KEY WORDS: Allogeneic, Hematopoietic cell transplantation, Graft-versus-host disease, Immunosuppressants, Cyclosporine, Tacrolimus

Similar documents
Failure-free survival after initial systemic treatment of chronic graft-versus-host disease

Reduced-intensity Conditioning Transplantation

Haploidentical Transplantation: The Answer to our Donor Problems? Mary M. Horowitz, MD, MS CIBMTR, Medical College of Wisconsin January 2017

Hematopoietic Cell Transplantation for Myelofibrosis. Outline

What s new in Blood and Marrow Transplant? Saar Gill, MD PhD Jan 22, 2016

Does anti-thymocyte globulin have a place in busulfan/fludarabine

KEY WORDS: Hematopoietic cell transplantation, Pulmonary complications

Cord-Blood Transplantation in Patients with Minimal Residual Disease

MUD SCT. Pimjai Niparuck Division of Hematology, Department of Medicine Ramathibodi Hospital, Mahidol University

KEY WORDS: Unrelated SCT, HLA-mismatch, ATG, Graft-versus-host disease

MUD HSCT as first line Treatment in Idiopathic SAA. Dr Sujith Samarasinghe Great Ormond Street Hospital for Children, London, UK

KEY WORDS: Comorbidity index, Reduced-intensity conditioning stem cell transplantation, Allo-RIC, HCT-CI, Mortality INTRODUCTION

New Evidence reports on presentations given at EHA/ICML Bendamustine in the Treatment of Lymphoproliferative Disorders

Trends in Hematopoietic Cell Transplantation. AAMAC Patient Education Day Oct 2014

Acknowledgements. Department of Hematological Malignancy and Cellular Therapy, University of Kansas Medical Center

Allogeneic Hematopoietic Stem Cell Transplantation: State of the Art in 2018 RICHARD W. CHILDS M.D. BETHESDA MD

CONSIDERATIONS IN DESIGNING ACUTE GVHD PREVENTION TRIALS: Patient Selection, Concomitant Treatments, Selecting and Assessing Endpoints

Disclosures. Investigator-initiated study funded by Astellas

Pretransplant Predictors and Posttransplant Sequels of Acute Kidney Injury after Allogeneic. stem cell transplantation

HCT for Myelofibrosis

Back to the Future: The Resurgence of Bone Marrow??

Stem Cell Transplantation for Severe Aplastic Anemia

Effect of Conditioning Regimen Intensity on CMV Infection in Allogeneic Hematopoietic Cell Transplantation

KEY WORDS: CRp, Platelet recovery, AML, MDS, Transplant

Haploidentical Donor Transplants: Outcomes and Comparison to Other. Paul V. O Donnell BSBMT Education Day London 12 October 2011

ASBMT. Impact of the Direction of HLA Mismatch on Transplantation Outcomes in Single Unrelated Cord Blood Transplantation

CMV Infection after Transplant from Cord Blood Compared to Other Alternative Donors: The Importance of Donor-Negative CMV Serostatus

Introduction to Clinical Hematopoietic Cell Transplantation (HCT) George Chen, MD Thursday, May 03, 2018

Clinical Study Steroid-Refractory Acute GVHD: Predictors and Outcomes

Poor Outcome in Steroid-Refractory Graft-Versus-Host Disease With Antithymocyte Globulin Treatment

Biol Blood Marrow Transplant 17: (2011) Ó 2011 American Society for Blood and Marrow Transplantation

Haploidentical Transplantation today: and the alternatives

Omori et al. SpringerPlus 2013, 2:424 a SpringerOpen Journal

RIC in Allogeneic Stem Cell Transplantation

Optimization of Transplant Regimens for Patients with Myelodysplastic Syndrome (MDS)

Jong Wook Lee, Byung Sik Cho, Sung Eun Lee, Ki Seong Eom, Yoo Jin Kim, Hee Je Kim, Seok Lee, Chang Ki Min, Seok Goo Cho, Woo Sung Min, Chong Won Park

