Spirometric Standards for Healthy Children and Adolescents of Korean Chinese in Northeast China

Similar documents
PREDICTION EQUATIONS FOR LUNG FUNCTION IN HEALTHY, LIFE TIME NEVER-SMOKING MALAYSIAN POPULATION

Prediction equations for pulmonary function values in healthy children in Mashhad city, North East Iran

Spirometric protocol

Lung Function Reference Values in Chinese Children and Adolescents in Hong Kong I. Spirometric Values and Comparison with Other Populations

Int. J. Pharm. Sci. Rev. Res., 34(2), September October 2015; Article No. 24, Pages: Role of Spirometry in Diagnosis of Respiratory Diseases

Lung Function Basics of Diagnosis of Obstructive, Restrictive and Mixed Defects

Pulmonary Function Testing

Difference Between The Slow Vital Capacity And Forced Vital Capacity: Predictor Of Hyperinflation In Patients With Airflow Obstruction

Comparison of Different Spirometry Reference Equations in Predicting Lung Function in Sri Lankan School Children

Reference Values for the Pulmonary Function of Korean Adults Using the Data of Korea National Health and Nutrition Examination Survey IV ( )

Regression Equations for Spirometry in Children Aged 6 to 17 Years in Delhi Region

M easurement of lung function is a well established part

Understanding the Basics of Spirometry It s not just about yelling blow

Indian Journal of Basic & Applied Medical Research; September 2013: Issue-8, Vol.-2, P

Prediction models for peak expiratory flow rate in Indian population aged years

Spirometry is the most frequently performed. Obstructive and restrictive spirometric patterns: fixed cut-offs for FEV1/FEV6 and FEV6

Annual lung function changes in young patients with chronic lung disease

Spirometric evaluation of pulmonary functions of medical students in Nepal

CIRCULAR INSTRUCTION REGARDING ESTABLISHMENT OF IMPAIRMENT DUE TO OCCUPATIONAL LUNG DISEASE FOR THE PURPOSES OF AWARDING PERMANENT DISABLEMENT

Assessment of Bronchodilator Response in Various Spirometric Patterns

Spirometry and Flow Volume Measurements

Content Indica c tion Lung v olumes e & Lung Indica c tions i n c paci c ties

Original Contributions

Relationship Between FEV1& PEF in Patients with Obstructive Airway Diseases

Pulmonary function studies in young healthy Malaysians of Kelantan, Malaysia

/FVC ratio in children of 7-14 years of age from Western Rajasthan

This is a cross-sectional analysis of the National Health and Nutrition Examination

Effect of change of reference standard to NHANES III on interpretation of spirometric abnormality

UNIT TWO: OVERVIEW OF SPIROMETRY. A. Definition of Spirometry

Min Hur, Eun-Hee Kim, In-Kyung Song, Ji-Hyun Lee, Hee-Soo Kim, and Jin Tae Kim INTRODUCTION. Clinical Research

DIAGNOSTIC ACCREDITATION PROGRAM. Spirometry Quality Control Plan

How to Perform Spirometry

Evaluation of efficacy and utility of spirometry data in elderly

Evaluation of Lung diffusing capacity for Carbonmonoxide. (DLco) in healthy adolescents ABSTRACT

COPD in Korea. Division of Pulmonary, Allergy and Critical Care Medicine of Hallym University Medical Center Park Yong Bum

Validity of Spirometry for Diagnosis of Cough Variant Asthma

Impact of the new ATS/ERS pulmonary function test interpretation guidelines

SPIROMETRY METHOD. COR-MAN IN / EN Issue A, Rev INNOVISION ApS Skovvænget 2 DK-5620 Glamsbjerg Denmark

Assessment of accuracy and applicability of a new electronic peak flow meter and asthma monitor

Lung Function In Young Adults Which References Should Be Taken?

