Electrolyte-balanced heparin in blood gas syringes can introduce a significant bias in the measurement of positively charged electrolytes

Similar documents
Rapid detection of myocardial infarction with a sensitive troponin test Scharnhorst, V.; Krasznai, K.; van 't Veer, M.; Michels, R.

Guide to Fulfillment of Measurement Uncertainty

King s Research Portal

Ten recommendations for Osteoarthritis and Cartilage (OAC) manuscript preparation, common for all types of studies.

University of Dundee. Volunteering Scott, Rosalind. Publication date: Link to publication in Discovery Research Portal

King s Research Portal

Qualified Presumption of Safety (QPS) an EFSA Tool for Microbial Safety Assessment

King s Research Portal

Phlebotomy Top Gun Order of Draw: Do We Still Care?

King s Research Portal

Novel ceramic membranes for water purification and food industry Boffa, Vittorio

Design for Sustainability and Project Management Literature A Review

FLT3 mutations in patients with childhood acute lymphoblastic leukemia (ALL)

Collection of Blood Specimens by Venipuncture for Plasma-Based Coagulation Assays Necessity of a Discard Tube

Aalborg Universitet. Statistical analysis plan Riis, Allan; Karran, E. L. ; Jørgensen, Anette; Holst, S.; Rolving, N. Publication date: 2017

Strengths of the Nordic monitoring system

King s Research Portal

Does organic food intervention in the Danish schools lead to change dietary patterns? He, Chen; Mikkelsen, Bent Egberg

Nielsen, Jane Hyldgård; Rotevatn, Torill Alise; Peven, Kimberly; Melendez-Torres, G. J.; Sørensen, Erik Elgaard; Overgaard, Charlotte

Puschmann, Andreas; Dickson, Dennis W; Englund, Elisabet; Wszolek, Zbigniew K; Ross, Owen A

Syddansk Universitet. Stem cell divisions per se do not cause cancer. Wensink, Maarten Jan; Vaupel, James W. ; Christensen, Kaare

Syddansk Universitet. Published in: International Journal of Integrated Care. DOI: /ijic Publication date: 2016

Aalborg Universitet. CLIMA proceedings of the 12th REHVA World Congress Heiselberg, Per Kvols. Publication date: 2016

Allergic contact dermatitis to topical prodrugs used in photodynamic therapy Cordey, Helen; Ibbotson, Sally

Put Your Best Figure Forward: Line Graphs and Scattergrams

Aalborg Universitet. Radon concentrations in new Danish single family houses Gunnarsen, Lars Bo; Jensen, Rasmus Bovbjerg

The dual pathway model of overeating Ouwens, Machteld; van Strien, T.; van Leeuwe, J. F. J.; van der Staak, C. P. F.

13. POINT-OF-CARE CREATININE TESTING IN HIGH- RISK PATIENTS

Community structure in resting state complex networks

There are more football injury prevention reviews than randomised controlled trials. Time for more RCT action!

King s Research Portal

Published in: Proceedings of 15th International Congress on Acoustics, ICA'95, Trondheim, Norway, June 26-30, 1995

King s Research Portal

Citation for pulished version (APA): Kolmos, H. J. The future of infection control: Role of the clinical microbiology laboratory.

The EARNEST study : interarm blood pressure differences should also be recorded Moody, William; Ferro, Charles; Townend, Jonathan

EFSA Publication; Tetens, Inge. Link to article, DOI: /j.efsa Publication date: 2011

Using ComBase Predictor and Pathogen Modeling Program as support tools in outbreak investigation: an example from Denmark

History of the Vacutainer Tube. Coagulant Blood Tests

University of Groningen. Real-world influenza vaccine effectiveness Darvishian, Maryam

The Relationship among COPD Severity, Inhaled Corticosteroid Use, and the Risk of Pneumonia.

Charles Darwin University

Evaluation of dual-arc VMAT radiotherapy treatment plans automatically generated via dose mimicking.

