Reviews in Clinical Medicine

Similar documents
Gestational age-adapted oxygen saturation targeting and outcome of extremely low gestational age neonates (ELGANs)

Oxygen Saturation Target Range for Extremely Preterm Infants A Systematic Review and Meta-analysis

Using Nightingale to Identify Opportunities for Improvement

STOP ROP The STOP-ROP Multicenter Study Group: Pediatrics 105:295, 2000 Progression to Threshold Conventional Sat 89-94% STOP ROP

Rango de saturacion de oxigeno: Cual es la evidencia?

Supplementary Online Content

Title of Program: Preventing and Treating Retinopathy of Prematurity: Evidence from Cochrane Systematic Reviews

GS3. Understanding How to Use Statistics to Evaluate an Article. Session Summary. Session Objectives. References. Session Outline

target groups. The collective data suggest that risks associated with restricting the upper SpO 2

Retinopathy of prematurity (ROP) is a disorder of retinal

INFANTS WITH birth weights less

Oxygen Targeting in Extremely Low Birth Weight Infants James J. Cummings, MD, FAAP, Richard A. Polin, MD, FAAP, COMMITTEE ON FETUS AND NEWBORN

The SUPPORT, BOOST II, and COT Trials You Must Understand Usual Care To Safeguard Patients and Make Firm Conclusions

Screening Examination of Premature Infants for Retinopathy of Prematurity

Oxygen targeting in preterm infants using the Masimo SET Radical pulse oximeter

Edinburgh Research Explorer

Retinopathy of Prematurity: A Visually Impairing Disorder Name English 12 Section 35 Professor Marchbanks September 29, 2005

RETINOPATHY OF PREMATUrity

Automated FiO 2 -SpO 2 control system in Neonates requiring respiratory support: a comparison of a standard to a narrow SpO 2 control range

Informed Consent for Standard of Care Research Interventions

Retinopathy of Prematurity. Objectives. Normal Retina Development. ROP Pathogenesis 6/8/2018. Thomas W. Hejkal, MD, PhD Eye Consultants, PC

Study of Incidence, Clinical Staging and Risk Factors of Retinopathy of Prematurity in Rural Area

Effects of targeting higher versus lower arterial oxygen saturations on death or disability in preterm infants(protocol)

Criteria for the timing of the initial retinal examination to screen for retinopathy of prematurity

Disclosure COULD AUTOMATED CONTROL OF OXYGEN LEVELS IMPROVE SURVIVAL AND REDUCE NEC? Oxygen Dependency

Research Article Timing of Caffeine Therapy and Neonatal Outcomes in Preterm Infants: A Retrospective Study

Pathogenesis of retinopathy of prematurity

Avoiding hyperoxia in infants p1250 g is associated with improved short- and long-term outcomes

Supplemental Therapeutic Oxygen for Prethreshold Retinopathy of Prematurity (STOP-ROP), A Randomized, Controlled Trial. I: Primary Outcomes

Bevacizumab and ROP: Review of an RCT. M Chakraborty UHW

PCMCH ROP Screening Guidelines

Distribution of Retinopathy of Prematurity and Its Risk Factors

Blood Gases And Retinopathy Of Prematurity: The Extremely Low Gestational Age Newborn Study

Seminar. Retinopathy of prematurity

Laser Therapy Versus Anti-VEGF Agents for Treatment of Retinopathy of Prematurity. Ilya Leskov, MD, PhD Shizuo Mukai, MD

Multicenter Study of Cryotherapy for Retinopathy of Prematurity (CRYO-ROP) Publications

Cover Page. The handle holds various files of this Leiden University dissertation

Clinical Study Incidence of Retinopathy of Prematurity in Extremely Premature Infants

Optimal Oxygenation of the Newborn

The Objective Use of Pulse Oximetry to Predict Respiratory Support Transition in Preterm Infants: An Observational Pilot Study

Index. Note: Page numbers with f and t indicate figures and tables, respectively.

The Oxygen Controversy Why can t Neonatologists get it Correct?

