ANTIPLASMODIAL ACTIVITY OF CRUDE EXTRACTS AND ESSENTIAL OIL OF LIPPIA MULTIFLORA IN MICE

Similar documents
Evaluation of murine model of malaria using ethanolic extracts of Pride of barbados (Caesalpinia pulcherrima)

Effects of autacoid inhibitors and of an antagonist on malaria infection in mice

Exploring Medicinal Plants for Better Health: Antiplasmodial properties of Clerodendrum myricoides and Dodonaea angustifolia

An in Vivo Studies on the Sensitivity Pattern of Plasmodium Bergei to Stem Bark Extract of Echinaceae Angustifolia DC (Compositae)

Anti-malarial activity of ethanolic stem bark extract of Faidherbia Albida (Del) a. Chev (Mimosoidae) in mice

Afr. J. Trad. CAM (2006) 3 (4): 43-49

HALOFANTRINE HYDROCHLORIDE - EFFICACY AND SAFETY IN CHILDREN WITH ACUTE MALARIA

Anti-malarial activity of ethanolic leaf extract of Piliostigma thonningii Schum. (Caesalpiniacea) in mice infected with Plasmodium berghei berghei

BACKGROUND MALARIA -HEALTH PROBLEM IN THE WORLD -HIGH PREVALENCE AND MORTALITY -CONTROL?

creening of Natural/Synthetic Compounds for Antimalarial Activity

PARASITOLOGY CASE HISTORY #14 (BLOOD PARASITES) (Lynne S. Garcia)

Therapeutic potential of selected micronutrients in malaria: an in vivo study in Plasmodium berghei infected mice. Biology and Medicine

Comparison of light microscopy and nested PCR assay in detecting of malaria mixed species infections in an endemic area of Iran

Kato, N. et al, Nature, 2016, Accelerated Article Preview. Celeste Alverez Current Literature 9/10/ /10/2016 Celeste Wipf Group 1

African Journal of Pharmaceutical Research & Development Vol. 4 No.1 pp (2012)

Research Article. Antimalarial activity of parenteral administration of eurycomanone artesunate combination in Plasmodium berghei infected mice

Scholars Research Library

Research Article In Vivo Antiplasmodial and Analgesic Effect of Crude Ethanol Extract of Piper guineense Leaf Extract in Albino Mice

A. K. EYONG AND V. B. BRAIDE

Evaluation of the efficacy of combination therapy in T. b.brucei infected mice using extracts of annona senegalensis and eucalyptus camaldulensis

Repellent Soap. The Jojoo Mosquito. Africa s innovative solution to Malaria prevention. Sapphire Trading Company Ltd

Oral acute toxicity study of methanol leaf extracts of Croton Zambesicus in mice

Toxicological Studies of the Aqueous Leaves Extracts of Combretum micranthum on Rats

D. V. DAPPER, B. N. AZIAGBA and O. O. EBONG 1

Journal of Chemical and Pharmaceutical Research

The Impact of Different Malaria Drugs in Curing Malaria Within the Ghanaian Populace: A Case Study of Sekondi-Takoradi

In vitro cultivation of Plasmodium falciparum

IN VIVO ANTIMALARIAL ACTIVITY OF CRUDE AQUEOUS BARK EXTRACT OF TRICHILIA MONADELPHA AGAINST PLASMODIUM BERGHEI BERGHEI (NK65) IN MICE

Journal of Chemical and Pharmaceutical Research

Prevalence of Malaria with Respect to Age, Gender and Socio-Economic Status of Fever Related Patients in Kano City, Nigeria

International Journal of Biological and Physical Sciences

Antifungal activity of methanolic and ethanolic leaf extracts of medicinal plants

The Alteration of Serum Glucose, Urea and Creatinine Level of Malaria Patients in Obowo Local Government Area of Imo State Nigeria

Teratogenic and Anti-mutagenic Potentials of Aqueous Leaf Extract of Momordica charantia Linn.

SCIFED. Publishers. SciFed Journal of Public Health. Comparing Modified and Relationship Study of Gymnema Sylvestre Against Diabetes

Prevalence of Malaria Parasites among Nnamdi Azikwe University Students and Anti-Malaria Drug Use

Evaluation of Diuretic Activity of Jussiaea Suffruticosa Linn.