Peak Expiratory Flow Is Not a Quality Indicator for Spirometry*

S P I R O M E T R Y. Objectives. Objectives 2/5/2019

Technical Assessment of Spirometers Connected in Series

Predictive Equations for Lung Function Based on a Large Occupational Population in North China

COMPARISON BETWEEN INTERCOSTAL STRETCH AND BREATHING CONTROL ON PULMONARY FUNCTION PARAMETER IN SMOKING ADULTHOOD: A PILOT STUDY

Evaluating Spirometric Trends in Cystic Fibrosis Patients

Getting Spirometry Right It Matters! Performance, Quality Assessment, and Interpretation. Susan Blonshine RRT, RPFT, AE-C, FAARC

Increased difference between slow and forced vital capacity is associated with reduced exercise tolerance in COPD patients

PULMONARY FUNCTION TESTING. By: Gh. Pouryaghoub. MD Center for Research on Occupational Diseases (CROD) Tehran University of Medical Sciences (TUMS)

Cigarette Smoking and Lung Obstruction Among Adults Aged 40 79: United States,

Decline in lung function related to exposure and selection processes among workers in the grain processing and animal feed industry

S P I R O M E T R Y. Objectives. Objectives 3/12/2018

POSITION STATEMENT BACKGROUND INTRODUCTION

The Relationship Between FEV 1 and Peak Expiratory Flow in Patients With Airways Obstruction Is Poor*

Using Spirometry to Rule Out Restriction in Patients with Concomitant Low Forced Vital Capacity and Obstructive Pattern

MSRC AIR Course Karla Stoermer Grossman, MSA, BSN, RN, AE-C

Importance of fractional exhaled nitric oxide in diagnosis of bronchiectasis accompanied with bronchial asthma

SPIROMETRY. Marijke Currie (CRFS) Care Medical Ltd Phone: Copyright CARE Medical ltd

2.0 Scope: This document is to be used by the DCS staff when collecting participants spirometry measurements using the TruFlow Easy-On Spirometer.

What do pulmonary function tests tell you?

Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine, Kaohsiung, Taiwan

Chapter. Diffusion capacity and BMPR2 mutations in pulmonary arterial hypertension

FVC to Slow Inspiratory Vital Capacity Ratio* A Potential Marker for Small Airways Obstruction

SGRQ Questionnaire assessing respiratory disease-specific quality of life. Questionnaire assessing general quality of life

Spirometry: an essential clinical measurement

Frequency of nocturnal symptoms in asthmatic children attending a hospital out-patient clinic

2.0 Scope: This document is to be used by the DCS staff when collecting participants spirometry measurements using the TruFlow Easy-On Spirometer.

AN EVALUATION OF THE INDOOR/OUTDOOR AIR POLLUTION AND RESPIRATORY HEALTH OF FARMERS LIVING IN RURAL AREAS OF ANHUI PROVINCE, CHINA

COMPREHENSIVE RESPIROMETRY

behaviour are out of scope of the present review.

Prevalence of undetected persistent airflow obstruction in male smokers years old

QUALITY OF LIFE MEASURED BY THE ST GEORGE'S RESPIRATORY QUESTIONNAIRE AND SPIROMETRY

RELATIONSHIP BETWEEN RESPIRATORY DISEASES OF SCHOOLCHILDREN AND TOBACCO SMOKE IN HONG KONG AND SRI LANKA

BETTER SPIROMETRY. Marijke Currie (CRFS) Care Medical Ltd Phone: Copyright CARE Medical ltd

Performing a Methacholine Challenge Test

Occupational exposures are associated with worse morbidity in patients with COPD

D.J. Chinn*, J.E. Cotes

The Impact of a Smoke-Free Ordinance on the Health and Attitudes of Bartenders

Online Data Supplement. Prevalence of Chronic Obstructive Pulmonary Disease in Korea: Results of a Population-based Spirometry Survey

ISSN X (Print) Research Article. *Corresponding author Dr. Prasad B K

Ashok Fulambarker, MD, FCCP; Ahmet Sinan Copur, MD; Asavari Javeri, MD; Sujata Jere, MD; and Mark E. Cohen, PhD

Asthma Management for the Athlete

Standardisation of spirometry

E thnic differences in lung function have been recognised

Spirometry Training Courses. Spirometry for. Thoracic Society of Australia and New Zealand. June Developed in partnership with

Outline FEF Reduced FEF25-75 in asthma. What does it mean and what are the clinical implications?

