Neena Philips 1 and Salvador Gonzalez Introduction

Similar documents
Research Article Stromal Expression of CD10 in Invasive Breast Carcinoma and Its Correlation with ER, PR, HER2-neu, and Ki67

HYDRACARE LIGHTENING BUSINESS OPPORTUNITY

Research Article Hb A1c Separation by High Performance Liquid Chromatography in Hemoglobinopathies

Clinical Study Treatment of Mesh Skin Grafted Scars Using a Plasma Skin Regeneration System

identifying & treating Structural Skin Damage

Human Urokinase / PLAU / UPA ELISA Pair Set

Research Article Clinical Outcome of a Novel Anti-CD6 Biologic Itolizumab in Patients of Psoriasis with Comorbid Conditions

Non-Ablative Rejuvenation

Luisant Mela X Free from AGEs-Induced Epidermal Pigmentation

Phytofuse Rejuvenate. Wound Healing + Anti-Inflammatory + Film-Forming. Tomorrow s Vision Today!

Clinical Study Mucosal Melanoma in the Head and Neck Region: Different Clinical Features and Same Outcome to Cutaneous Melanoma

Case Report Three-Dimensional Dual-Energy Computed Tomography for Enhancing Stone/Stent Contrasting and Stone Visualization in Urolithiasis

SensoLyte Generic MMP Assay Kit *Colorimetric*

REVINAGE. The real bio-retinol

NAB Rhodiola Extract Your Partner in the Fight Against Urban Stress

Breakthrough Innovations from SkinMedica

Clinical Study Changing Trends in Use of Laparoscopy: A Clinical Audit

Case Report A Case of Cystic Basal Cell Carcinoma Which Shows a Homogenous Blue/Black Area under Dermatoscopy

Evaluation of the wound healing response post deep dermal heating by fractional RF: INTRAcel

Case Report Evolution of Skin during Rehabilitation for Elephantiasis Using Intensive Treatment

Research Article Reduction of Pain and Edema of the Legs by Walking Wearing Elastic Stockings

Conference Paper Oncothermia Basic Research at In Vivo Level: The First Results in Japan

Sunflower Shoot Active Time fighting and energizing

Case Report Multiple Giant Cell Tumors of Tendon Sheath Found within a Single Digit of a 9-Year-Old

Baris Beytullah Koc, 1 Martijn Schotanus, 1 Bob Jong, 2 and Pieter Tilman Introduction. 2. Case Presentation

Clinical Study Incidence of Retinopathy of Prematurity in Extremely Premature Infants

Alireza Bakhshaeekia and Sina Ghiasi-hafezi. 1. Introduction. 2. Patients and Methods

Protective Effect of Cocoa Extract on Malondialdehyde Level in Ultraviolet B Induced - Albino Mice Skin

Conference Paper Programmed Cell Death Induced by Modulated Electrohyperthermia

Unleash Your Skin s Internal Defenses

Evaluation of the wound healing response post - deep dermal heating by fractional RF: INTRACEL

Correspondence should be addressed to Martin J. Bergman;

Collagenase Assay Kit

AN ACTIVE SHELTER AGAINST POLLUTION V.16

Evaluation of the Protective Effect of Plant Extracts Against Pheophorbide a-induced Photosensitive Damage

colorimetric sandwich ELISA kit datasheet

Correspondence should be addressed to Taha Numan Yıkılmaz;

Research Article Opioid Use Is Not Associated with Incomplete Wireless Capsule Endoscopy for Inpatient or Outpatient Procedures

Sun protection in a pill: the photoprotective properties of Polypodium leucotomos extract

Case Report Bilateral Distal Femoral Nailing in a Rare Symmetrical Periprosthetic Knee Fracture

CONTRACTING ORGANIZATION: Maine Medical Center, Portland, ME

Case Report Medial Radial Head Dislocation Associated with a Proximal Olecranon Fracture: A Bado Type V?

