane. Cytoplasm. nucleus. mitochondrion.


Question What is the function of the immune system? Answer:

Digestion & The Alimentary Canal

There are enzymes in biological washing powders. Biological washing powder has to be used at temperatures below 45 C.

perfect practice makes perfect

Ch 7 Nutrition in humans

PART A: MULTIPLE CHOICE (100 questions 65% of exam mark)

Life Functions Common to Living Things

Multicellular Organisms. Sub-Topic 2.6 Transport Systems in Animals

17/04/2018. AQA Science Trilogy and Triple Biology Paper 1

Movement of substances

4-3 Infection and Response Biology

cell membrane cytoplasm nucleus Hydrogen peroxide is a chemical that can be used to preserve milk.

Enzymes. Enzymes are protein molecules, with complex shapes which are important for their activity: part of an enzyme molecule is its.

Cambridge O Level Biology Syllabus code 5090 All candidates enter for three papers Papers 1 and 2 and Paper 6. PAPER 1 Multiple Choice

Page 2. Q1.Substances can move into and out of cells. (a) (i) How does oxygen move into and out of cells? Draw a ring around one answer.

3 Movement in and out of cells


(a) (i) Structures A and B are found in both the animal cell and the bacterial cell. B... (2)

Separate Science Revision & Exam Practice

CIE Biology GCSE 7: Human nutrition

o Nutrition in human beings 33

L1. Photosynthesis photosynthesis Photosynthesis endothermic carbon dioxide + water (+ light energy) glucose + oxygen chloroplasts chlorophyll

National Know that stem cells in animals are cells which can divide.

Absorption definition. Active transport. Aerobic respiration definition. Anaerobic respiration definition. Animal Cell features

Human Body Systems. Long narrow tube mixes enzymes with food Small nutrient molecules diffuse into blood

Year 9 Biology Learning Cycle 5 Overview How do the circulatory and digestive systems work and why must they be looked after?

Proteins their functions and uses revision 3

GHS BIOLOGY P553/1 June Attempt all the questions in section A, and B Answers to questions in section A, and B must be in spaces provided

07 Human transport Biology Notes IGCSE Cambridge #69 Transport in humans - the circulatory system

2014 Secondary Three Biology Curriculum Outline

Plants and animals are examples of multicellular organisms. They contain millions of cells in their body.

The figure below shows a scale drawing of one type of cell in blood. Use the scale to determine the width of the cell.

Digestion. I. What is digestion? II. Enzymes involved in digestion

B2 Revision Pack Please keep this pack with you

Unit 2 - Characteristics of Living Things

Downloaded from

1 Which substances are dissolved in human blood plasma? carbon dioxide, haemoglobin and glucose. carbon dioxide, oxygen and haemoglobin

Dawood Public School Course Outline Science Class IX

bacteria review 1. Which of the following structures is not found in bacteria?

***Non-living things may show one or more of these Characteristics, but NEVER ALL of them

Transcription:

Year 10 Biology Revision List - COMBINED This is a summary of everything you need to know for the Biology part of your Combined science GCSE for your exam on 8 th March 2019. 9 Cells and Simple Cell Transport (paper 1) Draw and label a plant and animal cell Give the function of each label and compare plant and animal cell structure. Identify and label Ribosomes and Mitochondria. Describe the structure of Bacteria and Yeast cells and give the function of cell structures. Specialised cells: give examples of specialised animal and plant cells and describe how they are adapted to their function. Understanding how to use scale and size of cells You should be able to carry out calculations involving magnification, real size and image size using the formula. Use prefixes centi, milli, micro and nano H tier only express answers in standard form Give a definition of diffusion, name substances moved by diffusion and the name factors which affect the rate of diffusion. 9 Microscopy (paper 1) Understand how microscopy techniques have developed over time Explain how electron microscopy has increased understanding of sub-cellular structures such as ribosomes as they have higher magnification and resolution. You should be able to carry out calculations involving Magnification = size of image size of real object H tier only express answers in standard form 1