Acute GVHD. ESH-EBMT 2009 Latimer A. Devergie

Reduced-Intensity Conditioning Stem Cell Transplantation: Comparison of Double Umbilical Cord Blood and Unrelated Donor Grafts

The National Marrow Donor Program. Graft Sources for Hematopoietic Cell Transplantation. Simon Bostic, URD Transplant Recipient

KEY WORDS: Total body irradiation, acute myelogenous leukemia, relapse

Hee-Je Kim, Woo-Sung Min, Byung-Sik Cho, Ki-Seong Eom, Yoo-Jin Kim, Chang-Ki Min, Seok Lee, Seok-Goo Cho, Jong-Youl Jin, Jong-Wook Lee, Chun-Choo Kim

Outcomes of pediatric bone marrow transplantation for leukemia and myelodysplasia using matched. unrelated donors

The number of long-term survivors of childhood hematopoietic

NiCord Single Unit Expanded Umbilical Cord Blood Transplantation: Results of Phase I/II Trials

Graft-versus-host disease-free relapse-free survival, which is defined

The New England Journal of Medicine BONE MARROW TRANSPLANTS FROM UNRELATED DONORS FOR PATIENTS WITH CHRONIC MYELOID LEUKEMIA

Biol Blood Marrow Transplant 19 (2013) 255e259

Immunosuppressive Therapy and Bone Marrow Transplantation for Aplastic Anaemia The CMC Experience

EBMT2008_22_44:EBMT :29 Pagina 454 CHAPTER 30. HSCT for Hodgkin s lymphoma in adults. A. Sureda

Classic and Overlap Chronic Graft-versus-Host Disease (cgvhd) Is Associated with Superior Outcome after Extracorporeal Photopheresis (ECP)

Donatore HLA identico di anni o MUD giovane?

Dr Claire Burney, Lymphoma Clinical Fellow, Bristol Haematology and Oncology Centre, UK

abstract M. Jagasia et al. / Biol Blood Marrow Transplant 19 (2013) 1124e

Matched and mismatched unrelated donor transplantation: is the outcome the same as for matched sibling donor transplantation?

Salvage Allogeneic Hematopoietic Cell Transplantation with Fludarabine and Low-Dose Total Body Irradiation after Rejection of First Allografts

Current Status of Haploidentical Hematopoietic Stem Cell Transplantation

Myeloablative and Reduced Intensity Conditioning for HSCT Annalisa Ruggeri, MD, Hôpital Saint Antoine Eurocord- Hôpital Saint Louis, Paris

ASBMT and Marrow Transplantation

Disclosure. Objectives 1/22/2015

High dose cyclophosphamide in HLAhaploidentical

AIH, Marseille 30/09/06

EBMT Complications and Quality of Life Working Party Educational Course

Pretransplantation Therapy with Azacitidine vs Induction Chemotherapy and Posttransplantation Outcome in Patients with MDS

Biol Blood Marrow Transplant 18: , 2012 Upfront Allogeneic HSCT following FLAMSA for High-Risk MDS and saml 467

KEY WORDS: Reduced-intensity stem cell transplantation, Chimerism, Busulfan

Disclosures. Learning Objectives 1/22/2015. No relevant financial relationships

Allogeneic hematopoietic stem cell transplantation from family members other than HLA-identical siblings over the last decade ( )

AML:Transplant or ChemoTherapy?