International Journal of Drug Research and Technology

EFFECT OF ORAL ADMINISTRATION OF AQUEOUS EXTRACT OF CASSIA OCCIDENTALIS L. SEEDS ON SERUM ELECTROLYTES CONCENTRATION IN RATS

Blood Smears Only 19 May Sample Preparation and Quality Control

Antimalarial activity and in vivo toxicity of selected medicinal plants naturalised in Kenya

Malaria. Population at Risk. Infectious Disease epidemiology BMTRY 713 (Lecture 23) Epidemiology of Malaria. April 6, Selassie AW (DPHS) 1

In vitro study of antibacterial activity of Carissa carandas leaf extracts

ISSN X (Print) Original Research Article. DOI: /sjams India

A Simple Dose Regimen of Artesunate and Amodiaquine Based on Arm Span- or Age Range for Childhood Falciparum Malaria: A Preliminary Evaluation

Evaluation of Malaria Surveillance System in Hooghly district of West Bengal - India

In several African countries in sub-saharan Africa, malaria is the leading cause of death in children under five.

Study No.: Title: Rationale: Phase: Study Period: Study Design: Centers: Indication: Treatment: Objective: Primary Outcome/Efficacy Variable:

Scholars Research Library

Antitrypanosomal and haematological effects of selected Nigerian medicinal plants in Wistar rats. Abstract

Blood Smears Only 20 May Sample Preparation and Quality Control

Invest in the future, defeat malaria

Plasmodium Vivax Malaria Transmission in a Network of Villages

Symptoms of Malaria. Young children, pregnant women, immunosuppressed and elderly travellers are particularly at risk of severe malaria.

Blood Smears Only 5 February Sample Preparation and Quality Control 13B A

Antimalarial alkaloids isolated from Annona squamosa

Received: 24 th May-2011 Revised: 17 th June-2012 Accepted: 25 th August-2012 Research article

Comparison of toxic effects of Psidium guajava leaf and bark extracts against Brine Shrimp (Artemia salina)

Lot Testing of malaria RDTs: achievements and lessons learned from a 7 year-long experience

Antimalarial efficacy of Pongamia pinnata (L) Pierre against Plasmodium falciparum (3D7 strain) and Plasmodium berghei (ANKA)

International Journal of Health Sciences and Research ISSN:

ANTI-DIABETIC ACTIVITY OF HELICTERES ISORA ROOT

University of Veterinary and Animal Sciences, Bikaner), V.P.O. Bajor, Dist. Sikar, Rajasthan, India

A Review on the Potential Therapeutic Profile of Carica papaya Leaf Extract in the Management of Dengue Fever - DR. PRADEEP B. E.

The Good Medicine Why are millions of malaria victims in Africa going without a treatment that works?

Activities of aqueous extracts of Mangifera Indica on Parasitaemia level and blood profile of Plasmodium Berghei - infected Albino Mice

Pharmacologyonline 3: (2011) Newsletter Patil et al.

Anti-inflammatory evaluation of methanol extract and aqueous fraction of the leaves of Anthocleista djalonensis A. Chev (Gentianaceae).

Pharmacologyonline 1: (2011) ewsletter Saini et al. EVALUATIO OF A TI-PYRETIC ACTIVITY OF TECOMARIA CAPE SIS LEAVES

Humisol. This Medical discovery is largely unknown for very good reasons:

An Oral Acute Toxicity Study of Extracts from Salvia Splendens (Scarlet Sage) As Per OECD Guidelines 423

Computer Vision for Malaria Parasite Classification in Erythrocytes

2. Selection criteria for substances of herbal origin relevant for standardization and quality control of herbal medicines 77

Fabio T M Costa, PhD. University of Campinas (UNICAMP); Campinas, SP, Brazil. Supported by:

26/06/ NIMR 2018 Conference - Malaria - a reality

Effects of malarial parasitic infections on human blood cells

Blood Smears Only 6 October Sample Preparation and Quality Control 15B-K

Received: 25 th June-2012 Revised: 28 th June-2012 Accepted: 01 st July-2012 Research article

Dr.N Damodharan Professor and Head. Department of Pharmaceutics SRM College of Pharmacy

In Vitro Antioxidant Activity and Phytochemical Screening of Pholidota articulata

Blood Smears Only 3 February Sample Preparation and Quality Control

International Journal of Pure and Applied Sciences and Technology

Pharmacologyonline 1: (2009) HYPOGLYCEMIC EFFECT OF PHOEBE LA CEOLATA O ALLOXA -I DUCED DIABETIC MICE