Correlation of Vital Capacity to Fitness Level: Related to Health of Juvenile Soccer Athletes

Differential diagnosis

Dependence of forced vital capacity manoeuvre on time course of preceding inspiration in patients with restrictive lung disease

Prediction Equations for Spirometry in Adults from Northern India

Global Lung Function Initiative 2012 reference equations for spirometry in the Norwegian population

Measurement of peak expiratory flow rate values in healthy school going children between 6 and 12 years attending urban schools in Chennai

Do current treatment protocols adequately prevent airway remodeling in children with mild intermittent asthma?

normal and asthmatic males

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

Pulmonary Function Tests. Mohammad Babai M.D Occupational Medicine Specialist

A total of 3061 children, 1528 boys and 1533 girls. aged 4-19 years, were included in the analysis. Table 1. Does your child have: 1 Asthma ( ) ( )

Teacher : Dorota Marczuk Krynicka, MD., PhD. Coll. Anatomicum, Święcicki Street no. 6, Dept. of Physiology

Clinical Study Bronchial Responsiveness in Patients with Restrictive Spirometry

Lung function prediction equations derived from healthy South African gold miners

Transcription:

ORIGINAL ARTICLE Respiratory Diseases http://dx.doi.org/0./jkms.0...9 J Korean Med Sci 0; : 9-7 Spirometric Standards for Healthy Children and Adolescents of Korean Chinese in Northeast China Kui Feng, Li Chen, Shao-Mei Han and Guang-Jin Zhu Departments of Physiology and Pathophysiology, and Epidemiology and Statistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China Received: May 0 Accepted: September 0 Address for Correspondence: Guang-Jin Zhu Department of Physiology and Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Rd. Dongdansantiao No., Beijing 0000, China Tel: +8.0-97, Fax: +8.0-8 E-mail: zhugj@pumc.edu.cn This study was supported by Key Basic Research Program of Ministry of Science and Technology of China (No. 00FY000). In China there are,9,8 Korean Chinese, who live mostly (9.7%) in the country s three northeast provinces. In spite of this sizeable number, no spirometric data are available at present on them. The present study investigated normal spirometric reference values for the Korean Chinese children and adolescents. Spirometry was performed in healthy Korean Chinese children and adolescents aged 8-8 yr with measurements of forced vital capacity (), forced expiratory volume in second (), peak expiratory flow (PEF) and maximum mid-expiratory flow (MMEF). Reference equations for,, PEF and MMEF were derived by using multiple regression analysis. All of the measured spirometric parameters correlated positively with height and age significantly (). The predicted values of and were higher than values obtained by using Caucasian and other Asian equations (). A set of spirometric reference equations has been derived using a relatively large, healthy, non-smoking young Korean Chinese population with a wide range of ages and heights, the results of which differ from those gained from several other reference equations. These reference equations should be used for evaluation of lung function in this population. Key Words: Child; Chinese; Korean; Lung Function; Normal Values INTRODUCTION MATERIALS AND METHODS Spirometric reference values, derived from normal healthy nonsmokers, are widely used in clinical surveillance and epidemiological study to determine impaired lung function and assess the effect of environmental exposure (, ). Having local and native spirometric prediction equation will enhance the reliability of the evaluation of lung function (). Results of the 000 China Census revealed that there were,9,8 Korean Chinese in China, who live mostly (9.7%) in the country s three northeast provinces (). Despite the sizeable number of Korean Chinese population, no spirometric data are available at present for them. The project of Enlarged Population Investigation of Human Physiological Constant Database of China provides an ideal population to generate spirometric prediction equation of children and adolescents of Korean Chinese in China, of which the participants were a well-characterized group of generally healthy individuals having undergone high-quality anthropometric and spirometric measurements. As a part of Enlarged Population Investigation of Human Physiological Constant Database of China, we performed spirometry in a sample of children and adolescents of Korean Chinese to derive spirometric reference equations for them and to compare the equations with those from other populations. Subjects Koreans, one of the main minorities of multiethnic China, live mostly (9.7%) in the country s three northeast provinces, and Heilongjiang being one of them (). To perform spriometric tests during August to October, 008, Korean Chinese children and adolescents, 8-8 yr of age, were drawn from two Korean nationality schools of Heilongjiang province- one in Harbin city, the other in Hailin city. Clinical evaluation was based on a combination of questionnaire responses on various respiratory problems or related diagnoses and smoking status, a physical examination and -lead resting electrocardiography (ECG). The exclusion criteria were: any personal history of smoking; common cold within the last week; history of chest injuries; respiratory disease (self-reported or medical doctor-diagnosed asthma, pulmonary tuberculosis, pneumonia, frequent bronchitis, chronic bronchitis); hypertension; respiratory symptoms during the last months (chronic cough, wheezing or phlegm); clinically relevant alterations of the physical examination of the heart, lungs and chest wall; ECG abnormalities. Measurements Age was recorded to the nearest birthday. Standing height was 0 The Korean Academy of Medical Sciences. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. pissn 0-89 eissn 98-7