Busulfan/Cyclophosphamide (BuCy) versus Busulfan/Fludarabine (BuFlu) Conditioning Regimen Debate

Long-term risk of cancer development in adult patients with idiopathic aplastic anemia after treatment with anti-thymocyte globulin

HLA-DR-matched Parental Donors for Allogeneic Hematopoietic Stem Cell Transplantation in Patients with High-risk Acute Leukemia

TRANSPLANTATION OF PERIPHERAL-BLOOD CELLS IN PATIENTS WITH HEMATOLOGIC CANCERS

JAMA. 2011;306(17):

Samples Available for Recipient Only. Samples Available for Recipient and Donor

Comparison of Reduced-Intensity and Conventional Myeloablative Regimens for Allogeneic Transplantation in Non-Hodgkin s Lymphoma

The impact of HLA matching on unrelated donor hematopoietic stem cell transplantation in Korean children

Objectives. Hematopoietic Stem Cell Transplant. Approaches to Transplant. Indications for HSCT. Define HSCT. Provide overview of HSCT process

Latest results of sibling HSCT in acquired AA. Jakob R Passweg

Samples Available for Recipient and Donor

Samples Available for Recipient Only. Samples Available for Recipient and Donor

Hematopoietic Engraftment in Recipients of Unrelated Donor Umbilical Cord Blood Is Affected by the CD34 and CD8 Cell Doses

5/9/2018. Bone marrow failure diseases (aplastic anemia) can be cured by providing a source of new marrow

Pre-transplant Neutropenia Is Associated with Poor Risk Cytogenetic Features and

An Overview of Blood and Marrow Transplantation

Cover Page. The handle holds various files of this Leiden University dissertation.

Late effects, health status and quality of life after hemopoietic stem cell

Risk Factors Affecting Outcome of Second HLA-Matched Sibling Donor Transplantations for Graft Failure in Severe Acquired Aplastic Anemia

CMV reactivation after allogeneic HCT and relapse risk: evidence for early protection in acute myeloid leukemia

Effect of Conditioning Regimen Intensity on Acute Myeloid Leukemia Outcomes after Umbilical Cord Blood Transplantation

An Introduction to Bone Marrow Transplant

High-Dose Carmustine, Etoposide, and Cyclophosphamide Followed by Allogeneic Hematopoietic Cell Transplantation for Non-Hodgkin Lymphoma

Umbilical Cord Blood Transplantation

Reduced-Intensity Allogeneic Bone Marrow Transplantation

Allogeneic Hematopoietic Cell Transplantation for Chronic Myelomonocytic Leukemia

What s a Transplant? What s not?

Outcomes From Unrelated Donor Hematopoietic Stem Cell Transplantation

Stem Cell Transplantation

SKIN CANCER AFTER HSCT

Non-Myeloablative Transplantation

Disease stage stratified effects of cell dose in unrelated BMT for hematological malignancies: a report from Japan marrow donor program

Transcription:

