Case Report Right Ventricular Outflow Tract Obstruction in Monochorionic Twins with Selective Intrauterine Growth Restriction

Similar documents
Congenital heart disease in twin-to-twin transfusion syndrome treated with fetoscopic laser surgery

FETAL ECHO IN TWIN PREGNACY: MONOCHORIONIC TWINS DELHI CHILD HEART CENTER & INDRAPRASTHA APOLLO HOSPITAL NEW DELHI

4/19/2018. St. Cloud Hospital Perinatology Kristin Olson, RDMS, RVT

Failing right ventricle

Case Report Successful Treatment of Double-Orifice Mitral Stenosis with Percutaneous Balloon Mitral Commissurotomy

Screening for Critical Congenital Heart Disease

Devendra V. Kulkarni, Rahul G. Hegde, Ankit Balani, and Anagha R. Joshi. 2. Case Report. 1. Introduction

Isolated major aortopulmonary collateral as the sole pulmonary blood supply to an entire lung segment

SWISS SOCIETY OF NEONATOLOGY. Prenatal closure of the ductus arteriosus

Adult Echocardiography Examination Content Outline

Anatomy & Physiology

First Trimester Fetal Echocardiography: Insight Into the Fetal Circulation

Cardiac Intervention in Fetus. Gyeong-hee Yoo, M.D. Department of Pediatrics Soonchunhyang University Cheonan Hospital

MITRAL STENOSIS. Joanne Cusack

Case Report Computed Tomography Angiography Successfully Used to Diagnose Postoperative Systemic-Pulmonary Artery Shunt Narrowing

Right ventricular outflow tract obstruction in complicated monochorionic twin pregnancy

The role of Doppler studies in predicting individual intrauterine fetal demise after laser therapy for twin twin transfusion syndrome

Relevance of measuring diastolic time intervals in the ductus venosus during the early stages of twin twin transfusion syndrome

Introduction to Fetal Medicine. Lloyd R. Feit M.D. Associate Professor of Pediatrics Warren Alpert Medical School Brown University

First-Trimester Fetal Cardiac Function

PART II ECHOCARDIOGRAPHY LABORATORY OPERATIONS ADULT TRANSTHORACIC ECHOCARDIOGRAPHY TESTING

PIAF study: Placental insufficiency and aortic isthmus flow Jean-Claude Fouron, MD

Case Report Asymptomatic Pulmonary Vein Stenosis: Hemodynamic Adaptation and Successful Ablation

Case Report Sinus Venosus Atrial Septal Defect as a Cause of Palpitations and Dyspnea in an Adult: A Diagnostic Imaging Challenge

Systematic approach to Fetal Echocardiography. Objectives. Introduction 11/2/2015

Images in Cardiovascular Medicine

HISTORY. Question: What category of heart disease is suggested by the fact that a murmur was heard at birth?

Monochorionic Twin with Selective Intrauterine Growth Restriction

The Fetus: Five Top Do Not Miss Diagnoses. Doppler Ultrasound

Rotation: Echocardiography: Transthoracic Echocardiography (TTE)

Diagnosis and Management of the Early Growth Restricted Fetus

Before we are Born: Fetal Diagnosis of Congenital Heart Disease

COMPREHENSIVE EVALUATION OF FETAL HEART R. GOWDAMARAJAN MD

Assessment of fetal heart function and rhythm

Maternal And Fetal Outcome In Pregnancies Complicated With Maternal Cardiac Diseases: Experience At A Tertiary Care Hospital

Heart and Soul Evaluation of the Fetal Heart

Diagnosis of Congenital Cardiac Defects Between 11 and 14 Weeks Gestation in High-Risk Patients

Echocardiography as a diagnostic and management tool in medical emergencies

Department of Pediatrics and Child Health, Kurume University School of Medicine, Kurume, 830 Japan. Received for publication October 26, 1992

ECHOGENIC FETAL HEART WITHOUT HEART BLOCK AND MATERNAL ANTI- Ro/ La ANTIBODIES POSITIVITY A LESS KNOWN ASSOCIATION

ULTRASOUND OF THE FETAL HEART

PROSTHETIC VALVE BOARD REVIEW

Summary. HVRA s Cardio Vascular Genetic Detailed L2 Obstetrical Ultrasound. CPT 76811, 76825, _ 90% CHD detection. _ 90% DS detection.