9 Animal Tissues, Organs and Organ Systems (paper 1) Animal tissue and organs Explain what a tissue is and give examples of them in animals Identify the main human organs, including those of the digestive system. Organ systems are groups of organs that perform a particular function. The digestive system is one example of a system in which humans and other mammals exchange substances with the environment. Understand that organs are made of tissues. One organ may contain several tissues. Describe the structure and function of the main tissues in the stomach and small intestine (muscular for movement, glandular to produce enzymes and epithelial to protect). Human digestion and enzymes Identify the organs in the digestive system and the role of each organ in the digestions and absorption of food. Describe the structure of enzymes and how this relates to their function. Explain that enzymes catalyse specific reactions in living organisms due to the shape of their active site. Use the lock and key theory as a simplified model to explain enzyme action. Enzymes are proteins are made up of long chains of amino acids, folded to produce a specific shape (the active site) that enables other molecules to fit into the protein. Recall the sites of production and the action of amylase, proteases and lipases. Amylase (carbohydrase) is produced in the salivary glands, pancreas, small intestine Protease is produced by the stomach, pancreas, small intestine Lipase is produced by the pancreas and small intestine Bile is made in the liver and stored in the gall bladder. It is alkaline to neutralise hydrochloric acid from the stomach. It also emulsifies fat to form small droplets which increases the surface area. The alkaline conditions and large surface area increase the rate of fat breakdown by lipase. Describe the tests for carbohydrates, lipids and proteins. Benedict s test for sugars; iodine test for starch; and Biuret reagent for protein. 2

Plant tissues and organs (paper 1) Recall the word equation for photosynthesis: light energy + carbon dioxide + water glucose + oxygen light energy is absorbed by chlorophyll (in chloroplasts) converts carbon dioxide (from the air) and water (from the soil) into sugar (glucose) oxygen is released as a by-product. Plant tissues Explain how the structures of plant tissues are related to their functions. Plant tissues include: epidermal tissues palisade mesophyll spongy mesophyll xylem and phloem meristem tissue found at the growing tips of shoots and roots. Describe the structure of the leaf and the function of each of these structures. Explain roles of the cells and tissues in a leaf for photosynthesis. Explain how the structure of root hair cells, xylem and phloem are adapted to their functions. Identify the stomata in a leaf and describe its role in gas exchange for the plant and water loss. Describe what transpiration is: the movement of water through a plant Explain the effect of changing temperature, humidity, air movement and light intensity on the rate of transpiration. 3

9 Heart, blood and blood vessels (paper 1) The Heart Describe the structure and function of the human heart. Identifying which side pumps oxygenated blood and which pumps deoxygenated blood. The heart is an organ that pumps blood around the body in a double circulatory system. The right ventricle pumps blood to the lungs where gas exchange takes place. The left ventricle pumps blood around the rest of the body. Knowledge of the blood vessels associated with the heart is limited to the aorta, vena cava, pulmonary artery, pulmonary vein and coronary arteries. Understand that the natural resting heart rate is controlled by a group of cells located in the right atrium that act as a pacemaker. Blood vessels Explain how the structure of the 3 blood vessels relates to their functions. The body contains three different types of blood vessel: arteries veins capillaries. Blood Blood is a tissue made of plasma carries dissolved substances red blood cells carry oxygen white blood cells fight infectious disease platelets clot blood Coronary Heart Disease Know the risk factors which can lead to coronary treating CHD with drugs, mechanical devices or transplant. 4

10 Infection and Response (paper 1) Human Health and Disease Non-communicable diseases Discuss the human and financial cost of these non-communicable diseases to an individual, a local community, a nation or globally Explain the effect of lifestyle factors including diet, alcohol and smoking on the incidence of non-communicable diseases Risk factors are linked to an increased rate of a disease. the effects of diet, smoking and exercise on CHD Obesity as a risk factor for Type 2 diabetes. alcohol on the liver and brain function. smoking on lung disease and lung cancer. smoking and alcohol on unborn babies. Carcinogens, including ionising radiation, as risk factors in cancer. Cancer changes in cells that lead to uncontrolled growth and division. Benign tumours are growths of abnormal cells - contained in one area, usually within a membrane. Do not invade other parts of the body. Malignant tumour cells are cancers. Invade neighbouring tissues and spread to different parts of the body in the blood where they form secondary tumours. Communicable disease Explain how diseases caused by viruses, bacteria, protists and fungi are spread in animals (direct contact, by water or by air) and how the spread of diseases can be reduced or prevented. Pathogens are microorganisms that cause infectious disease and may be viruses, bacteria, protists or fungi. Bacteria and viruses may reproduce rapidly inside the body. Bacteria may produce poisons (toxins) that damage tissues Viruses live and reproduce inside cells, causing cell damage. Measles is a viral disease showing symptoms of fever and a red skin Rash which can be fatal if complications arise; most young children are vaccinated against it. Spread by inhalation of droplets from sneezes/coughs. HIV initially causes a flu-like illness. Unless successfully controlled with antiretroviral drugs the virus attacks the body s immune cells. Late stage HIV infection, or AIDS - body's immune system becomes so badly damaged it can no longer deal with other infections or cancers. HIV is spread by sexual contact or exchange of body fluids such as blood which occurs when drug users share needles. Malaria is caused by are protists; the malarial protist has a life cycle that includes the mosquito, causes episodes of fever and can be fatal. The spread of malaria is controlled by preventing the vectors, mosquitos, from breeding and using mosquito nets. 5