A Retrospective Comparison of Tacrolimus versus Cyclosporine with Methotrexate for Immunosuppression after Allogeneic Hematopoietic Cell Transplantation with Mobilized Blood Cells Yoshihiro Inamoto, 1 Mary E. D. Flowers, 1,2 Frederick R. Appelbaum, 1,2 Paul A. Carpenter, 1,3 H. Joachim Deeg, 1,2 Terry Furlong, 1,2 Hans-Peter Kiem, 1,2 Marco Mielcarek, 1,2 Richard A. Nash, 1,2 Rainer F. Storb, 1,2 Robert P. Witherspoon, 1,2 Barry E. Storer, 1,4 Paul J. Martin 1,2 This retrospective study was performed to compare results with tacrolimus versus cyclosporine in combination with methotrexate for immunosuppression after allogeneic hematopoietic cell transplantation (HCT) with granulocyte colony-stimulating factor mobilized blood cells. The cohort included 456 consecutive patients who received first allogeneic T cell-replete HCTwith mobilized blood cells from related or unrelated donors after high-intensity conditioning for treatment of hematologic malignancies. Study endpoints included grades II-IV acute graft-versus-host disease (agvhd), grades III-IV agvhd, chronic GVHD (cgvhd), end of treatment for cgvhd, overall mortality, disease-free survival (DFS), recurrent malignancy, and nonrelapse mortality (NRM). Adjusted multivariate Cox regression analysis showed no statistically significant differences between tacrolimus and cyclosporine for any of the endpoints tested. Although the size of the cohort is not sufficient to exclude clinically meaningful differences in outcomes, these results support the continued use of cyclosporine at centers that have not adopted tacrolimus as the standard of care after HCTwith mobilized blood cells after high-intensity conditioning regimens. A larger registry study should be performed to provide more definitive information comparing outcomes with the 2 calcineurin inhibitors. Biol Blood Marrow Transplant 17: 1088-1092 (2011) Ó 2011 American Society for Blood and Marrow Transplantation KEY WORDS: Allogeneic, Hematopoietic cell transplantation, Graft-versus-host disease, Immunosuppressants, Cyclosporine, Tacrolimus INTRODUCTION From the 1 Division of Clinical Research, Fred Hutchinson Cancer Research Center, University of Washington School of Medicine, Seattle, Washington; 2 Department of Medicine, University of Washington School of Medicine, Seattle, Washington; 3 Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington; and 4 Department of Biostatistics, University of Washington School of Medicine, Seattle, Washington. Financial disclosure: See Acknowledgments on page 1091. Correspondence and reprint requests: Paul J. Martin, MD, Fred Hutchinson Cancer Research Center, P.O. Box 19024, Seattle, WA 98109-1024 (e-mail: pmartin@fhcrc.org). Received December 15, 2010; accepted January 13, 2011 Ó 2011 American Society for Blood and Marrow Transplantation 1083-8791/$36.00 doi:10.1016/j.bbmt.2011.01.017 Graft-versus-host disease (GVHD) is a frequent immunologic complication after allogeneic hematopoietic cell transplantation (HCT). Cyclosporine or tacrolimus in combination with other agents represent widely accepted standards of care as immunosuppressive regimens after HCT. Results of open-label randomized prospective phase III studies have indicated that the risk of grades II-IV acute GVHD (agvhd) after bone marrow transplantation with related or unrelated donors was lower with the use of tacrolimus than with cyclosporine, in combination with methotrexate [1-3]. Overall survival (OS) appeared similar between the groups [1,3], although an imbalanced distribution of risk factors confounded the interpretation of results in 1 of the studies [2,4]. The source of cells used for HCT has changed since the 1990s, when the trials comparing tacrolimus and cyclosporine were done. Granulocyte colony-stimulating factor (G-CSF) mobilized blood cells are now used more frequently than bone marrow cells for HCT in adults with high-intensity conditioning [5,6]. The different composition of grafts between bone marrow and mobilized blood cells might influence the relative efficacy of the 2 calcineurin inhibitors. Outcomes with the 2 calcineurin inhibitors after HCT with G-CSF mobilized blood cells after high-intensity conditioning 1088