Prenatal Predictors of Postnatal Outcome in Pulmonary Atresia with Intact Ventricular Septum: A Multicenter Study

Right Ventricle Steven J. Lester MD, FACC, FRCP(C), FASE Mayo Clinic, Arizona

Pediatric Echocardiography Examination Content Outline

Case Report Coronary Artery Perforation and Regrowth of a Side Branch Occluded by a Polytetrafluoroethylene-Covered Stent Implantation

How to Recognize a Suspected Cardiac Defect in the Neonate

Adel Hasanin Ahmed 1

Noonan Syndrome and twin to twin transfusion

Pathophysiology: Left To Right Shunts

Heart and Lungs. LUNG Coronal section demonstrates relationship of pulmonary parenchyma to heart and chest wall.

COMPLEX CONGENITAL HEART DISEASE: WHEN IS IT TOO LATE TO INTERVENE?

The Doppler Examination. Katie Twomley, MD Wake Forest Baptist Health - Lexington

Doppler-echocardiographic findings in a patient with persisting right ventricular sinusoids

39 th Annual Perinatal Conference Vanderbilt University December 6, 2013 IUGR. Diagnosis and Management

Heart Failure. Cardiac Anatomy. Functions of the Heart. Cardiac Cycle/Hemodynamics. Determinants of Cardiac Output. Cardiac Output

Pathophysiology: Left To Right Shunts

ISOLATED ANOMALOUS DEVELOPMENT OF MYOCARDIUM DURING FETAL LIFE: EXPERIENCE OF OUR CENTRE

Uptofate Study Summary

Pregnancy and Heart Disease Sharon L. Roble, MD Echo Hawaii 2016

Right Heart Catheterization. Franz R. Eberli MD Chief of Cardiology Stadtspital Triemli, Zurich

J. J. STIRNEMANN, B. NASR, F. PROULX, M. ESSAOUI and Y. VILLE

Case Report Long-Term Outcomes of Balloon Dilation for Acquired Subglottic Stenosis in Children

The Fetal Cardiology Program

Left Ventricular Outflow Tract Obstruction

Department of Internal Medicine, Saitama Citizens Medical Center, Saitama , Japan

Appendix II: ECHOCARDIOGRAPHY ANALYSIS

Long-term neurodevelopmental. outcome in twin-to-twin. fetoscopic laser surgery

Bits and Bobs secondary causes of heart problems. Dr Angela McBrien 9 th September 2017

More History. Organization. Maternal Cardiac Disease: a historical perspective. The Parturient with Cardiac Disease 9/21/2012

Foetal Cardiology: How to predict perinatal problems. Prof. I.Witters Prof.M.Gewillig UZ Leuven

The impacts of pericardial effusion on the heart function of infants and young children with respiratory syncytial virus infection

Presenter: Steven Brust, HCS-D, HCS-H Product Manager, Home Health Coding Center

Hemodynamic Assessment. Assessment of Systolic Function Doppler Hemodynamics

How to Assess and Treat Obstructive Lesions

가천의대길병원소아심장과최덕영 PA C IVS THE EVALUATION AND PRINCIPLES OF TREATMENT STRATEGY

Debate in Management of native COA; Balloon Versus Surgery

Clinical Study Incidence of Retinopathy of Prematurity in Extremely Premature Infants

How Does Imaging Inform Fetal Cardiovascular Treatment?

DWI assessment of ischemic changes in the fetal brain

Clinicians and Facilities: RESOURCES WHEN CARING FOR WOMEN WITH ADULT CONGENITAL HEART DISEASE OR OTHER FORMS OF CARDIOVASCULAR DISEASE!!

Case Report Successful Implantation of a Coronary Stent Graft in a Peripheral Vessel

RVOTO adult and post-op

Clinical and echographic features of in utero cardiac dysfunction in the recipient twin in twintwin transfusion syndrome

T win to twin transfusion syndrome (TTTS) is a severe

Major Forms of Congenital Heart Disease: Consultant Pediatric and Fetal Cardiology King Abdulaziz Cardiac Center, National Guard Hospital Riyadh

Cardiovascular Pathophysiology: Right to Left Shunts aka Cyanotic Lesions

Cardiovascular Pathophysiology: Right to Left Shunts aka Cyanotic Lesions Ismee A. Williams, MD, MS Pediatric Cardiology

Uncommon Doppler Echocardiographic Findings of Severe Pulmonic Insufficiency

1

Peripartum Cardiomyopathy. Lavanya Rai Manipal

ECHOCARDIOGRAPHIC APPROACH TO CONGENITAL HEART DISEASE: THE UNOPERATED ADULT

Case Report Internal Jugular Vein Thrombosis in Isolated Tuberculous Cervical Lymphadenopathy

HISTORY. Question: How do you interpret the patient s history? CHIEF COMPLAINT: Dyspnea of two days duration. PRESENT ILLNESS: 45-year-old man.