measured to the nearest 0. cm without shoes. Spirometry was recorded with a portable spirometer (MasterLab.0; Jaeger, Wurtzburg, Germany). The system was calibrated with a -L syringe each morning and recalibrated at least every hr. Integrated volumes are body temperature, ambient pressure, and saturated with water vapor (BPTS) corrected. Spirometry was conducted in accordance with American Thoracic Society (ATS) guidelines to ensure quality. () All measurements were carried out by an experienced research fellow and a technician. For Korean-speaking subjects, an interpreter was provided. Tests were performed with subjects in a sitting position. Nose clips were not used in this study, but nose breathing during testing was avoided by manual occlusion. Children were instructed on the technique of the maneuvers first in small groups and then the instructions were reinforced to each child individually before the test. At least three acceptable trials were required by each child in which the two largest forced vital capacity () volumes as well as the two largest forced expiratory volume in one second () had to be reproducible within % of each other. The curve with the largest and was selected. Peak expiratory flow (PEF) and maximum mid-expiratory flow, (MMEF) were automatically determined by the spirometer. All tests were performed between 8:00 and :00. Statistical analysis Statistical analyses were performed using Statistical Package for Social Science (SPSS Inc., Chicago, IL, USA), version.0 for Windows. The data for height, age and spirometric parameters were expressed as mean ± SD. Multiple linear regression analysis was applied to observed lung function values as function of height, age and their transformation including age, age, log0 (age), height, log0 (height). The effect of logarithmic and square root transformations of pulmonary function parameters prior to modeling was also examined. The form of the model and choice of independent variables were based on a combination of statistical significance (P < 0.0), the regression coefficient of determination value (R ), and other considerations related to simplicity, ease of use. The selection of prediction equations for comparison was based on common use and inclusion of the children Table. Numbers of subjects excluded by exclusion criteria* Exclusion criteria No. of excluded No. of remaining Spirometry judged unstable 7 ( < acceptable curves) Not Chinese nationality 7 With one non- Korean parent History of smoking 07 Respiratory symptoms during the last months 8 or respiratory disease ECG abnormalities 7 Hypertension 0 *Total number of participants was 8. and adolescents with the same ages as ours. The predicted values of the present study and from other studies (-0) were compared with the measured values using paired t-tests. The difference between measured values and predicted values was expressed in terms of mean squared difference (difference = residual value/measured value) and ranked in sequence of values. Ethics statement The study was approved by the institutional review board of Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (IRB No. 00-008). Written parental informed consent was obtained from all subjects. RESULTS A total of 8 subjects with completed questionnaires underwent clinical evaluation and were allowed to perform spirometry. Of these, 9 subjects were excluded from the reference population. The reasons for exclusion and the corresponding numbers were shown in Table. A total of subjects ( boys and 7 girls) were included in the final analysis. Table shows the age distribution of the selected subjects for both sexes. The age range for boys was 8-8 yr (mean,.8 yr, and for girls was also 8-8 yr (mean. yr). Heights ranged 7 to 88 cm for boys (mean,.9 cm), and 7 to 7 cm for girls (mean,.0 cm). The height range of boys was wider than that of girls. Details of the lung function variables by age and sex are presented in Table. The correlation coefficients of spirometric parameters (,, PEF, MMEF) with height and age are shown in Table. All of the spirometric parameters correlated positively with height and age significantly. The largest positive correlation was found in both sexes for with height (r = 0.8 for boys and 0.70 for girls) and age (r = 0.789 for boys and 0.08 for girls). While the lowest correlation was observed for MMEF with both height (r = 0.) and age (r = 0.) in boys, and for PEF with both height ([r = 0.] and age [r = 0.9]) in girls. In the regression model, age and height were found to be important independent variables for all lung function parameters in both sexes. The addition of transformations did not significantly increase the explained variance, i.e. the R value, with more than 0.00 to 0.0. The regression equations for,, Table. Age distribution of selected subjects Number (%) Age (yr) Boys Girls 8-0 (.) 8 (.7) - (.0) (.7) - (.) (.8) - 79 (.0) 77 (.) 7-8 0 (.) (0.) Total (00) 7 (00) 70 http://jkms.org http://dx.doi.org/0./jkms.0...9