Biol Blood Marrow Transplant 17:1088-1092, 2011 Comparison of Tacrolimus versus Cyclosporine after HCT 1089 have not been compared previously. In addition, recent practices, such as the lower targeted concentration of tacrolimus and the use of ursodeoxycholic acid to prevent hepatic complications, could affect the relative efficacy of the 2 calcineurin inhibitors. METHODS Patients The study cohort included 456 consecutive patients who received first allogeneic T cell-replete HCT with G-CSF mobilized blood cells from related or unrelated donors after high-intensity conditioning for treatment of hematologic malignancies between July 1, 2003, and December 31, 2009, at our center. High-intensity (ie, myeloablative ) conditioning regimens included fractionated total-body irradiation (TBI) at $12.0 Gy or busulfan at 4 mg/kg/day or 130 mg/m 2 /day for 4 consecutive days. Only patients who received either tacrolimus or cyclosporine in combination with methotrexate (MTX) for GVHD prophylaxis were included. Patients who received antithymocyte globulin (ATG) to prevent GVHD were excluded. Patients signed consent forms allowing medical records to be used for research, and the institutional review board approved the study. Posttransplant Management All patients received ursodeoxycholic acid from 2 weeks before conditioning until 90 days after HCT to prevent hepatic complications, and all patients received immunosuppression with either tacrolimus or cyclosporine in combination with methotrexate after HCT. Methotrexate was administered at 15 mg/m 2 on day 1 and at 10 mg/m 2 on days 3, 6, and 11 after HCT. Between 2003 and 2005, both tacrolimus and cyclosporine were used in parallel depending on the particular protocol. Thereafter, tacrolimus was the standard adopted for most protocols at our center. Cyclosporine dosing was adjusted to maintain whole blood trough concentrations at 150 to 450 ng/ml, as measured by immunoassay. Tacrolimus dosing was adjusted to maintain concentrations at 5 to 15 ng/ml, as measured by a liquid chromatography-tandem mass spectrometry assay for the parent compound. Study Endpoints Study endpoints included grades II-IV agvhd, grades III-IV agvhd, chronic GVHD (cgvhd), end of systemic treatment for cgvhd (ie, duration of treatment for patients with cgvhd), overall mortality, disease-free survival (DFS), recurrent malignancy, and nonrelapse mortality (NRM). Acute GVHD was graded according to previously described criteria [7], and cgvhd was diagnosed according to NIH criteria [8]. Grade II GVHD was subdivided according to the extent of liver and skin involvement [9]. Most patients with grade IIa GVHD had upper gastrointestinal symptoms, with or without stage 1 or stage 2 skin involvement (ie, \50% body surface affected by rash) and no liver involvement. Grade IIb GVHD included patients with stage 3 skin disease ($50% body surface affected by rash) or stage 1 liver involvement. Statistical Analysis Kaplan-Meier estimates were used for OS and DFS, and cumulative incidence estimates were used for other endpoints [10]. Multivariate Cox regression models were used to evaluate hazard ratios for results of tacrolimus compared with cyclosporine. The models were adjusted for patient age, donor type, recipient and donor gender combination, disease type, disease risk category, use of TBI in the conditioning regimen, and year of HCT. The analysis was performed during July 2010. RESULTS Patient Characteristics The median age of patients was 47 years (range: 1-66 years). Of the 456 patients, 232 (51%) had HLA-identical related donors, 187 (41%) had HLA-matched unrelated donors, and 37 (8%) had HLA-mismatched related or unrelated donors. The distributions of diagnoses at transplant, HLA-matching and donor type, and year of transplantation showed statistically significant differences according to type of immunosuppression (Table 1). Transplant Outcomes The median duration of follow-up among survivors was 45 months (range: 3-85 months) after HCT. Cumulative incidence rates of grades II-IV, IIb-IV, and III-IV agvhd at 120 days were 71%, 55%, and 11%, respectively, and the cumulative incidence of cgvhd at 3 years after HCT was 44%. The cumulative incidence of discontinued systemic treatment for cgvhd at 2 years after the onset of treatment for cgvhd was 16%. The remaining patients with cgvhd either continued treatment for more than 2 years or died or had recurrent malignancy during continued treatment within 2 years after the onset of the disease. OS and DFS rates at 3 years after HCT were 62% and 55%, respectively. The cumulative incidence rates of recurrent malignancy and NRM at 3 years after HCT were 28% and 18%, respectively. Multivariate Analysis of Outcomes for Tacrolimus Compared with Cyclosporine Adjusted multivariate Cox regression analysis showed no statistically significant differences between