From where does the content of a certain geo-communication come? semiotics in web-based geo-communication Brodersen, Lars

Document Version Publisher s PDF, also known as Version of Record (includes final page, issue and volume numbers)

The potential for faking on the Mississippi Scale for Combat-Related PTSD

Screening for ovarian cancer Kehoe, Sean

Ignell, Claes; Berntorp, Kerstin. Published in: Scandinavian Journal of Clinical & Laboratory Investigation DOI: /

Significance of a notch in the otoacoustic emission stimulus spectrum.

Published in: Proceedings of 4th Congress of the Federation of Acoustical Societies of Europe, FASE '84, Sandefjord, August 21-24, 1984

Hearing Protection and Hearing Symptoms in Danish Symphony Orchestras

Gade Hyldgaard, Mette; Purup, Stig; Bond, Andrew David; Frete, Xavier; Qu, Haiyan; Teglgaard Jensen, Katrine; Christensen, Lars Porskjær

Increased mortality after fracture of the surgical neck of the humerus: a case-control study of 253 patients with a 12-year follow-up.

Clinical Evaluation of Closed-Loop Administration of Propofol Guided by the NeuroSENSE Monitor in Children

Determination of Ethanol in Breath and Estimation of Blood Alcohol Concentration with Alcolmeter S-D2

Document Version Publisher s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Cluster headache associated with acute maxillary sinusitis.

Does organic food intervention in the Danish schools lead to change dietary patterns? He, Chen; Mikkelsen, Bent Egberg

Professions and occupational identities

The variable risk of colorectal cancer in patients with inflammatory bowel disease.

Binaural synthesis Møller, Henrik; Jensen, Clemen Boje; Hammershøi, Dorte; Sørensen, Michael Friis

Ligation of lymph vessels for the treatment of recurrent inguinal lymphoceles following lymphadenectomy

WHO Prequalification of Diagnostics Programme PUBLIC REPORT

PMWS development in pigs from affected farms in Spain and Denmark

Participatory heuristic evaluation of the second iteration of the ewall interface application Hangaard, Stine Veje; Schaarup, Clara; Hejlesen, Ole

I. Subject: Ionized Calcium (Ca++) Analysis Whole Blood

Venous Blood Gas Reference Intervals

Dimensional quality control of Ti-Ni dental file by optical coordinate metrology and computed tomography

Statistical techniques to evaluate the agreement degree of medicine measurements

Corticosteroid contact allergy - the importance of late readings and testing with corticosteroids used by the patients.

King s Research Portal

End-of-life care in oxygen-dependent COPD and cancer: a national population-based study.

Polymer Technology Systems, Inc. CardioChek PA Comparison Study

Music therapy may promote relational skills in children with ASD evidence from an updated Cochrane Review

System accuracy evaluation of FORA Test N Go Blood Glucose Monitoring System versus YSI 2300 STAT Plus glucose analyzer following ISO 15197:2013

The potential for vector borne infections in the Nordic area now and in the future

BIOLOGICAL VARIABILITY: THE CIRME CONTRIBUTION. F. Braga Centre for Metrological Traceability in Laboratory Medicine (CIRME)

Using multi-method measures in consumer research investigating eye-tracking, electro-dermal activity and self report

Reply To: Intranasal Oxytocin Mechanisms Can Be Better Understood, but Its Effects on Social Cognition and Behavior Are Not to Be Sniffed At

Comment on "Clinical trials update from the European Society of Cardiology meeting 2005: CIBIS-III, by JGF Cleland and others".

University of Dundee. Statistical packages and clinical psychology research Peck, Dave; Dow, Mike; Goodall, William

Patient preference for counselling predicts postpartum depression Verkerk, G.J.M.; Denollet, Johan; van Heck, G.L.; van Son, M.J.M.

MY APPROACH to the use of NOACs for stroke prevention in patients with atrial fibrillation Lip, Gregory

Introduction: Table/Figure Descriptions:

Report of the first Inter-Laboratory Comparison Test organised by the Community Reference Laboratory for Mycotoxins

EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies), 2014.

Citation for published version (APA): Skov, V. (2013). Art Therapy. Prevention Against the Development of Depression.

Edinburgh Research Explorer

HEMOCHRON. Whole Blood Coagulation Systems

Patient Preparation Unique patient preparation requirements are listed under each test in the Test Directory.