Diode Laser Photocoagulation for Retinopathy of Prematurity: Outcomes After 7 Years of Treatment

R etinopathy of prematurity (ROP), a condition confined

OFF-LABEL USE OF INTRAVITREAL BEVACIZUMAB (AVASTIN) FOR SALVAGE TREATMENT IN PROGRESSIVE THRESHOLD RETINOPATHY OF PREMATURITY

Pulse oximetry, severe retinopathy, and outcome at one year in babies of less than 28 weeks gestation

Noah Hillman M.D. IPOKRaTES Conference Guadalajaira, Mexico August 23, 2018

Objectives. Apnea Definition and Pitfalls. Pathophysiology of Apnea. Apnea of Prematurity and hypoxemia episodes 5/18/2015

Adjusted poor weight gain for birth weight and gestational age as a predictor of severe ROP in VLBW infants

Home Cardiorespiratory Monitoring. Description. Section: Durable Medical Equipment Effective Date: April 15, 2017

10. ADVANCED RETINOPATHY OF PREMATURITY

The Role of Oxygen in Health and Disease - A Series of Reviews

Dr. Derek P. Brazil Centre for Vision and Vascular Science Queen s University Belfast

Retinopathy of Prematurity Current Trends and Advances. Susmito Biswas Consultant Paediatric Ophthalmologist Manchester Royal Eye Hospital

FINAL RESULTS OF THE EARLY TREATMENT FOR RETINOPATHY OF PREMATURITY (ETROP) RANDOMIZED TRIAL

CURRICULUM VITAE. (713) (O) B.S. in Biology, Fu-Jen Catholic University, Taiwan, R.O.C., 1974

Pulsed mode versus near-continuous mode delivery of diode laser photocoagulation for high-risk retinopathy of prematurity

Is There a Treatment for BPD?

Effects of permissive hypercapnia on pulmonary and neurodevelopmental sequelae in extremely low birth weight infants: a meta analysis

Grand Rounds. Jenny Temnogorod SUNY Downstate Medical Center Department of Ophthalmology September 19, 2013

Overview. Retinal vascularisation during development. Classification of ROP. Visual loss from retinopathy of prematurity: first global estimates

Neurodevelopmental Outcomes in the Early CPAP and Pulse Oximetry Trial

Cumulative illness severity and progression from moderate to severe retinopathy of prematurity

SWISS SOCIETY OF NEONATOLOGY. Supercarbia in an infant with meconium aspiration syndrome

Guideline on the Use of Oxygen in the Newborn

Classification of ROP

Retinal neovascularisation: early contributions of Professor Michaelson and recent observations

12th International Scientific Conference «Science and Society» London, November 2017 MEDICINE

STUDIES ON THE MECHANISM OF RETINAL NEOVASCULARIZATION ROLE OF LACTIC ACID*

Neurodevelopmental outcomes of premature infants with bronchopulmonary dysplasia

Childhood blindness due to ROP

Regaining birth weight and predicting ROP a prospective, pilot study

Short-Term Outcome Of Different Treatment Modalities Of Patent Ductus Arteriosus In Preterm Infants. Five Years Experiences In Qatar

PATENT DUCTUS ARTERIOSUS IN THE PRETERM INFANT EVIDENCE FOR & AGAINST TREATMENT

Quantitative Analysis of Vital Signs of Premature Infants

Original Policy Date

Cover Page. The handle holds various files of this Leiden University dissertation

Downloaded from journal.gums.ac.ir at 15:41 IRST on Friday February 22nd 2019

Apneas in Infants with Postconceptional Age bellow 60 Weeks Undergoing Herniorrhaphy

Non-ophthalmologist screening for retinopathy of prematurity

The Biology of Retinopathy of Prematurity

AEROSURF Phase 2 Program Update Investor Conference Call

Retinopathy of Prematurity: Prevalence, risk factors and comorbidities

Advance Pulse Oximetry: Settings, Data and Downloads

The New England Journal of Medicine LACK OF EFFICACY OF LIGHT REDUCTION IN PREVENTING RETINOPATHY OF PREMATURITY

Prevention of retinopathy of prematurity in preterm infants through changes in clinical practice and SpO 2 technology

Prophylactic Aminophylline for Prevention of Apnea at Higher-Risk Preterm Neonates

Incidence of Bronchopulmonary Dysplasia in Korea

Minimal Enteral Nutrition

Dordi Austeng, Department of Neuroscience, Box 593, Uppsala University, SE Uppsala, Sweden

Revisiting the mouse model of oxygen-induced retinopathy.