Table. Range, mean and SD of spirometric variables for the subjects by age and sex Boys Girls Age (L) (L) PEF (L/s) MMEF (L/s) (L) (L) PEF (L/s) MMEF (L/s) Range Mean SD Range Mean SD Range Mean SD Range Mean SD Range Mean SD Range Mean SD Range Mean SD Range Mean SD 8-0.77-.9 0..0-.09 0..0-. 0.9.7-.0 0.7.9-. 0.8.0-. 0..8-.89 0.79.09-.8 0.90.08..0.8.8.7.07. -.0-.90 0..79-. 0..8-.9.0.-.0.0.7-. 0.9.7-.0 0..-.8 0.9.9-. 0.9.09.8 8..9.7. 7.70. -.7-.7 0.7.-.7 0..70-7..0.7-. 0.9.-.0 0..-.9 0..9-. 0.8.7-.09 0...90 0.7.7.78.70 8.. -.7-. 0.0.80-.09 0..8-8.7..9-.9 0.9.7-. 0.9.-.0 0..8-.7 0.8.90-. 0..8...77.0.7 9..8 7-8.-.80.7 0.9.0-.00. 0..7-. 9.79..- 7.7.0.0.-.0. 0.7.-.0.0 0..90-8.8.90.08.9-.7. 0.8, forced vital capacity;, forced expiratory volume in one second; PEF, peak expiratory flow; MMEF, maximal mid-expiratory flow. Table. Pearson s correlation coefficients of spirometric parameters and children s height and age* Variables Age (yr) Height (cm) (L) (L) PEF (L/s) MMEF (L/s) (L) (L) PEF (L/s) MMEF (L/s) 0.7 0.789 0.78 0. 0. 0.08 0.9 0.7 0.8 0.8 0.8 0. 0. 0.70 0. 0.7 * for all correlation coefficients., forced vital capacity;, forced expiratory volume in one second; PEF, peak expiratory flow; MMEF, maximal mid-expiratory flow. Table. Regression coefficients and constants for prediction of lung function Variables Age (yr) Height (cm) Constant SEE R PEF MMEF PEF MMEF 0. 0. 0.7 0.0 0.0 0.00 0.089 0.0 0.07 0.0 0.0 0.07 0.09 0.09 0.070 0.0 -.0 -.87 -.88 -.889 -.7 -.9 -.7 -.098 0.97 0..0 0.9 0. 0.7 0.79 0.8 0.7 0.7 0.8 0.7 0.7 0.8 0.8 0.8, forced vital capacity;, forced expiratory volume in one second; PEF, peak expiratory flow; MMEF, maximal mid-expiratory flow; SEE, standard error of the estimate. PEF and MMEF based on age and standing height for two sexes are shown in Table. Table compared the predicted values of and, derived from the current authors reference equations with other prediction equations and measured values, revealing significant differences between them. Nevertheless, there was no significant difference between all the measured values of and and predicted values of and derived by reference equations of the present study. Table 7 shows the differences between the measured values Table. Comparison between the predicted values of and obtained by predicted equations of the present study, with those of other studies and measured values of and Studies (L) (L) Measured Measured of and and the predicted values calculated from the current authors reference equations and other prediction equations. The results showed that the predicted, values derived from equations of this work differed the least from the measured values. DISCUSSION.00 ± 0.79.0 ± 0.7.7 ± 0.8. ± 0..7 ± 0.7. ± 0.7.99 ± 0.9.0 ± 0..8 ± 0..89 ± 0.9.7 ± 0..0 ± 0..9 ± 0..0 ± 0..7 ± 0.9. ± 0.. ± 0.7.0 ± 0.. ± 0..0 ± 0.7.7 ± 0.8.87 ± 0.. ± 0..9 ± 0.. ± 0.. ± 0.0. ± 0.9.90 ± 0., forced vital capacity;, forced expiratory volume in one second. The samples of our study came, as mentioned above, from two Korean nationality schools located in Harbin and Hailin respec- http://dx.doi.org/0./jkms.0...9 http://jkms.org 7