CME/SAM. An Examination of the Usefulness of Repeat Testing Practices in a Large Hospital Clinical Chemistry Laboratory

assay Introduction Conclusions: The D-100 TM system proved to be a robust and reliable method for HbA 1c

Whole genome sequencing

On the physiological location of otoacoustic emissions

Observer variation for radiography, computed tomography, and magnetic resonance imaging of occult hip fractures

A hybrid compensatory-noncompensatory model of residential preference structures Borgers, A.W.J.; Timmermans, H.J.P.; Veldhuisen, K.J.

Simple, complex and hyper-complex understanding - enhanced sensitivity in observation of information

Transcription:

Electrolyte-balanced heparin in blood gas syringes can introduce a significant bias in the measurement of positively charged electrolytes Citation for published version (APA): Berkel, van, M., & Scharnhorst, V. (2011). Electrolyte-balanced heparin in blood gas syringes can introduce a significant bias in the measurement of positively charged electrolytes. Clinical Chemistry and Laboratory Medicine, 49(2), 249-252. DOI: 10.1515/CCLM.2011.047 DOI: 10.1515/CCLM.2011.047 Document status and date: Published: 01/01/2011 Document Version: Publisher s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication: A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. The final author version and the galley proof are versions of the publication after peer review. The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal. If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the Taverne license above, please follow below link for the End User Agreement: www.tue.nl/taverne Take down policy If you believe that this document breaches copyright please contact us at: openaccess@tue.nl providing details and we will investigate your claim. Download date: 10. Apr. 2019

Clin Chem Lab Med 2011;49(2):249 252 2011 by Walter de Gruyter Berlin New York. DOI 10.1515/CCLM.2011.047 Short Communication Electrolyte-balanced heparin in blood gas syringes can introduce a significant bias in the measurement of positively charged electrolytes Miranda van Berkel and Volkher Scharnhorst* Clinical Laboratory, Catharina Hospital Eindhoven, Eindhoven, The Netherlands Abstract Background: Heparin binds positively charged electrolytes. In blood gas syringes, electrolyte-balanced heparin is used to prevent a negative bias in electrolyte concentrations. The potential pre-analytical errors introduced by blood gas syringes are largely unknown. Here, we evaluate electrolyte concentrations in non-anticoagulated blood compared with concentrations measured in electrolyte-balanced blood gas syringes. Methods: Venous blood was collected into plain tubes. Ionized calcium, potassium, sodium and hydrogen ions were analyzed directly using a blood gas analyzer and the remaining blood was collected into different blood gas syringes in random order: Preset (Becton Dickinson), Monovette (Sarstedt) and Pico 50-2 (Radiometer). Results: Ionized calcium and sodium concentrations were significantly lower in blood collected in Becton Dickinson and Sarstedt syringes compared to non-heparinized (NH) blood. The mean bias exceeded biological variation-based total allowable error, which in most cases leads to clinically misleading individual results. In contrast, ionized calcium concentrations in blood collected in Pico 50-2 syringes were identical to values obtained from NH blood. Sodium showed a minor, yet statistically significant, bias. Conclusions: Despite the fact that blood gas syringes