Alberta Health Public Health Notifiable Disease Management Guidelines July 2012

The global context for financing delivery innovations in fever case management and malaria treatment. Ramanan Laxminarayan

A study of the prevalence of malaria and typhoid fever co-infection in Abakaliki, Nigeria

D.Anantha et al, /J. Pharm. Sci. & Res. Vol.2(5), 2010,

MONITORING THE THERAPEUTIC EFFICACY OF ANTIMALARIALS AGAINST UNCOMPLICATED FALCIPARUM MALARIA IN THAILAND

Antimalarial drug resistance

COMPARATIVE ANTITRYPANOSOMAL SCREENING OF METHANOLIC EXTRACTS OF KHAYA SENEGALENSIS AND MORINGA OLEIFERA

From plant to medicine: How an ancient plant-based remedy became a modern malaria medicine (11 min read)

Malaria. Edwin J. Asturias, MD

Scholars Research Library J. Nat. Prod. Plant Resour., 2017, 7(2): (

ANTI DIARRHOEAL POTENTIAL OF MYRISTICA FRAGRANS SEED EXTRACTS N. R. PILLAI AND L. LILLYKUTTY

Antimalarial properties of Goniothalamin in combination with chloroquine against Plasmodium yoelii and Plasmodium berghei growth in mice

ASSESSMENT OF HIV AND MALARIA INFECTIONS AND PERCEPTION AMONG ANTENATAL WOMEN IN OGUN STATE, NIGERIA

Incidence of Malaria Parasite in Blood Donors at Kwali General Hospital, FCT Abuja

Artecef 50/Artecef 150 (ARTECEF BV) WHOPAR part 4 09/2008, version 1.0 MA027/028 SUMMARY OF PRODUCT CHARACTERISTICS. Page 1 of 7

A COMBINATION OF TETRANDRINE (TT) AND CHLOROQUINE (CQ) EFFECTIVELY TREATS CQ RESISTANT FALCIPARUM MALARIA IN AOTUS MONKEYS

Prevalence of Human Malaria Infection in Lal Qilla Pakistan

Transcription:

73 ANTIPLASMODIAL ACTIVITY OF CRUDE EXTRACTS AND ESSENTIAL OIL OF LIPPIA MULTIFLORA IN MICE 1 Malann, Yoila David*, 1 Deme, Gideon Gywa, 1 Daniel, Oluwatosin Esther, 1 Olanrewaju, Comfort Adetutu, 1 Olayanju, Segun Department of Biological Sciences, University of Abuja, F.C.T., Abuja, Nigeria P.M.B. 117. malannyd@gmail.com, demejnr@gmail.com, olanrewaju.adetutu@uniabuja.edu.ng *Corresponding Author: malannyd@gmail.com, demejnr@gmail.com, +2347068259209 ABSTRACT The search for common and cheaper antimalarial drug in Nigeria cannot be over-emphasis considering the endemicity of the disease. Traditional medicines (whole plants or Parts of plants) have proven to have good antimalaria efficacy. The evaluation of the anti-malarial properties of the crude extract and essential oil of Lippia multiflora was carried out using standard procedure (curative) tests in laboratory mice. The result of the curative test showed 5% essential oil to have good antimalaria efficacy (75.00%) against Plasmodium berghei. Other experimental essential oils (20%, 10%) and crude extracts (100%, 50%, 25%) employed in this study all showed significant difference in parasiteamia percentage reduction when compared to the negative control group. All essential oils and crude extracts only reduced the parasiteamia in the mice but could not clear it all after termination of treatment. The constituents of the essential oils can therefore be isolated to test for the efficacy of each constitute. Keywords: Antiplasmodial, Crude extract, Essential oil, Lippia multiflora 1. INTRODUCTION

74 Malaria remains one of the major killers of humans worldwide, threatening the lives of more than one third of the world s population. It thrives in the tropical areas of Asia, Africa, and Central and South America, where it strikes millions of people. Each year 350 to 500 million cases of malaria infection are reported worldwide (WHO, 2014). Malaria is caused by a singlecelled parasite from the genus Plasmodium. More than 100 different species of Plasmodium exist. They produce malaria in many types of animals and birds, as well as in humans (WHO, 2014). Malaria has been known since antiquity is still the world s most prevalent disease. Two to three million people die each year from malaria and at least one million of these deaths are young children and today malaria is largely confined to tropical and sub-tropical countries in Asia, Africa, central and South America (WHO, 2014). L. multiflora tea is commonly consumed in Northern Nigeria as remedy for malaria fever. Literature reports also indicate the plant as having antimalaria properties (Abena et al., 1998; Aquaye et al., 2001). Antiplasmodial test was thus carried out with crude and oil leaf extracts of the plant in an effort to validate these claims. 2. MATERIALS AND METHODS 2.1 Plant Materials Fresh leaves of Lippia multiflora were collected in the early hours of the day between April and July in Chaza village located in the Suleja Local Government Area of Niger State, Northern Nigeria and authenticated by a botanist Mr. Segun Olayanju of the Department of Biological Sciences Herbarium, University of Abuja. The leaves were allowed to air dry at room temperature in the Herbarium for duration of 10 days. 2.2 Preparation of Crude Extracts