USE OF INHALED NITRIC OXIDE IN THE NICU East Bay Newborn Specialists Guideline Prepared by P Joe, G Dudell, A D Harlingue Revised 7/9/2014

Retinopathy of Prematurity (ROP)

Benefits of Caffeine Citrate: Neurodevelopmental Outcomes of ELBW Infants

LONG-TERM VISUAL OUTCOMES IN EXTREMELY LOW-BIRTH-WEIGHT CHILDREN (AN AMERICAN OPHTHALMOLOGICAL SOCIETY THESIS)

Original article Paediatrics Today 2015;11(2): DOI /p

Retinopathy of Prematurity (ROP)

Ultrasonographic Findings in Eyes with Retinopathy of Prematurity in Malaysia

Recurrence of ROP after Anti-VEGF Therapy: How Many, Which Ones, When, What, Where

Late pulmonary hypertension in preterm infants How to sort things out? V.Gournay, FCPC, La Martinique, Nov 23,2015

Transcription:

Mashhad University of Medical Sciences (MUMS) Reviews in Clinical Medicine Clinical Research Development Center Ghaem Hospital The relation between oxygen saturation level and retionopathy of prematurity Mohammad Gharavi Fard (MD), Alireza Sabzevari (MD), Touka Banaee (MD) 2, Lida Parizad (MD) * Department of Anesthesiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran. 2 Eye Research Center, Department of Ophthalmology, Mashhad University of Medical Science, Mashhad, Iran. ARTICLE INFO Article type Systematic review article Article history Received: 2 Mar 205 Revised: 8 Apr 205 Accepted: 20 May 205 Keywords Oximetry Preterm infants Retinopathy of prematurity ABSTRACT Introduction: Oxygen therapy used for preterm infant disease might be associated with oxygen toxicity or oxidative stress. The exact oxygen concentration to control and maintain the arterial oxygen saturation balance is not certainly clear. We aimed to compare the efficacy of higher or lower oxygen saturations on the development of severe retinopathy of prematurity which is a major cause of blindness in preterm neonates. Methods: PubMed was searched for obtaining the relevant articles. A total of seven articles were included after studying the titles, abstracts, and the full text of retrieved articles at initial search. Inclusion criteria were all the English language human clinical randomized controlled trials with no time limitation, which studied the efficacy of low versus high oxygen saturation measured by pulse oximetry in preterm infants. Result: It can be suggested that lower limits of oxygen saturations have higher efficacy at postmesetural age of 28 weeks in preterm neonates. This relation has been demonstrated in five large clinical trials including three Boost trials, COT, and Support. Discussion: Applying higher concentrations of oxygen supplementations at mesentural age 32 weeks reduced the development of retinopathy of prematurity. Lower concentrations of oxygen saturation decreased the incidence and the development of retinopathy of prematurity in preterm neonates while applied soon after the birth. Conclusions: Targeting levels of oxygen saturation in the low or high range should be performed cautiously with attention to the postmesentural age in preterm infants at the time of starting the procedures. Please cite this paper as: Gharavi Fard M, Sabzevari A, Banaee T, Parizad L. The relation between oxygen saturation level and retinopathy of prematurity. Rev Clin Med. 206;3(2):43-47. Introduction Retinopathy of prematurity (ROP) or (retrolental fibroplasia (RLF) mostly occurs in premature infants as a result of abnormal vessel development in the retina of the eye, subsequent detachment from the back of the eye, and leading to blindness (). ROP, a major developmental disorder, threatens the quality of life in premature infants. ROP has been reported as the second major cause of blindness in premature infants in USA. Based on pathological evidence, this condition *Corresponding author: Lida Parizad. Department of Anesthesiology, School of Medicine, Mashhad University of Medical Science, Mashhad, Iran. E-mail: lidaoctobr@gmail.com Tel: 0953048953 has been made of two distinct phases including hyperoxia and cessation of normal retinal blood vessel growth (phase ), and hypoxia and pathological neovascularization (2). The presence of ROP could be estimated through routine ophthalmic examinations at two-week intervals after the oxygen therapy until the resolution of retinopathy and the assessment of the grading based on the International Classification of Retinopathy of Prematurity (3). This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons. org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Rev Clin Med 206; Vol 3 (No 2) 43