Case Report A Rare Cutaneous Adnexal Tumor: Malignant Proliferating Trichilemmal Tumor

Research Article Prevalence and Trends of Adult Obesity in the US,

human Total Cathepsin B Catalog Number: DY2176

Correspondence should be addressed to Alicia McMaster;

Tissue repair. (3&4 of 4)

Research Article Abdominal Aortic Aneurysms and Coronary Artery Disease in a Small Country with High Cardiovascular Burden

Case Report Double-Layered Lateral Meniscus in an 8-Year-Old Child: Report of a Rare Case

Research Article Predictions of the Length of Lumbar Puncture Needles

GP4G. Diguanosine Tetraphosphate. ISP Vincience Global Skin Research Center

Case Report Optic Disk Pit with Sudden Central Visual Field Scotoma

Connective Tissue (CT)

DEBRIDEMENT: ANATOMY and PHYSIOLOGY. Professor Donald G. MacLellan Executive Director Health Education & Management Innovations

Case Report Osteolysis of the Greater Trochanter Caused by a Foreign Body Granuloma Associated with the Ethibond Suture after Total Hip Arthroplasty

Mandana Moosavi 1 and Stuart Kreisman Background

Clinical Study Rate of Improvement following Volar Plate Open Reduction and Internal Fixation of Distal Radius Fractures

Collagenase Assay Kit

MANUAL IL-1alpha (mouse) ELISA Kit Cat. No. AG-45B-0003-KI01 [Interleukin-1 alpha (mouse) ELISA Kit]

Case Report Features of the Atrophic Corpus Mucosa in Three Cases of Autoimmune Gastritis Revealed by Magnifying Endoscopy

Case Report A Rare Case of Near Complete Regression of a Large Cervical Disc Herniation without Any Intervention Demonstrated on MRI

Case Report Five-Year Survival after Surgery for Invasive Micropapillary Carcinoma of the Stomach

THE EFFECTS OF REPEATED SUB-ERYTHEMAL EXPOSURES OF UVR ON HUMAN IMMUNITY

IBR-Phyto(flu)ene, COLORLESS CAROTENOIDS TECHNOLOGIY OVERVIEW

Data sheet. TBARS Assay kit. (Colorimetric/Fluorometric) Kit Contents. MDA-TBA Adduct. 2-Thiobarbituric Acid. Cat. No: CA995.

Case Report Pediatric Transepiphyseal Seperation and Dislocation of the Femoral Head

Nori Rabbit IL-2 ELISA Kit DataSheet

Research Article Predictive Factors for Medical Consultation for Sore Throat in Adults with Recurrent Pharyngotonsillitis

Case Report Denosumab Chemotherapy for Recurrent Giant-Cell Tumor of Bone: A Case Report of Neoadjuvant Use Enabling Complete Surgical Resection

Case Report PET/CT Imaging in Oncology: Exceptions That Prove the Rule

In the treatment of partial and full-thickness chronic wounds TRANSFORM YOUR APPROACH TO HEALING: SIGNAL THE BODY, NOT THE WOUND DERMA

Mouse Cathepsin B ELISA Kit

Clinical Study Metastasectomy of Pulmonary Metastases from Osteosarcoma: Prognostic Factors and Indication for Repeat Metastasectomy

Case Report Pseudothrombocytopenia due to Platelet Clumping: A Case Report and Brief Review of the Literature

Ready-to-Use Sphingolipid Solution with Unique Anti-aging Properties

Clinical Study Patient Aesthetic Satisfaction with Timing of Nasal Fracture Manipulation

Inhibition of MMPs Cat G and downregulates the signaling of TGF-β/Smad in chronic photodamaged human fibroblasts

Research Article Relationship between Pain and Medial Meniscal Extrusion in Knee Osteoarthritis

Conference Paper Antithrombotic Therapy in Patients with Acute Coronary Syndromes: Biological Markers and Personalized Medicine

ACTIVE.LITE. Patent-Pending Technology + Visibly Perceivable Results in Less than 14 Days. Tomorrow s Vision Today!