1090 Y. Inamoto et al. Biol Blood Marrow Transplant 17:1088-1092, 2011 Table 1. Patient Characteristics According to Type of Immunosuppression Characteristic Tacrolimus (n 5 292) Cyclosporine (n 5 164) P value Patient age (years), median (range) 47 (1-66) 46 (9-64).60 Diagnosis at transplant, no. (%) <.0001 Acute myeloid leukemia 125 (43) 59 (36) Acute lymphoblastic leukemia 51 (17) 21 (13) Chronic myeloid leukemia 16 (5) 31 (19) Myelodysplastic syndromes or myeloproliferative neoplasms 86 (29) 40 (24) Other (CLL, HD, NHL, MM) 14 (5) 13 (8) Disease risk category at transplant,* no. (%).31 Low risk 168 (58) 86 (52) Intermediate risk 14 (5) 13 (8) High risk 110 (38) 65 (40) Donor/patient gender, no. (%).49 Female/male 78 (27) 39 (24) Other 214 (73) 125 (76) High intensity conditioning regimens, no. (%).98 with total-body irradiation ($1200 cgy) 100 (34) 56 (34) without total-body irradiation 192 (66) 108 (66) HLA-matching and donor type, no. (%) <.0001 HLA-identical related 147 (50) 85 (52) HLA-matched unrelated 135 (46) 52 (32) HLA-mismatched 10 (3) 27 (16) Year of transplantation, no. (%) <.0001 2003-2004 2 (1) 132 (80) 2005-2006 118 (40) 26 (16) 2007-2009 172 (59) 6 (4) CLL indicates chronic lymphocytic leukemia; HD, Hodgkin lymphoma; NHL, non-hodgkin lymphoma; MM, multiple myeloma; HLA, human leukocyte antigen. *The low-risk category included chronic myeloid leukemia in chronic phase, acute leukemia in remission, and refractory anemia without excess blasts. The intermediate-risk category included CLL, HD, NHL, and MM. The high-risk category included all other diseases and stages. tacrolimus and cyclosporine for any of the endpoints tested (Table 2). Further analysis did not identify any subgroup according to age, diagnosis, disease risk, recipient and donor gender combination, conditioning regimen, or donor type in which the risk of grades II-IV GVHD was lower with tacrolimus than with cyclosporine (data not shown). DISCUSSION Our retrospective results, which demonstrate that tacrolimus offered no statistically significant advantage over cyclosporine for preventing grades II-IV agvhd, contrast with results from 3 previous randomized prospective studies, which all demonstrated that the risk of agvhd after bone marrow transplantation was lower with the use of tacrolimus compared with cyclosporine [1-3]. At least 2 explanations might account for the different results. First, the higher risks of agvhd and cgvhd after HCT with G-CSF mobilized blood cells compared with bone marrow might influence the relative efficacy of the 2 calcineurin inhibitors [11-14]. Second, the targeted whole blood concentration of tacrolimus used at our center was lower than the concentrations evaluated in the prospective trials (10-40, 10-30, and 20-25 ng/ml, respectively) [1-3], but other studies have suggested that tacrolimus levels.20 ng/ml increased the risk of toxicity without decreasing the risk of GVHD [15,16]. Table 2. Multivariate Analysis of Outcomes for Tacrolimus Compared with Cyclosporine Endpoint No. of Events Hazard Ratio* (95% CI) P value Grades II-IV acute GVHD 325 1.12 (0.80-1.55).52 Grades IIb-IV acute GVHD 158 0.81 (0.50-1.33).41 Grades III-IV acute GVHD 51 1.78 (0.75-4.24).19 Chronic GVHD 190 0.89 (0.58-1.38).61 End of systemic treatment for chronic GVHD 48 0.83 (0.29-2.42).73 Overall mortality 177 0.96 (0.62-1.49).86 Disease-free survival 211 1.09 (0.73-1.64).67 Recurrent malignancy 125 1.36 (0.80-2.30).25 Nonrelapse mortality 86 0.82 (0.43-1.57).54 CI indicates confidence interval; GVHD, graft-versus-host disease. *The models were adjusted for patient age, donor type, recipient, and donor gender combination, disease type, disease risk category, use of total-body irradiation in the conditioning regimen, and year of transplantation. See Methods for definition of grade IIb GVHD.