This vasoproliferative disease was firstly discovered by Terry in 942 and it has been proposed as a common cause of blindness in premature infants until now. Application of oxygen administration during neonatal treatment procedures is a complex and critical field of perinatal medicine with various discrepancies (4,5). Although oxygen administration might be vital during therapeutic strategies in preterm neonates, some adverse effects might be associated with these procedures such as ROP, adverse neurodevelopmental outcomes such as hearing loss, bronchopulmonary dysplasia, and necrotizing enterocolitis (6). Administration of excessive oxygen in premature infants has been proposed as a major risk factor contributing with the progression of ROP for more than 50 years ago (7,8). The appropriate oxygensaturation level in preterm infants is an important issue which is still under investigation. Several studies have been performed to address the association between reduced oxygen-saturation at early weeks after birth and reduction of severe ROP in preterm neonates (9-). These studies showed that a simple change in oxygen saturation limits could reduce the occurrence of prethreshold ROP in preterm infants. They also proposed that the exposure of preterm neonates to hyperoxia could negatively affect the retinal vascular endothelial growth factor (VEGF) and damage normal retinal vascular migration which leads to vaso-obliteration. Thus, it is proposed that exposure to SpO2 (arterial oxygen saturation) values between 83% and 93%, avoids the vaso-obliterative phase and the following expansion of severe ROP (,2). In contrast, based on different protocols, application of higher oxygen saturation at later postmenstrual ages is proposed to be effective in reducing the progression and occurrence of ROP (3,4). In this systematic review, we aim to compare the efficacy of higher or lower oxygen saturations on the development of severe retinopathy of prematurity which is a major cause of blindness in preterm neonates. Methods Relevant articles were retrieved through a comprehensive literature search in PubMed. All English language articles were identified with no time limitation based on the following search terms: retinopathy of prematurity and oxygen therapy. All the human randomized controlled clinical trials (RCTs) published in English studied the efficacy of supplemental low and high SpO 2 in premature infants, measured by pulse oximetry were eligible to be included. The incidence of ROP at different stag- es was also regarded as the outcome in all the included studies. Exclusion criteria were all the case reports, reviews, and the studies with no certain oxygen saturation level. Study selection Abstract and title of the articles obtained at primary search were studied. The results of those that discussed the effect of oxygen on the incidence of ROP were extracted. Reference lists of the retrieved articles were also studied to prevent the possibility of missing any relevant article. Data extraction Based on the retrieved studies, the effect of low oxygen saturation (70% - 96%) versus high oxygen saturation (85% - 00%), at any time before the hospital discharge of extremely premature infants born at a gestational age of 30 weeks was estimated. Quality assessment of the included studies is detailed in Table. Result At the initial search, 788 articles were obtained from which 768 articles were excluded based on the exclusion criteria by screening the title and abstracts. Therefore, 20 articles were selected for further evaluation of the full text. Overall, five articles that were the most relevant studies were included. Included studies were published between 999 and 203. Figure. Flowchart of selection of studies Potentially relevant studies in the first search n=788 Irrelevant studies were excluded by screening the titles and abstracts n=768 Studies evaluated in detail n=20 Studies included in the review n=5 Irrelevant studies were excluded after studying the full text n=5 A total of 598 infants were evaluated in included studies, 2959 infants were in groups treated with low oxygen supplementation and the same number in groups with high oxygen saturation. The mean gestational age was almost 26 weeks. Two RCTs compared the efficacy of lower oxygen (<%96-89%) and higher oxygen (<99%-94%) levels at postmenstrual ages of 32 weeks with a total number of 007 infants, while in other studies, low oxygen saturation (96%-70%) versus high oxygen saturation (89%-85%) were studied (5,6). 44 Rev Clin Med 206; Vol 3 (No 2)