Tobacco mosaic virus (TMV) is a widespread plant pathogen affecting many species of plants including tomatoes. It gives a distinctive mosaic pattern of discolouration on the leaves which affects the growth of the plant due to lack of photosynthesis. Salmonella food poisoning is spread by bacteria ingested in food. In the UK, poultry are vaccinated against salmonella to control the spread. Fever, abdominal cramps, vomiting and diarrhoea are caused by the bacteria and the toxins they secrete. Gonorrhoea is a sexually transmitted disease (STD) with symptoms of a thick yellow or green discharge from the vagina or penis and pain on urinating. It is caused by a bacterium and was easily treated with the antibiotic penicillin until many resistant strains appeared. Spread by sexual contact. Controlled by treatment with antibiotics or the use of a barrier method of contraception such as a condom. Rose black spot is a fungal disease where purple or black spots develop on leaves, which often turn yellow and drop early. It affects the growth of the plant as photosynthesis is reduced. It is spread in the environment by water or wind. Can be treated by using fungicides and/or removing and destroying the affected leaves. Immunity Describe the non-specific defence systems of the human body against pathogens, including the: skin nose trachea and bronchi stomach. Explain the role of the immune system; white blood cells help to defend against pathogens by: phagocytosis antibody production antitoxin production. Vaccination Explain how vaccination will prevents illness Spread of pathogens can be reduced by immunising a large proportion of the population. Vaccination involves introducing small quantities of dead or inactive forms of a pathogen into the body to stimulate the white blood cells to produce antibodies. If the same pathogen re-enters the body the white blood cells respond quickly to produce the correct antibodies, preventing infection. Treating disease Antibiotics, such as penicillin, are medicines that help to cure bacterial disease by killing infective bacteria inside the body. The use of antibiotics has greatly reduced deaths from infectious bacterial diseases. However, the emergence of strains resistant to antibiotics is of great concern. Antibiotics cannot kill viral pathogens. 6

Painkillers and other medicines are used to treat the symptoms of disease but do not kill pathogens. It is difficult to develop drugs that kill viruses without also damaging the body s tissues. Drugs Testing Describe the process of discovery and development of potential new medicines, including preclinical and clinical testing. Digitalis (the heart drug) originates from foxgloves. Aspirin (painkiller) originates from willow. Penicillin (antibiotic) discovered by Alexander Fleming from the Penicillium mould. New medical drugs have to be tested and trialled before being used to check that they are safe and effective for toxicity, efficacy dose. Preclinical testing is done in a laboratory using cells, tissues and live animals. Clinical trials use healthy volunteers and patients. Very low doses of the drug are given at the start of the clinical trial. If the drug is safe, clinical trials are carried out to find the optimum dose for the drug. In double blind trials, some patients are given a placebo 10 Bioenergetics (paper 1) Photosynthesis is represented by the equation: carbon dioxide + water glucose + oxygen Students should recognise the chemical symbols: CO 2, H 2O, O 2 and C 6H 12O 6. Describe photosynthesis as an endothermic reaction in which energy is transferred to the chloroplasts by light. Rate of photosynthesis Explain the effects of temperature, light intensity, carbon dioxide concentration, and the amount of chlorophyll on the rate of photosynthesis. measure and calculate rates of photosynthesis extract and interpret graphs of photosynthesis rate involving one limiting factor 7