SensoLyte 520 HIV-1 Protease Assay Kit *Fluorimetric*

Research Article Decreasing Prevalence of Transfusion Transmitted Infection in Indian Scenario

Case Report Two Cases of Small Cell Cancer of the Maxillary Sinus Treated with Cisplatin plus Irinotecan and Radiotherapy

SensoLyte 520 Cathepsin K Assay Kit *Fluorimetric*

Mouse Hydrogen Peroxide (H2O2) Fluorescent Detection Kit

SensoLyte Rh110 Cathepsin K Assay Kit *Fluorimetric* Revision#1.2 Last Updated: May 2017 Catalog # Kit Size

Human Hydrogen Peroxide Fluorescent Detection Kit

Case Report Internal Jugular Vein Thrombosis in Isolated Tuberculous Cervical Lymphadenopathy

GSI Canine IL-5 ELISA Kit-2 Plates DataSheet

Case Report Cytomegalovirus Colitis with Common Variable Immunodeficiency and Crohn s Disease

AN ACTIVE SHELTER TO PROTECT C ELLS CELLS

NNAGRAM. 64, rue Anatole France LEVALLOIS-PERRET - FRANCE TEL.: ++33.(0) FAX.: ++33.(0) TENSENNA VEGETAL TENSOR

William W. Hale III, 1 Quinten A. W. Raaijmakers, 1 Anne van Hoof, 2 and Wim H. J. Meeus 1,3. 1. Introduction

Targeting nanoparticles to degenerated elastin: A new pathway to deliver drugs for pulmonary and cardiovascular diseases

Growth Factors. BIT 230 Walsh Chapter 7

The Cardiovascular System and Aging- Is it Built to Fail?

Case Report Combined Effect of a Locking Plate and Teriparatide for Incomplete Atypical Femoral Fracture: Two Case Reports of Curved Femurs

e n ta d i n e Photoprotection Anti-photoaging the most natural way to reinforce skin natural defenses against outdoor and indoor radiations

Fish Skin Grafts Promote Superior Cell Ingrowth Compared to Amnion Allografts, Human Cadaver Skin and Mammalian Extracellular Matrix (ECM)

SERUM GLUCAGON KITS PROTOCOL

Transcription:

ISRN Oxidative Medicine Volume 2013, Article ID 257463, 7 pages http://dx.doi.org/10.1155/2013/257463 Research Article Beneficial Regulation of Elastase Activity and Expression of Tissue Inhibitors of Matrixmetalloproteinases, Fibrillin, Transforming Growth Factor-β, and Heat Shock Proteins by P. leucotomos in Nonirradiated or Ultraviolet-Radiated Epidermal Keratinocytes Neena Philips 1 and Salvador Gonzalez 2 1 School of Natural Sciences, Fairleigh Dickinson University, 1000 River Road, Teaneck, NJ 07666, USA 2 Memorial Sloan-Kettering Cancer Center, 1275 York Ave, NY 10065, USA Correspondence should be addressed to Neena Philips; nphilips@fdu.edu Received 19 August 2013; Accepted 21 October 2013 Academic Editors: A. B. Salmon, T. B. Shea, A. Shukla, and Y. Yoshida Copyright 2013 N. Philips and S. Gonzalez. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. There is loss of the structural integrity of the extracellular matrix (ECM) with intrinsic aging as well as photoaging, largely due to reactive oxygen species (ROS). The structural ECM proteins include the microfibrils that are composed of fibrillin. The structural ECM proteins are primarily degraded by the matrixmetalloproteinases (MMPs) and elastase enzymes. The MMPs are inhibited by the tissue inhibitors of MMPs (TIMPs). A primary regulator of the ECM proteins is transforming growth factor-β (TGF-β), and the chaperone proteins important for its formation are the heat shock proteins (HSP). P. leucotomos extract beneficially regulates of MMPs, TIMPs, and TGF-β in nonirradiated or ultraviolet (UV) radiated fibroblasts and melanoma cells. The hypothesis of this research was that the antioxidant activity or chemistry of P. leucotomos extract would also directly inhibit elastase activity, stimulate the cellular expression of TIMPs, fibrillins, and TGF-β, and regulate HSPs in nonirradiated and UVA or UVB radiated epidermal keratinocytes. P. leucotomos directly inhibited elastase activity, stimulated the cellular expression of TIMPs, fibrillins, and TGF-β, and differentially regulated HSPs in nonirradiated and UVA or UVB radiated epidermal keratinocytes. We infer that the P. leucotomos extract strengthens the ECM and is effective in the prevention or treatment of intrinsic and photoaging of skin. 1. Introduction Cellular oxidative stress from increased reactive oxygen species (ROS) occurs with intrinsic aging, and more so from the exposure of skin to ultraviolet (UV) radiation. The UV radiation includes the long-wavelength UV-A light (320 400 nm), which increases cellular ROS and ROS mediated cellular/extracellular matrix (ECM) damage, and the short-wavelength UV-B light (290 320 nm), which directly damages DNA as well as cells/ecm through ROS. The ROS facilitate the degradation/remodeling of the ECM that leads to skin aging or cancer. The ECM proteins include the microfibrillar network that is composed of the fibrillin, synthesized by the epidermal keratinocytes and the dermal fibroblasts. The degradation of the ECM proteins is primarily by the matrixmetalloproteinases (MMPs) and elastase, which are inhibited by the cellular inhibitors of MMPs, tissue inhibitors of MMPs (TIMPs). The primary regulator of the ECM is transforming growth factor-β (TGF-β). Antioxidants remove ROS, and thereby have the potential to inhibit ROS mediated skin aging or cancer. Polypodium leucotomos is a topical fern plant of the order polypodiaceae. P. leucotomos is rich in polyphenols that are antioxidants and its extract is marketed for topical or systemically photoprotection as Fernblock or Heliocare [1]. P. leucotomos extract inhibits MMP activity directly and the cellular expression of MMPs, while stimulating the expression of TIMPs in dermal fibroblasts and melanoma