Table 7. Comparison of the difference between measured values and predicted values derived from different reference equations Studies Male Mean squared difference 0.089 0.08 0.009 0.079 0.099 0.0 0.088 0.009 0.0 0.0 0.0 0.077 Rank Female Mean squared Rank difference tively. The former being the capital of Heilongjiang Province, the latter a concentrated residential city for the Koreans, their Korean population was regarded as Koreans from places all over the country. Since more than 90% of Koreans in China are living in the three Northeastern Provinces; Liapning, Jilin, same and Heilongjiang, the students of the two schools, may represent average Korean Chinese children in northeast China. Pulmonary function is known to vary by ethnicity and area, it is thus important to produce normative values relevant to the ethnic group of the local population (-). The present study has generated spirometric prediction equation of healthy children and adolescents of Korean Chinese in China. As with all these reference equations, they apply only to this specific group, i.e. Korean Chinese children aged 8-8 yr and with a height of 7-88 cm for the boys and 7-7 cm for the girls. The smaller size of the 8-0 age group was determined by the higher exclusion rate of the subjects whose spirometric techniques were poor. However, as mentioned by Ip et al. (), this did not significantly affect the curve-fitting procedure and, as a result, not the reference values functionally derived. The predicted values of and derived from the present study were higher than values obtained by using Caucasian and other Asian equations. This finding is very different from most of other studies performed among Asians, which showed significantly less lung volumes than Caucasians (-8, ). The discrepancies are possibly due to several reasons, including i) differences in terms of equipments and technicians; ii) the rigorous criteria of the present study in selecting subjects, excluding not only subjects with smoking history, but also hypertension, abnormal ECG, and other; iii) regional and ethnic differences: past lung-function researches of Asians focused mostly in southeast or southwest Asia; in contrast, the present study was done in Northeast China. In addition, it is generally believed that, people from that area are both taller and stronger than their 0.0 0.00 0.0 0.09 0.0 0.0 0.009 0.08 0.088 0.0 0.00 0.070, forced vital capacity;, forced expiratory volume in one second. southern compatriots. Another point has to be mentioned is that there are other factors (air pollution, climate and its seasonal changes, socioeconomic differences between different groups of people, etc.) that may make it difficult to compare our results with those of other research work (-). In light of these factors, to evaluate the pulmonary function of children, having local and native reference equations and normative reference values are very important. In conclusion, the present study provides the lung function predicted equations derived from a relatively large, healthy, nonsmoking young Korean Chinese population with a wide range of ages and heights. The significant differences between prediction equations obtained in current study compared with those of other studies indicate that equations based on