now contain electrolyte-balanced heparin, one should be aware of the fact that these syringes can introduce pre-analytical bias in electrolyte concentrations. The extent of the bias differs between syringes. Keywords: blood gas syringes; electrolyte-balanced heparin; ionized calcium; potassium; pre-analytical errors; sodium. Commercially available syringes for the analysis of blood gases and electrolytes in whole blood contain heparin as an *Corresponding author: Volkher Scharnhorst, Clinical Laboratory, Catharina Hospital Eindhoven, Michelangelolaan 2, 5623 Eindhoven, The Netherlands Phone: q31 (0) 40 2398640, Fax: q31 (0) 40 2398614, E-mail: volkher.scharnhorst@cze.nl Received February 11, 2010; accepted September 10, 2010; previously published online December 14, 2010 anticoagulant. Heparin has the disadvantage of binding positively charged electrolytes in whole blood (1), and is especially notorious for the introduction of pre-analytical errors in the measurement of ionized calcium (2). To prevent a negative bias in reported ionized calcium concentrations, blood gas syringes containing electrolyte-balanced heparin are commonly used. The use of electrolyte-balanced blood gas syringes have been shown to reduce the negative bias on the measurement of ionized calcium and other positively charged electrolytes (3), although others still find heparininduced pre-analytical errors (4). A discrepancy in results from electrolyte-balanced syringes is likely to originate from differences in the manufacturing process of balanced heparin. Therefore, we evaluated commercially available syringes for the bias on positively charged electrolytes in whole blood. The effects of heparin-containing syringes on ionized calcium, sodium, potassium and ph were determined in whole blood collected from 16 healthy donors in non-heparinized (NH) tubes and in electrolyte-balanced dry heparin containing syringes from three different manufactures: Becton Dickinson (BD) preset (heparin 80 IU), Sarstedt (SS) monovette (heparin 50 IU) and Radiometer (RM) Pico 50-2 (heparin 80 IU). The order of blood collection into the different syringes showed no effect on the concentration of the measured electrolytes (data not shown). All data sets were normally distributed (Shapiro-Wilk test, data not shown) and data sets were analyzed using the two-tailed Student s t-test. The absolute concentration of each electrolyte and ph, collected in the different syringes, was related pairwise to the respective concentration in NH blood. Figure 1A shows the mean percent deviation (and range of results) of the analyte concentration in syringes compared to the concentration in NH blood. Values in NH blood were set at 100%. Ionized calcium concentrations were significantly lower in blood collected in syringes from BD and SS compared to ionized calcium concentrations in NH blood (p-0.0001). Mean ionized calcium concentrations were 4.4% (BD) and 2.8% (SS) lower than those in NH blood (Figure 1A). The negative bias is clinically relevant for most subjects since it exceeds the total allowable error (TE) of 2.1% for ionized calcium (5). In contrast, ionized calcium measured in blood collected in RM syringes was identical to values obtained from NH blood (ps1.0). Ionized calcium concentrations were determined at the actual sample ph and could therefore be subject to bias introduced through differences in ph. The ph values were slightly influenced by the use of different syringes (mean of 7.37, 7.39, 7.38 and 7.38 for NH, BD, SS and RM, respec- 2010/086