2 ISRN Oxidative Medicine cells [2, 3]. P. leucotomos extract inhibits the expression of MMPs in epidermal keratinocytes; however, its regulation of elastase activity directly, or cellular expression of TIMPs in epidermal keratinocytes, has not been reported [2]. One of the goals of this research was to extend P. leucotomos photoprotective effects through the direct inhibition of elastase activity and the stimulation of TIMPs in nonirradiated and UVA or UVB radiated epidermal keratinocytes. The elastin fibers that provide stretch-recoil properties to skin are composed of an elastin core surrounded by fibrillin microfibrils. The fibrillins also form a microfibrillar network at the epidermal-dermal junction. UV radiation causes depletes the fibrillin-rich microfibrils, loss of proper elastin fibers, and their degradation leading to solar elastosis [2]. The stimulation of fibrillin has been used as a marker to screen forphotoagingrepairagents[4 6]. P. leucotomos extract stimulates the expression of elastin in dermal fibroblasts and keratinocytes [3]. The regulation of fibrillin by P. leucotomos extract has not been reported and was one of the goals of this research. AprimarybeneficialregulatoroftheECMistransforming growth factor-β (TGF-β). It inhibits MMPs and stimulates TIMPs in dermal fibroblasts [3, 7]. However, it can facilitate carcinogenesis [8]. P. leucotomos extract differentially and beneficially regulates TGF-β in dermal fibroblasts and melanoma cells, by stimulating TGF-β in dermal fibroblasts and inhibiting it in melanoma cells [3]. The expression of TGF-β is inhibited with aging and counteracted by UV radiation [9 11]. The regulation of TGF-β by P. leucotomos extract in nonirradiated or UV radiated epidermal keratinocytes has not been reported and was studied in this research. The heat shock proteins (HSP) are induced in response to cellular stress and aid in the stabilization of proteins. The HSP-27 is closely linked to epidermal differentiation and the formation of the epidermis [12]. The HSP-70 has antiinflammatory activity and prevents UVB radiation induced epidermal damage in transgenic mice expressing HSP-70 [13]. Further, the expression of HSP-70 decreases with cellular senescence [14]. The regulation of HSP-27 and HSP-70 by P. leucotomos extract in nonirradiated or UV radiated epidermal keratinocytes has not been reported and was studied in this research. The intrinsic and photoaging of skin, largely mediated by ROS, increases the activity of MMPs and elastase decreases expression of TIMPs, fibrillins, and TGF-β and has differential effects on HSPs. The hypothesis of this research was that the antioxidant activity or chemistry of P. leucotomos extractwouldalsodirectlyinhibitelastaseactivity,stimulate the cellular expression of TIMPs, fibrillins, and TGF-β, and regulate HSPs in nonirradiated and UVA or UVB radiated epidermal keratinocytes 2. Methods 2.1. Elastase Calibration and Inhibition. Elastase (Elastin Product Co. no. SE563) was calibrated by reacting 2-fold serial dilutions of the enzyme (starting concentration of 1 μg/μl) with its substrate (Bachem: I-1270, 0.5 mm) in incubation buffer (9 M Tris-0.5 M NaCl). The reaction kinetics was measured fluorometrically (355 excitation/450 emission) every 5 mins for 