Table. Quality assessment of the included articles Study Reference Support group (7) Askie (5) Boost UK (8) BOOST AU (8) BOOST NZ (8) COT (9) Randomization method Binding Intention to treat Lost to follow up Similarity of the groups at initial Permuted-block NA Yes NO Yes Yes Dynamic balancing method NA Yes NA Yes Yes Computer NO Yes /973 Yes Yes Computer NO Yes /973 Yes Yes Computer All the care givers Yes 5/340 Yes Yes Computer NA Yes 08/47 Yes Yes The classification of ROP was objective NA: Not available Table 2. Characteristics of the included clinical trials Study group Year Reference Number cases of Recruitment Period Gestational age Target Oxygen Saturation (%) S e v e r e ROP,% Oxygen Timing Risk reduction (95% Confidence interval) Total:649 Low:325 Hight:324 994 999 25.4±.5 (mean) 35.4_2 (mean PMA 2 ) High (96 99) versus low (89 94) STOP-ROP Multicenter Study Group 999 (6) Prethreshold to threshold ROP (4 versus 48) 0.84 (0.7-.0) Askie 2003 (5) 358 (78 with low oxygen and 80 with high) 996 2000 <30 32 + to -0 (PMA) High (95 98) versus low (9 94) Stage 3 or 4: 2 versus 6 0.78 (0.46-.3) SUPPORT Study Group 3 200 (7) Total: 36 654(low)/ 662(high) 2005-2009 26± Soon after birth High (9 to 7.9 vs. 8.6 0.52 (0.37-0.73) BOOST UK 4 203 (8) Total:973 Low:486 High: 487 2006-200 Low 26.0 (.3) vs. high 26.0 (.3) High (9 to 3.5-0.6 0.79 (0.63-.00) Boost AU 5 203 (8) Total:35 Low:568 High: 567 2006-200 26.0 (.2) vs. 26.0 (.2) weeks High (9 to 3.5-0.6 0.79 (0.63-.00) BOOST NZ 6 203 (8) Total:340 Low:70 High:70 2006-200 26. (.2) vs. 26. (.2) High (9 to 3.5-0.6 0.79 (0.63-.00) COT 7 203 (9) Total:47 Low:578 High:569 2006-200 23 w-27 w Within 24 hours after birth High (9 to High: 66/503 (3.) Low: 64/500 (2.8) 0.98 (0.7-.34) ROP: Retinopathy of prematurity; 2 PMA: postmenstrual age; 3 SUPPORT study group: Surfactant, positive pressure, and pulse oximetry randomized trial (SUPPORT) study group of the Neonatal Research Network of the Eunice Kennedy Shriver National Institute of Child Health and Human Development; 4 BOOST group: The benefits of oxygen saturation targeting II (BOOST II) trials of United Kingdom (UK), 5 Australia (AU), and 6 New Zealand (NZ) collaborative groups; 7 COT: The Canadian oxygen trial Rev Clin Med 206; Vol 3 (No 2) 45