2) VSD & PDA - Dr. Aso

HISTORY. Question: What category of heart disease is suggested by this history? CHIEF COMPLAINT: Heart murmur present since early infancy.

Congenital Heart Defects

Most common fetal cardiac anomalies

Research Article Challenges in Assessing Outcomes among Infants of Pregnant HIV-Positive Women Receiving ART in Uganda

Transcription:

Case Reports in Pediatrics Volume 2012, Article ID 426825, 4 pages doi:10.1155/2012/426825 Case Report Right Ventricular Outflow Tract Obstruction in Monochorionic Twins with Selective Intrauterine Growth Restriction S. B. de Haseth, 1 M. C. Haak, 1 A. A. W. Roest, 2 M. E. B. Rijlaarsdam, 2 D. Oepkes, 1 and E. Lopriore 3 1 Division of Fetal Medicine, Department of Obstetrics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands 2 Division of Pediatric Cardiology, Department of Pediatrics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands 3 Division of Neonatology, Department of Pediatrics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands Correspondence should be addressed to S. B. de Haseth, s.b.de haseth@lumc.nl Received 29 June 2012; Accepted 23 August 2012 Academic Editors: M. Ehlayel and R. Nicholl Copyright 2012 S. B. de Haseth et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Monochorionic twin pregnancies are at increased risk of perinatal mortality and morbidity due to twin-twin transfusion syndrome (TTTS),selective intrauterinegrowth restriction (siugr),and higher incidence of congenital heart malformations. The incidence of right ventricular outflow tract obstruction (RVOTO) in recipients with TTTS is known to be higher than in the general population. There is limited data on the risk of RVOTO in monochorionic twins with siugr. We report a case of RVOTO in the larger twin in a monochorionic twin pregnancy with siugr, treated successfully with balloon dilatation after birth. 1. Introduction Monochorionic pregnancies are at increased risk of major complications, including twin-twin transfusion syndrome (TTTS), twin anemia polycythemia sequence (TAPS), and selective intrauterine growth restriction (siugr) [1]. In addition, monochorionic twins have an increased incidence of congenital malformations, mainly heart malformations and central nervous system defects. In TTTS, the recipient twin can develop cardiac hypertrophy, tricuspid regurgitation, and right ventricular outflow tract obstruction (RVOTO), in an initially normal developed heart [2, 3]. The etiology of RVOTO in recipients with TTTS is not clear and may be associated with increased preload (hypervolemia) and/or afterload (increased levels of endothelin-1) [4]. Whether the risk of RVOTO is also increased in other subgroups of monochorionic pregnancies besides TTTS is not well known. We report a monochorionic twin pregnancy with siugr in which RVOTO was detected in the larger twin in the 2nd trimester of pregnancy and discuss possible causative mechanisms. 2. Case Report A 35-year-old woman, gravida 3, para 2, was referred to our center at 15 + 0 weeks of gestation for suspected TTTS in a monochorionic-diamniotic pregnancy [5]. Our center serves as the national referral center for fetoscopic laser surgery for TTTS in the Netherlands. Ultrasound examination showed anormalamountofamnioticfluid(deepestverticalpocket (DVP) 4 cm) in one twin (twin A) and a reduced amount of amniotic fluid (DVP 2 cm) in the other twin (twin B). Both twins had normal bladder filling. Diagnostic criteria for TTTS were thus not fulfilled. The estimated fetal weight (EFW)offetusAwasp50,biometryoffetusBrevealed growth <p10. Doppler ultrasound revealed intermittent absent end-diastolic flow in umbilical artery in the smallest twin. These findings suggest a type III selective intrauterine growth restriction (siugr) [6]. After counseling, the parents opted for expectant management and no interventions were performed. Ultrasound examination was repeated weekly. At 17 + 1 weeks of gestation, mild pericardial effusion was seen in the larger twin, in a furthermore normal heart.