local data should be preferred. REFERENCES. Quanjer PH, Tammeling GJ, Cotes JE, Pedersen OF, Peslin R, Yernault JC. Lung volumes and forced ventilatory flows. Report Working Party Standardization of Lung Function Tests, European Community for Steel and Coal. Official Statement of the European Respiratory Society. Eur Respir J Suppl 99; : -0.. Pellegrino R, Viegi G, Brusasco V, Crapo RO, Burgos F, Casaburi R, Coates A, van der Grinten CP, Gustafsson P, Hankinson J, Jensen R, Johnson DC, MacIntyre N, McKay R, Miller MR, Navajas D, Pedersen OF, Wanger J. Interpretative strategies for lung function tests. Eur Respir J 00; : 98-8.. Nysom K, Ulrik CS, Hesse B, Dirksen A. Published models and local data can bridge the gap between reference values of lung function for children and adults. Eur Respir J 997; 0: 9-8.. National Bureau of Statistics of China. The fifth national census data, 00. Available at http://www.stats.gov.cn/[accessed on Oct 00].. American Thoracic Society. Standardization of spirometry: 99 update. Am J Respir Crit Care Med 99; : 07-.. Ip MS, Karlberg EM, Karlberg JP, Luk KD, Leong JC. Lung function reference values in Chinese children and adolescents in Hong Kong. I. Spirometric values and comparison with other populations. Am J Respir Crit Care Med 000; : -9. 7. Al-Riyami BM, Al-Rawas OA, Hassan MO. Normal spirometric reference values for Omani children and adolescents. Respirology 00; 9: 87-9. 8. Boskabady MH, Tashakory A, Mazloom R, Ghamami G. Prediction equations for pulmonary function values in healthy young Iranians aged 8-8 years. Respirology 00; 9: -. 9. Zapletal A, Paul T, Samánek M. Normal values of static pulmonary volumes and ventilation in children and adolescents. Cesk Pediatr 97; : -9. 0. Trabelsi Y, Ben Saad H, Tabka Z, Gharbi N, Bouchez Buvry A, Richalet JP, Guenard H. Spirometric reference values in Tunisian children. Respiration 00; 7: -8.. Azizi BH, Henry RL. Ethnic differences in normal spirometric lung function of Malaysian children. Respir Med 99; 88: 9-.. Kasamatsu J, Shima M, Yamazaki S, Tamura K, Sun G. Effects of winter air pollution on pulmonary function of school children in Shenyang, 7 http://jkms.org http://dx.doi.org/0./jkms.0...9

China. Int J Hyg Environ Health 00; 09: -.. Linares B, Guizar JM, Amador N, Garcia A, Miranda V, Perez JR, Chapela R. Impact of air pollution on pulmonary function and respiratory symptoms in children. Longitudinal repeated-measures study. BMC Pulm Med 00; 0:.. Eroshina K, Danishevski K, Wilkinson P, McKee M. Environmental and social factors as determinants of respiratory dysfunction in junior schoolchildren in Moscow. J Public Health (Oxf) 00; : 97-0.. Whitrow MJ, Harding S. Ethnic differences in adolescent lung function: anthropometric, socioeconomic, and psychosocial factors. Am J Respir Crit Care Med 008; 77: -7. AUTHOR SUMMARY Spirometric Standards for Healthy Children and Adolescents of Korean Chinese in Northeast China Kui Feng, Li Chen, Shao-Mei Han and Guang-Jin Zhu We provide reference values for ventilatory function in nonsmoking healthy Korean Chinese children and adolescents living in northeast China. Our results indicate that these reference values are helpful for evaluation of lung functions in this population. http://dx.doi.org/0./jkms.0...9 http://jkms.org 7