Discussion In this review, we aimed to study the incidence rate and progression of severe ROP in premature infants under the oxygen-saturation procedure measured by pulse oximetry. The advantages of low and high oxygen saturation on severe ROP depend on the pathological phases of the disease. It has been proposed that the first phase of the ROP consists of hyperoxia and following by vaso-obliterative phase during 30 to 32 weeks of postmesentural age; supplemental oxygen could arrest VEGF, interrupt normal vessel growth, and deteriorate the existing vessels. During the second phase of the disease (after the 32 weeks of gestation), the presence of hypoxia increases VEGF expression and the subsequent pathologic neovascularization. Therefore, administration of appropriate level of therapeutic oxygen-saturation at each phase of the disease could adjust VEGF expression and pathologic neovascularization due to the ROP. In this regard, there is a positive relation between postmenstrual age and the development of ROP. Previous laboratory and experimental examinations have proven the contribution of elevated VEGF in pathological retinal vasculature of animal models, transgenic mouse models, and nonhuman primates (20-22). Although the appropriate level of oxygen saturation is not clearly revealed, pulse oximetry is nowadays routinely used for the monitoring of oxygen-fluctuation in preterm infants. In accordance with the mentioned subjects, it could be suggested that lower limits of oxygen saturations have higher efficacy at postmesetural age of 28 weeks in preterm neonates. This relation has been demonstrated in 5 large clinical trials including three Boost trials, COT, and Support study groups (7-9). Based on the study of Askie et al., in 2003, applying a higher oxygen-saturation range after the postmesetural of 32 weeks in a subgroup of extremely preterm infants, requirement for ophthalmic intervention might decrease the due to severe eye disease (5). Nevertheless, this trial did not have appropriate statistical strength to reveal the significant differences in secondary eye-related outcomes by applying higher levels of oxygen saturation, and further large trials are suggested to confirm the efficacy of different oxygen saturation ranges on the incidence rate of ROP. Similar result was also reported in another study performed in 2000, which suggested a no significant decreased risk of ROP progression following higher oxygensaturation levels applied at almost 2.5±35.4 weeks of postmesentural age (6). Some limitations were associated with the study of STOP-ROP multicenter group, including the application of high saturation oxygen at a mean of 2.5± 35.4 weeks of age. Because of the possibility of the enrolled infants to be at phase or 2 of the ROP (posmesentural age ranged from 30 to 48 weeks), the protective effect of oxygensaturation therapy could not be determined exactly. According to the STOP-ROP study, highoxygen administration might be started too early in patients at phase of the ROP and too late in patients at phase 2 of the disease (6). Although the optimum oxygen level for the treatment of ROP in preterm infants remained uncertain, the high level of oxygen-saturation chosen in the STOP-ROP trial and the one performed by Askie et al., might be another contributing factor that reduced the strength of the treatment efficacy on neonates; 96% to 99% of oxygen level, versus 98% in other surveys (4,6). Therefore, it seems that higher oxygen levels ( 98%) could result in more protective effect regarding the regression of prethreshold ROP. In contract with the two mentioned studies, results obtained through three large clinical randomized trials (COT, three BOOST studies, and Support) showed that application of high oxygen saturation compared with low concentration, within the initial time after the birth could increase the mortality rate and also develop severe ROP (7-9). In all these five trials, supplemental oxygen saturation was applied soon after birth, and they confirmed that lower target ranges of oxygenation reduced the incidence of severe retinopathy. Strategies of targeting levels of oxygen saturation in low or high range should be performed cautiously and careful attention should be devoted to the postmesentural age at the time of starting the procedures in preterm infants. Conclusion Based on included articles, it can be suggested that both the concentration of the applied oxygen and the timing of the oxygen application are important factors in severe ROP risk reduction. According to the results, higher oxygen saturation levels ( 94%-99%) reveal higher advantages in ROP risk reduction, at 36 weeks of postmesentural age. Acknowledgement We would like to thank Clinical Research Development Unit of Ghaem Hospital for their assistant in this manuscript. Conflict of Interest The authors declare no conflict of interest. 46 Rev Clin Med 206; Vol 3 (No 2)