250 van Berkel and Scharnhorst: Analytical bias introduced by blood gas syringes

van Berkel and Scharnhorst: Analytical bias introduced by blood gas syringes 251. Figure 1 Introduction of a negative bias in positively charged electrolyte concentration by different blood gas syringes containing electrolyte-balanced heparin. Venous blood (NH blood) was collected into a tube without additives and free of separator gel (Vacutainer ref. 368500, Becton Dickinson BV, Breda, The Netherlands) and measured immediately using a blood gas analyzer (ABL 735, Radiometer, Zoetermeer, The Netherlands). Within 1 min after venipuncture, 1 ml of NH blood was aspirated into three different blood gas syringes in random order: preset by Becton Dickinson (BD) (ref. 364390, Breda, The Netherlands), monovette by Sarstedt (SS) (ref. 051147020, Etten-Leur, The Netherlands) and Pico 50-2 by Radiometer (RM) (ref. 956-552VR10, Zoetermeer, The Netherlands). Blood was collected from 16 volunteers. Ionized calcium (Ca 2q ), potassium (K q ), sodium (Na q ) and hydrogen ion (ph) concentrations were determined. All measurements were completed within 15 min after venipuncture. (A) The absolute concentration of each electrolyte and ph collected in the different syringes was related pairwise to the respective concentration in NH blood. The concentration in NH blood was set at 100%. The mean of the percentage deviation from values in NH blood (solid squares) and the range of the relative concentrations (bars) are shown. Significant differences are depicted (**p-0.0001, *ps0.0003). (B) Bland-Altman bias plots of the absolute electrolyte concentrations measured in blood from individual subjects collected in heparinized syringes compared to electrolyte concentration in NH blood. The x-axis shows the electrolyte concentration in NH blood. The y-axis shows the difference in either Ca 2q,Na q or K q concentration between NH blood and blood collected in BD, RM or SS syringes. The thin, dotted lines indicate zero bias, the evenly stippled lines the observed bias, and the unevenly stippled lines show the 95% limits of agreement. Bland-Altman analysis was performed using Analyse-it Version 1.72 (Analyse-it Software, Ltd, Leeds, UK). tively) (Figure 1A and data not shown), and thus made a minor contribution to the differences found in ionized calcium concentrations between the syringes. For sodium, a statistically significant negative bias was introduced by using BD ( 2.4%, p-0.0001) and SS syringes ( 1.5%, p-0.0001), exceeding the TE for sodium of 0.9%. Sodium measured in blood collected in RM syringes caused only minimal, though statistically significant bias ( 0.4%, p-0.0001). Potassium concentrations in whole blood collected in RM, BD and SS syringes were repeatedly and significantly lower compared to those found in NH blood (mean difference of 0.9%, 3.1% and 2.4%, respectively, all p-0.0001). The syringe introduced bias on potassium concentrations did not exceed the TE for potassium (5.8%). Therefore, the clinical significance is limited. The biases in absolute electrolyte concentrations between NH and the heparinized syringes were assessed using Bland- Altman analysis (6). BD syringes introduced the most pronounced bias in concentrations of all electrolytes, while the biases introduced by RM syringes were minimal (Figure 1B). Similarly, the 95% limits of agreement were the narrowest and always encompassed zero bias with RM syringes. Taken together, two out of the three syringes tested here introduced a clinically significant negative bias for many subjects in both ionized calcium concentrations and sodium concentrations, despite the fact that all syringes contain electrolyte balanced heparin. These findings were not caused by inadequate filling volumes since the negative bias persisted after filling the syringes to more than the minimally necessary volume (according to manufactures instruction, data not shown). The mean bias exceeded the TE for ionized calcium and sodium, which are based on intra-individual biological variation. Therefore, a clinically significant difference in results can be introduced by using the syringes from BD or SS for analysis of these electrolytes. Electrolyte values in blood collected into syringes manufactured by RM were most comparable to values measured in NH blood. ABL blood gas analyzers do not use an algorithm to correct for a potential heparin bias caused by heparin in RM syringes (personal communication with H. Froklage, Radiometer). Therefore, the extent of interference found for the ABL blood gas analyzer used in this study is expected to be reproduced on an analyzer from a different manufacturer. Differences in the process of balancing heparin with electrolytes between manufacturers most likely explain the findings described here. In conclusion, one should be aware of the bias that can be introduced in electrolyte concentrations by the use of different blood gas syringes, despite the fact that blood gas syringes now contain electrolyte balanced heparin. These results emphasize the need for improving the manufacturing process of balanced heparin. Furthermore, a single type of electrolyte-balanced heparin should be used in one laboratory only in order to minimize the pre-analytical effects on variation of sodium, potassium and ionized calcium concentrations. The experimental procedures were in accordance with the Declaration of Helsinki, Dutch law and the standards of the medical Ethical Commission of our institution. Informed consent was obtained from each subject before blood sampling. Conflict of interest statement Authors conflict of interest disclosure: The authors stated that there are no conflicts of interest regarding the publication of this article. Research funding: None declared. Employment or leadership: None declared. Honorarium: None declared. References 1. Dimeski G, Badrick T, St John A. Ion selective electrodes (ISEs) and interferences a review. Clin Chim Acta 2010;411:309 17. 2. Sachs C, Rabouine P, Chaneac M, Kindermans C, Dechaux M,

252 van Berkel and Scharnhorst: Analytical bias introduced by blood gas syringes Falch-Christiansen T. Preanalytical errors in ionized calcium measurements induced by the use of liquid heparin. Ann Clin Biochem 1991;28:167 73. 3. Toffaletti J, Ernst P, Hunt P, Abrams B. Dry electrolyte-balanced heparinized syringes evaluated for determining ionized calcium and other electrolytes in whole blood. Clin Chem 1991;37: 1730 3. 4. Swanson JR, Heeter C, Limbocker M, Sullivan M. Bias of ionized calcium results from blood gas syringes. Clin Chem 1994;40: 669 70. 5. Ricos C, Alvarez V, Cava F, Garcia-Lario JV, Hernandez A, Jimenez CV, et al. Current databases on biologic variation: pros, cons and progress. Scand J Clin Lab Invest 1999;59:491 500. 6. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986;i:307 10.