plot and draw appropriate graphs selecting appropriate scale for axes translate information between graphical and numeric form. HT only: These factors interact and any one of them may be the factor that limits photosynthesis. Students should be able to explain graphs of photosynthesis rate involving two or three factors and decide which is the limiting factor. HT only: Understand and use the inverse square law and light intensity in the context of photosynthesis. HT only: Limiting factors are important in the economics of enhancing the conditions in greenhouses to gain the maximum rate of photosynthesis while still maintaining profit. Uses of glucose from photosynthesis Content Key opportunities for s The glucose produced in photosynthesis may be: used for respiration converted into insoluble starch for storage to produce fat or oil for storage to produce cellulose, which strengthens the cell wall to produce amino acids for protein synthesis. to produce proteins, plants also use nitrate ions that are absorbed from the soil. Respiration Describe cellular respiration as an exothermic reaction which is continuously occurring in living cells. The energy transferred supplies all the energy needed for living processes. Respiration in cells can take place aerobically (using oxygen) or anaerobically (without oxygen), to transfer energy. Compare the processes of aerobic and anaerobic respiration with regard to the need for oxygen, the differing products and the relative amounts of energy transferred. Organisms need energy for: chemical reactions to build larger molecules movement keeping warm. Aerobic respiration is represented by the equation: glucose + oxygen carbon dioxide + water Anaerobic respiration in muscles is represented by the equation: glucose lactic acid Less energy is transferred than in aerobic respiration. 8

Anaerobic respiration in plant and yeast cells is represented by the equation: glucose ethanol + carbon dioxide Anaerobic respiration in yeast cells is called fermentation; used in making bread and alcoholic drinks. Exercise: During exercise the human body reacts to the increased demand for energy. The heart rate, breathing rate and breath volume increase during exercise to supply the muscles with more oxygenated blood. If insufficient oxygen is supplied anaerobic respiration takes place in muscles. The incomplete oxidation of glucose causes a build up of lactic acid and creates an oxygen debt. During long periods of vigorous activity muscles become fatigued and stop contracting efficiently. HT only: Blood flowing through the muscles transports the lactic acid to the liver where it is converted back into glucose. Oxygen debt is the amount of extra oxygen the body needs after exercise to react with the accumulated lactic acid and remove it from the cells. C Metabolism Explain the importance of sugars, amino acids, fatty acids and glycerol in the synthesis and breakdown of carbohydrates, proteins and lipids. Metabolism is the sum of all the reactions in a cell or the body and includes conversion of glucose to starch, glycogen and cellulose formation of lipid molecules from a molecule of glycerol and three molecules of fatty acids use of glucose and nitrate ions to form amino acids which in turn are used to synthesise proteins respiration breakdown of excess proteins to form urea for excretion. 10 Transport in Cells (paper 1) Diffusion : Diffusion is the spreading out of the particles of any substance in solution, or particles of a gas, resulting in a net movement from an area of higher concentration to an area of lower concentration. Substances transported in and out of cells by diffusion are oxygen carbon dioxide in gas exchange waste product urea from cells into the blood plasma for excretion in the kidney. Factors which affect the rate of diffusion are: the difference in concentrations (concentration gradient) the temperature the surface area of the membrane. 9

In multicellular organisms, surfaces and organ systems are specialised for exchanging materials. The effectiveness of an exchange surface is increased by: having a large surface area a membrane that is thin, to provide a short diffusion path (in animals) having an efficient blood supply (in animals, for gaseous exchange) being ventilated. Osmosis: Water may move across cell membranes via osmosis. Osmosis is the diffusion of water from a dilute solution to a concentrated solution through a partially permeable membrane. Recognise, draw and interpret diagrams that model osmosis. use simple compound measures of rate of water uptake use percentages calculate percentage gain and loss of mass of plant tissue. Active Transport: Some substances are moved from a more concentrated solution (against a concentration gradient). This requires energy from respiration. Active transport allows mineral ions to be absorbed into plant root hairs from very dilute solutions in the soil. Plants require ions for healthy growth. sugar molecules to be absorbed from lower concentrations in the gut into the blood which has a higher sugar concentration. Sugar molecules are used for cell respiration. 10