75 6 kilograms of the fresh leaves were collected and 1.5 kg of the dried plant leaves were pounded for the crude extracts preparation. Methanol was used for the crude extraction carried out at the Toxicology Department, NIPRD (National Institute for Pharmaceutical Research Development) Idu, Abuja. 2.3 Preparation of Essential Oils 4.5kg of the dried and powdered leaves was used for the extraction of the essential oils through hydro distillation carried out at the Toxicology Department NIPRD Idu, Abuja. 2.4 Experimental Animals 50 healthy Swiss albino mice of both sexes of about 6 weeks old weighing between 15 20 g each was obtained from the animal house of the Department of Pharmacology, University of Jos, Nigeria. The mice were fed using standard rodent feed with free access to water. 2.4.1 Parasites The malaria parasite P. berghei NK65 chloroquine sensitive strain was obtained from the Nigerian Institute of Medical Research (NIMR), Lagos, Nigeria. A donor mouse with parasitaemia level of (++) = 11 50 parasites was anaesthetized with chloroform. 1ml of blood was extracted through cardiac puncture using 1ml needle and syringe, 19ml of normal saline was added making up to 20ml (Adzu et al., 2007). 2.4.2 Antiplasmodial activity (Curative test) The crude extract and essential oil of the plant were used for curative test against the malaria parasite following the procedure described by Adzu et al. (2007) and Saidu et al. (2000). The curative treatment started on day three (D3) after infection was established and the treatment continued for four (4) days (D3 D7). The mice were treated with different dosages of the plant according to their body weight once a day. (5kg, 10kg and 20kg) of the oil dissolved in

76 Dimethylsulfoxide and 25 mg/ml, 50mg/ml and 100mg/ml of the extract dissolved in normal saline. 2.4.3 Identification and estimation of parasites After infection was established in the mice, on the D3 a pretreatment thick blood smear was collected from each mouse to estimate the number of parasites in each sample. Also on the D7 of post treatment thick blood smear was also collected from each mice and the parasites were counted. The thick blood smear was gotten by a small cut from the tail of each mouse with a pair of scissors, the blood was gently squeezed unto a microscope slide which was allowed to air dry and stained with Geimsa stain before viewing under the microscope (Cheesbrough, 1998). 2.5 Statistical analysis Parasite counts obtained before treatment (pretreatment) and after treatment (post treatment) were subjected to the student t-test. The student t-test was used to compare means of treated groups and control for any significant difference in parasiteamia of treated mice and the control groups. Results were expressed as mean ± standard error of mean (SEM). The formula used for the calculations is: t= Χ - µ Տ n All data were analyzed at a 95% confidence interval (α= 0.05). % reduction = Pre-treatment Post-treatment x 100 Pre-treatment 3. RESULTS

77 Table 1 shows that 5% of essential oil greatly reduced the parasiteamia level by 18.4±1.14 on day three (D3) of parasite establishment to 4.6±0.71 observed after the termination of treatment (D7) compared to the control were there was an increase in the parasiteamia level 18.4±1.14 observed in day three to18.8±0.84 on day seven (D7) after treatment. Table 1: Antimalaria activities of essential oil and crude extract of Lippia multiflora against P. berghei in mice (curative test) Dose Parasitaemia count % Test substance (mg/kg) D-3 D-7 Reduction Essential oil 20 18.8±0.84 8.2±0.84 56.38 10 18.4±1.34 10.8±1.30 41.30 5 18.4±1.14 4.6±0.71 75.00 Crude Extract 100 18.6±1.14 9.4±1.14 49.46 50 18.4±1.52 11.2±0.84 39.13 25 18.6±1.14 12.0±0.71 35.48 Chloroquine 10 18.6±1.14 5.8±0.84 68.82 Normal Saline 2 ml 18.4±1.14 18.8±0.84 - D 3 = day 3, D 7 = day 7 after infection was initiated. Each result is with a mean of 5 mice.