2 Case Reports in Pediatrics (a) (b) (c) (d) Figure 1: (a) Ultrasound examination at 21 weeks GA shows a four chamber view with a very mild right ventricle hypertrophy and mildly pericardial effusion. (b) Ultrasound examination at 21 weeks GA shows an elevated peak systolic velocity across the pulmonary valve of 1.75 m/s. (c) Ultrasound examination at 21 weeks GA shows the pulmonary valve with a mild post stenotic dilatation. Valve cusps and pulmonary wall were echogenic and thickened. (d) Ultrasound examination at 28 weeks GA shows RV remains adequate, mild hypertrophy. At 19 + 1 weeks, the pulmonary valve in the larger twin had a normal diameter for gestational age, but they showed echogenic valve cusps and a mildly elevated peak systolic velocity across the pulmonary valve (1 m/s). Two weeks later, at 21 + 3 weeks of gestation, the abnormalities progressed with myocardial hypertrophy of the right ventricle and a peak systolic velocity across the pulmonary valve of 1.75 m/s. The antegrade flow was combined with mild insufficiency at the beginning of the diastole (Figure 1). In addition, tricuspid regurgitation was present and the ductus arteriosus showed retrogradeflow.therightventriclehadanormalsize.the myocardial hypertrophy progressed during the pregnancy, the other cardiac abnormalities remained stable until birth. The patient was admitted to our hospital at 34 + 3 weeks of gestational age for induction of labor. Two male infants were born vaginally with a birth weight of 2629 grams (twin A) and 1850 grams (<p10) (twin B). The Apgar scores in twin A were 8, 9, 9 and in twin B and 9, 10, 10 at 1, 5, and 10 minutes, respectively. Echocardiography of the larger twin after birth showed severe pulmonary valve stenosis with tricuspidvalve insufficiency and severe hypertrophy of the right ventricle. Treatment with i.v. prostaglandins was started on day 1. Five days after delivery, a balloon valvuloplasty was performed successfully. The neonate recovered quickly from the procedure, and was weaned from the prostaglandins and the saturation remained stable. Postinterventional echocardiography revealed a transpulmonary gradient of 12 mmhg with trivial pulmonary valve insufficiency. Moderate tricuspid valve insufficiency persisted, as well as hypertrophy of the right ventricle with end-diastolic forward flow over the pulmonary valve, as a sign of restrictive ventricular filling (Figure 2). Both twins were discharged from the hospital in good clinical condition on day 11. The placenta showed evident signs of unequal sharing with a velamentous insertion for twin B. After color dye injection, 1 large arterio-arterial (A-A) anastomosis and several arterio-venous (A-V) and veno-arterial (V-A) anastomoses were detected (Figure 3). 3. Comment RVOTO has been reported to occur more frequently in recipient twins with TTTS, with an incidence ranging from 4to9%[3, 4]. This is more than 10 times higher than in the general population [7]. Our report shows, for the first time, that RVOTO can also occur in monochorionic twins

Case Reports in Pediatrics 3 (b) (a) Figure 2: (a) Depicts the stenosis of the pulmonary valve during contrast injection into the right ventricle (RV) obtained during cardiac catheterization. Note the very small opening of the pulmonary valve (arrow). (b) Shows an apical 4-chamber view obtained with echocardiography. Note the echogenic hypertrophied trabeculae within the cavum of the RV. (c) Shows the continuous wave Doppler tracing along the main pulmonary artery with a peak gradient of 12 mmhg. Furthermore, the end diastolic forward flow over the pulmonary valve is clearly depicted ( ) as a sign of restrictive RV filling. LA: left atrium, LV: left ventricle, RA: right atrium, RV: right ventricle. (c) Figure 3: Monochorionic placenta after color dye injection (blue and green colors for arteries, red and yellow colors for veins) showing typical features of unequal sharing. Twin B has a velamentous cord insertion (white arrow) and a small placental territory (placental share on the left side of the picture). Twin A has a paracentral cord insertion (grey arrow) and a larger placental territory (right side of the picture). The white star indicates a large arterio-arterial anastomosis, the blue stars and green stars indicate several arterio-venous en veno-arterial anastomoses, respectively. complicated with siugr. We speculate that a common pathway could play a role in the development of RVOTO in both monochorionic twins with TTTS as in monochorionic twins with siugr. The pathogenesis of RVOTO in recipients with TTTS is not clear. RVOTO has been linked to increased preload due to volume overload following fetofetal transfusion through placental vascular anastomoses as well as to increased afterload due to high levels of vasoconstrictive hormones such as endothelin-1 [4]. It is hypothesized that increase preload and/or increased afterload in recipient twins may both lead to fetal systemic hypertension and the development of hypertrophic cardiomyopathy and eventually RVOTO [2, 4]. As RVOTO has been linked to hemodynamic disturbances in fetal life, RVOTO appears to be partly an acquired congenital heart defect. Muñoz-Abellana et al. suggested that cardiac abnormalities in the larger twin in monochorionic twins with siugr may be caused by a hyperdynamic state due to the disproportion of the placental territory in combination with a large A-A anastomosis [8]. The development of RVOTO in monochorionic twins with siugr may also be linked to hemodynamic imbalances related to the presence of placental vascular anastomoses. The placenta in our case of siugr without TTTS showed a large A-A and several A-V anastomoses. The smaller twin showed abnormal flow velocity patterns in the umbilical artery, including intermittent reversed end-diastolic flow. We hypothesize that a contributing factor in the abnormal valve development in RVOTO in these cases could be the occurrence of short but frequent volume shifts during the periods with reversed end-diastolic flow of the smaller twin. A large A-A anastomosis, as present in this case, will propagate pre- and afterload differences directly to the larger cotwin. The exact mechanism and necessary conditions to develop RVOTO are, however, not yet elucidated.