Biol Blood Marrow Transplant 17:1088-1092, 2011 Comparison of Tacrolimus versus Cyclosporine after HCT 1091 Our results showing no statistically significant differences with the 2 calcineurin inhibitors in OS, DFS, and recurrent malignancy after mobilized blood cell transplantation are consistent with results from previous studies of bone marrow transplantation [1,4]. A randomized, prospective Japanese study showed an increased incidence of recurrent malignancy with tacrolimus after bone marrow transplantation from related donors [3], but this effect was not observed in a large, retrospective Japanese study [17] or in a randomized, prospective U.S. study [2]. The retrospective Japanese study showed that the risk of NRM after bone marrow transplantation from unrelated donors was lower with tacrolimus than with cyclosporine [17].Inthatstudy,thelowerriskofNRM in the tacrolimus group was associated with a lower risk of agvhd and higher survival compared with the cyclosporine group. The Japanese results differ from those observed in our retrospective study, suggesting that the type of graft or the ethnicity of patients might influence the relative efficacy of calcineurin inhibitors. The routine use of prophylactic ursodeoxycholic acid started at our center in 2003 [18,19] and has decreased the incidence of agvhd and hepatic complications (data not shown). The choice of calcineurin inhibitor was changed to tacrolimus for virtually all transplant protocols with high-intensity conditioning at our center in early 2005. Although we do not believe that any other transplant practices have changed during the study period, we cannot completely exclude effects of unknown confounders even if the multivariate analysis is adjusted for year of transplantation. The incidence of grades II-IV agvhd at our center is higher than reported at other centers, reflecting a high sensitivity for diagnosing upper gastrointestinal GVHD [20]. Even so, we believe that our results showing no difference in the risk of grades II- IV agvhd are likely to be representative of experience at other centers, because we found no statistically significant advantage for tacrolimus in preventing more severe grades IIb-IV or III-IV GVHD. Our results support the continued use of cyclosporine at centers that have not adopted tacrolimus as the standard of care after HCT with mobilized blood cells after high-intensity conditioning regimens, but the size of our cohort is not sufficient to exclude clinically meaningful differences in outcomes with the 2 calcineurin inhibitors. A larger registry study should be performed to provide more definitive information comparing outcomes with the 2 calcineurin inhibitors. ACKNOWLEDGMENTS Y.I. is a recipient of Banyu Fellowship from Banyu Life Science Foundation International. The authors declare no competing financial interests. Financial disclosure: This work was supported in part by grants, CA18029, HL36444, CA15704, and CA118953 from the National Institutes of Health, Department of Health and Human Services. REFERENCES 1. Nash RA, Antin JH, Karanes C, et al. Phase 3 study comparing methotrexate and tacrolimus with methotrexate and cyclosporine for prophylaxis of acute graft-versus-host disease after marrow transplantation from unrelated donors. Blood. 2000;96: 2062-2068. 2. Ratanatharathorn V, Nash RA, Przepiorka D, et al. Phase III study comparing methotrexate and tacrolimus (prograf, FK506) with methotrexate and cyclosporine for graft-versushost disease prophylaxis after HLA-identical sibling bone marrow transplantation. Blood. 1998;92:2303-2314. 3. Hiraoka A, Ohashi Y, Okamoto S, et al. Phase III study comparing tacrolimus (FK506) with cyclosporine for graft-versus-host disease prophylaxis after allogeneic bone marrow transplantation. Bone Marrow Transplant. 2001;28:181-185. 4. Horowitz MM, Przepiorka D, Bartels P, et al. Tacrolimus vs. cyclosporine immunosuppression: results in advanced-stage disease compared with historical controls treated exclusively with cyclosporine. Biol Blood Marrow Transplant. 1999;5:180-186. 5. Pasquini MC, Wang Z. Current use and outcome of hematopoietic stem cell transplantation: CIBMTR Summary Slides, 2010. Available at: http://www.cibmtr.org. 6. Gratwohl A, Baldomero H, Frauendorfer K, Rocha V, Apperley J, Niederwieser D. The EBMT activity survey 2006 on hematopoietic stem cell transplantation: focus on the use of cord blood products. Bone Marrow Transplant. 2008;41:687-705. 7. Leisenring WM, Martin PJ, Petersdorf EW, et al. An acute graft-versus-host disease activity index to predict survival after hematopoietic cell transplantation with myeloablative conditioning regimens. Blood. 2006;108:749-755. 8. Filipovich AH, Weisdorf D, Pavletic S, et al. National Institutes of Health consensus development project on criteria for clinical trials in chronic graft-versus-host disease: I. Diagnosis and staging working group report. Biol Blood Marrow Transplant. 2005; 11:945-956. 9. Mielcarek M, Storer BE, Boeckh M, et al. Initial therapy of acute graft-versus-host disease with low-dose prednisone does not compromise patient outcomes. Blood. 2009;113:2888-2894. 10. Gooley TA, Leisenring W, Crowley J, Storer BE. Estimation of failure probabilities in the presence of competing risks: new representations of old estimators. Stat Med. 1999;18:695-706. 11. Cutler C, Giri S, Jeyapalan S, Paniagua D, Viswanathan A, Antin JH. Acute and chronic graft-versus-host disease after allogeneic peripheral-blood stem-cell and bone marrow transplantation: a meta-analysis. J Clin Oncol. 2001;19:3685-3691. 12. Allogeneic peripheral blood stem-cell compared with bone marrow transplantation in the management of hematologic malignancies: an individual patient data meta-analysis of nine randomized trials. J Clin Oncol. 2005;23:5074-5087. 13. Eapen M, Logan BR, Confer DL, et al. Peripheral blood grafts from unrelated donors are associated with increased acute and chronic graft-versus-host disease without improved survival. Biol Blood Marrow Transplant. 2007;13:1461-1468. 14. Friedrichs B, Tichelli A, Bacigalupo A, et al. Long-term outcome and late effects in patients transplanted with mobilised blood or bone marrow: a randomised trial. Lancet Oncol. 2010; 11:331-338. 15. Wingard JR, Nash RA, Przepiorka D, et al. Relationship of tacrolimus (FK506) whole blood concentrations and efficacy and safety after HLA-identical sibling bone marrow transplantation. Biol Blood Marrow Transplant. 1998;4: 157-163.