78 20 18 16 14 12 10 8 6 4 2 0 oil 1 oil2 oil3 crude crude 100mg 50mg Extracts and oils post pre Figure 2: Bar chart showing differences in mean between the different groups treated. crude 25mg control - ve 10mg parasitaemia count before and after treatment. numbers of parasite Keys: Oil 1 = 20% essential oil Oil 2 = 10% essential oil Oil 3 = 5% essential oil Crude = crude extract at different doses Figure 2 showed a mean difference of all test substance to parasiteamia reduction used in this study with oil3 having a more suppressing effect on the parasite. From the observation, all test substance showed a percentage reduction in parasiteamia with a significant difference between the treated and the control (P<0.05). 4. DISCUSSION From reported works, L. multiflora plant parts has proven to be of great effect in pharmacology as antifungal, antihypertensive, antiviral and it traditional use in these cases (Pham et al., 1988a, 1988b; Pousset, 1989; Abena et al., 1998; Valentin et al., 1995). The 7-day curative test is a standard which is commonly used in screening of antimalarial activities of plants (Peters and Ryley, 1970). The essential oil and crude extracts showed a

79 significant difference (P<0.05) when compared to the negative control in the percentage reduction in the parasiteamia with all the essential oils showing more activity than the crude extracts. The 5% essential oil gave a high percentage reduction of parasiteamia of 75.00% even more than the chloroquine (Positive control) which have been the most active antimalaria. All essential oils and crude extracts employed in this study only recorded suppression in the parasiteamia count but could not clear it with the chloroquine as it has been previously reported (Malann et al., 2015; Adzu et al., 2007). The crude extracts of 50% and 25% recorded only a slight parasiteamia suppression of 39.13% and 35.48% respectively. This study have therefore improve on the quest for plants for antimalaria with the efficacy shown by the oils and extracts to anti-malaria. A more investigation can be conducted into isolating the constituents to know the exact isolate with the much potential for the malaria problem to be combated. 5. REFERENCES Abena, A.A., Ngondzo-Kombeti, G.R. and Bioka, D. (1998). Psychopharmacologic properties of Lippia multiflora. Encephale, 24, 449 454. Acquaye, D., Smith, M., Letchamo, W. and Simon, J. (2001) Lippia tea Centre for New Use Agriculture and Natural Products. Rutgers University, New Brunswick, New Jersey, USA. Cheesbrough M. (1998) District Laboratory Practice in Tropical Countries part 1. Cambridge University Press, UK, pp 453 Malann Y. D., Matur B. M., Deme G. G., Mailafia S. (2015). Antiplasmodial Activity of extracts and fractions of Casuarina equistefolia against Plasmodium berghei in mice. British Journal of Science, 12(2):62-69.

80 Peters W. and Ryley F. (1970) The antiplasmodial activity of some quinoline esters. Annals of Tropical Medical Parasitology, 60(1): 155-171 Pham H. C., Koffi, Y., Pham H. and C., A., (1988a). Comparative hypotensive effects of compounds extacted from Lippia multiflora leaves. Planta Medica 54, 294 296. Pham H. C., Koffi, Y., Pham H. and Chanh, A. (1988b). Comparative effects on TXA2 biosynthesis of products extracted from Lippia multiflora Moldenke leaves. Prostaglandins Leukotrienes and Essential Fatty Acids 34, 83 88. Pousset, J.L. (1989). Plantes Me dicinales Africaines. Ellipses. Agence de Coope ration Culturelle et Technique, Paris, pp. 102 103. Saidu, K., Onah, J., Orisadipe, A., Olusola A., Wambebe, C. and Gamaliel, K. (2000): Antiplasmodial, analgesic and anti-inflammtory activites of the aqueous extract of the stem bark of Erythrina senegalensis. Journal of Ethnopharmacology, 71:275-280 Valentin, A., Pelissier, Y., Benoit, F., Marion, C., Kone, D., Mallie, M., Bastide, J.M., and Bessière, J.M. (1995) Composition and antimalarial activity in vitro of volatile components of Lippia multiflora. Phytochemistry. 40: 1439-1442 WHO (2014). World Malaria Report 2014. Geneva, Switzerland: World Health Organization. pp. 32 42. ISBN 978-92-4156483-0.