4 Case Reports in Pediatrics In conclusion, detecting RVOTO antenatally is important as RVOTO may be progressive and require urgent treatment with pulmonary balloon valvuloplasty or surgery after birth. Since RVOTO may evolve until delivery, serial fetal echocardiograms and careful monitoring are mandatory. Perinatologists should be aware that RVOTO may not only occur more frequently in recipient twins with TTTS, but can also occur in monochorionic twins with siugr. Whether the incidence of RVOTO in monochorionic twins with siugr is increased compared to the general population requires further study. Obstetrics and Gynecology, vol. 200, no. 5, pp. 494.e1 494.e8, 2009. [8] B. Muñoz-Abellana, E. Hernandez-Andrade, H. Figueroa- Diesel et al., Hypertrophic cardiomyopathy-like changes in monochorionic twin pregnancies with selective intrauterine growth restriction and intermittent absent/reversed end-diastolic flow in the umbilical artery, Ultrasound in Obstetrics and Gynecology, vol. 30, no. 7, pp. 977 982, 2007. Abbreviations A-A: Arterio-arterial A-V: Arterio-venous CHD: Congenital heart disease GA: Gestational age MC: Monochorionic RV: Right ventricle RVOTO: Right ventricular outflow tract obstruction siugr: Selective intrauterine growth restriction TTTS: Twin-to-twin transfusion syndrome V-A: Venous-arterial. References [1] L. Lewi, J. Jani, I. Blickstein et al., The outcome of monochorionic diamniotic twin gestations in the era of invasive fetal therapy: a prospective cohort study, American Obstetrics and Gynecology, vol. 199, no. 5, pp. 514.e1 514.e8, 2008. [2] A.A.Karatza,J.L.Wolfenden,M.J.O.Taylor,L.Wee,N.M. Fisk, and H. M. Gardiner, Influence of twin-twin transfusion syndrome on fetal cardiovascular structure and function: prospective case-control study of 136 monochorionic twin pregnancies, Heart, vol. 88, no. 3, pp. 271 277, 2002. [3] J. Lougheed, B. G. Sinclair, K. Fung Kee Fung et al., Acquired right ventricular outflow tract obstruction in the recipient twin in twin-twin transfusion syndrome, the American College of Cardiology, vol. 38, no. 5, pp. 1533 1538, 2001. [4] E. Lopriore, R. Bökenkamp,M.Rijlaarsdam,M.Sueters,F.P. Vandenbussche, and F. J. Walther, Congenital heart disease in twin-to-twin transfusion syndrome treated with fetoscopic laser surgery, Congenital Heart Disease, vol. 2, no. 1, pp. 38 43, 2007. [5] R. A. Quintero, W. J. Morales, M. H. Allen, P. W. Bornick, P. K. Johnson, and M. Kruger, Staging of twin-twin transfusion syndrome, Perinatology, vol. 19, no. 8, pp. 550 555, 1999. [6] E. Gratacós, E. Antolin, L. Lewi et al., Monochorionic twins with selective intrauterine growth restriction and intermittent absent or reversed end-diastolic flow (Type III): feasibility and perinatal outcome of fetoscopic placental laser coagulation, Ultrasound in Obstetrics and Gynecology, vol. 31, no. 6, pp. 669 675, 2008. [7] E. Ortibus, E. Lopriore, J. Deprest et al., The pregnancy and long-term neurodevelopmental outcome of monochorionic diamniotic twin gestations: a multicenter prospective cohort study from the first trimester onward, American

MEDIATORS of INFLAMMATION The Scientific World Journal Gastroenterology Research and Practice Diabetes Research International Endocrinology Immunology Research Disease Markers Submit your manuscripts at BioMed Research International PPAR Research Obesity Ophthalmology Evidence-Based Complementary and Alternative Medicine Stem Cells International Oncology Parkinson s Disease Computational and Mathematical Methods in Medicine AIDS Behavioural Neurology Research and Treatment Oxidative Medicine and Cellular Longevity