1092 Y. Inamoto et al. Biol Blood Marrow Transplant 17:1088-1092, 2011 16. Przepiorka D, Nash RA, Wingard JR, et al. Relationship of tacrolimus whole blood levels to efficacy and safety outcomes after unrelated donor marrow transplantation. Biol Blood Marrow Transplant. 1999;5:94-97. 17. Yanada M, Emi N, Naoe T, et al. Tacrolimus instead of cyclosporine used for prophylaxis against graft-versus-host disease improves outcome after hematopoietic stem cell transplantation from unrelated donors, but not from HLA-identical sibling donors: a nationwide survey conducted in Japan. Bone Marrow Transplant. 2004;34: 331-337. 18. Fried RH, Murakami CS, Fisher LD, Willson RA, Sullivan KM, McDonald GB. Ursodeoxycholic acid treatment of refractory chronic graft-versus-host disease of the liver. Ann Intern Med. 1992;116:624-629. 19. Ruutu T, Eriksson B, Remes K, et al. Ursodeoxycholic acid for the prevention of hepatic complications in allogeneic stem cell transplantation. Blood. 2002;100:1977-1983. 20. Martin PJ, McDonald GB, Sanders JE, et al. Increasingly frequent diagnosis of acute gastrointestinal graft-versus-host disease after allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2004;10:320-327.