References. Shin DH, Kong M, Kim SJ, et al. Risk factors and rate of progression for zone I versus zone II type retinopathy of prematurity. J AAPOS. 204;8:24-28. 2. Patz A, Eastham A, Higginbotham DH, et al. Oxygen studies in retrolental fibroplasia. II. The production of the microscopic changes of retrolental fibroplasia in experimental animals. Am J Ophthalmol. 953;36:5-522. 3. The International Classification of Retinopathy of Prematurity revisited. Arch Ophthalmol. 2005;23:99-999. 4. Higgins RD, Bancalari E, Willinger M, et al. Executive summary of the workshop on oxygen in neonatal therapies: controversies and opportunities for research. Pediatrics. 2007;9:790-796. 5. Tin W. Oxygen therapy: 50 years of uncertainty. Pediatrics. 2002;0:65-66. 6. Jobe AH, Bancalari E. Bronchopulmonary dysplasia. Am J Respir Crit Care Med. 200;63:723-729. 7. Ashton N, Ward B, Serpell G. Effect of oxygen on developing retinal vessels with particular reference to the problem of retrolental fibroplasia. Br J Ophthalmol. 954;38:397-432. 8. Ashton N, Ward B, Serpell G. Role of oxygen in the genesis of retrolental fibroplasia; a preliminary report. Br J Ophthalmol. 953;37:53-520. 9. Tin W, Milligan D, Pennefather P, et al. Pulse oximetry, severe retinopathy, and outcome at one year in babies of less than 28 weeks gestation. Arch Dis Child Fetal Neonatal Ed. 200;84:F06-F0. 0. Vanderveen DK, Mansfield TA, Eichenwald EC. Lower oxygen saturation alarm limits decrease the severity of retinopathy of prematurity. J AAPOS. 2006;0:445-448.. Wright KW, Sami D, Thompson L, et al. A physiologic reduced oxygen protocol decreases the incidence of threshold retinopathy of prematurity. Trans Am Ophthalmol Soc. 2006;04:78-84. 2. Wallace DK, Veness-Meehan KA, Miller WC. Incidence of severe retinopathy of prematurity before and after a modest reduction in target oxygen saturation levels. J AAPOS. 2007;:70-74. 3. McGregor ML, Bremer DL, Cole C, et al. Retinopathy of prematurity outcome in infants with prethreshold retinopathy of prematurity and oxygen saturation >94% in room air: the high oxygen percentage in retinopathy of prematurity study. Pediatrics. 2002;0:540-544. 4. Gaynon MW, Stevenson DK, Sunshine P, et al. Landers MB. Supplemental oxygen may decrease progression of prethreshold disease to threshold retinopathy of prematurity. J Perinatol. 997;7:434-438. 5. Askie LM, Henderson-Smart DJ, Irwig L, et al. Oxygen-saturation targets and outcomes in extremely preterm infants. N Engl J Med. 2003;349:959-967. 6. Supplemental Therapeutic Oxygen for Prethreshold Retinopathy Of Prematurity (STOP-ROP), a randomized, controlled trial. I: primary outcomes. Pediatrics. 2000;05:295-30. 7. Carlo WA, Finer NN, Walsh MC, et al. Target ranges of oxygen saturation in extremely preterm infants. N Engl J Med. 200;362:959-969. 8. Stenson BJ, Tarnow-Mordi WO, Darlow BA, et al. Oxygen saturation and outcomes in preterm infants. N Engl J Med. 203;368:2094-2004. 9. Schmidt B, Whyte RK, Asztalos EV, et al. Effects of targeting higher vs lower arterial oxygen saturations on death or disability in extremely preterm infants: a randomized clinical trial. JAMA. 203;309:2-220. 20. Pierce EA, Avery RL, Foley ED, et al. Vascular endothelial growth factor/vascular permeability factor expression in a mouse model of retinal neovascularization. Proc Natl Acad Sci U S A. 995;92:905-909. 2. Yancopoulos GD, Davis S, Gale NW, et al. Vascular-specific growth factors and blood vessel formation. Nature. 2000;407:242-248. 22. Okamoto N, Tobe T, Hackett SF, et al. Transgenic mice with increased expression of vascular endothelial growth factor in the retina: a new model of intraretinal and subretinal neovascularization. Am J Pathol. 997;5:28-29. Rev Clin Med 206; Vol 3 (No 2) 47