1.5 hours. The optimal enzyme concentration (linear dose response) was determined to be 0.1 μg/ml. P. leucotomos (0, 01%, or 1%) was incubated with the optimal concentration of elastase in incubation buffer for 10 minutes followed by the addition of 0.5 mm elastase substrate. Activity of elastase was measured fluorometrically at 355 excitation/450 emission every 10 minutes for an hour. The initial reading was subtracted from the final reading and the data (fluorescent units about 16,000 for 0 PL) converted to % of control (0 PL). 2.2. Cell Culture. Human keratinocytes (Cascade Biologics) in 33 mm dishes were nonirradiated or UV radiated (7.5 mj UVA or 7.5 mj UVB) as previously described [2, 3], Subsequently, cells were dosed with PL (0, 1% or 1%) for 24 hours. The media were examined fir TIMP-1, TIMP-2, fibrillin-1, fibrillin-2, and TGF-β protein levels. The cells were examined for heat shock proteins (HSP-27, 70). 2.3. ELISA. The protein levels were determined by ELISA (Antibodies or kits - Fibrillin: Elastin products Co.; TIMPs: Sigma; TGF-β: R&D Systems; Heat shock proteins: Stress- Gen; Kirkguaard and Perry Laboratories, Inc.). 100 μl aliquots of test samples or respective standards were added to a target-specific 96-well plates for 24 hours at 4 C. The wells were blocked with bovine serum albumin and then incubated with respective antibodies for 1 hour at room temperature.theplatewaswashedwithwashbuffer,incubated with secondary antibody linked to peroxidase for 1 hour at room temperature, washed, and subsequently incubated with peroxidase substrate until color development, measured spectrophotometrically at 405 nm. 2.4. Data Analysis. The data was analyzed for significant difference by ANOVA and student t-tests at 95% confidence interval. The effect UV radiation was analyzed relative to cells that were nonirradiated and not exposed to P. leucotomos extract (control). The effect each of the P. leucotomos concentrations on nonirradiated, UVA-radiated, or UVB-radiated cells was analyzed relative to respective UV radiated cells withoutp. leucotomos extract ( PL). 3. Results 3.1. P. leucotomos Directly Inhibits Elastase Activity. P. leucotomos extract was directly inhibitory to elastase activity. Relative to control (0 additive at 10), the elastase activity was significantly inhibited by 01%, 1% to 42%, and 26% by P. leucotomos extract (P < 5)(Figure 1(a)). 3.2. P. leucotomos Stimulates TIMP Expression in Keratinocytes. UVA radiation did not significantly alter the expression of TIMP-1 and significantly inhibited TIMP-2 protein levels to 24% of control (P < 5) (Figures 1(a)

ISRN Oxidative Medicine 3 120 100 Elastase activity (% of control) 80 60 40 20 TIMP-1 (μg/ml) 1.2 1.0 0.8 0.6 0.4 0.2 0 1% PL (a) 1.4 1.2 TIMP-2 (μg/ml) 1.0 0.8 0.6 0.4 0.2 1% PL 1% PL (b) (c) Figure 1: Direct inhibition of elastase activity by P. leucotomos and stimulation of TIMP-1 and TIMP-2 expression by P. leucotomos in epidermal keratinocytes. Elastase was incubated with 0, 1, or 0.1% P. leucotomos (PL) prior to the addition of elastase substrate and the enzyme activity was determined fluorometrically (a). Nonirradiated (NI) UVA or UVB radiated keratinocytes were exposed to PL (0, 1% or 0.1%) for 24 hours and examined for TIMP-1 protein (b) and TIMP-2 protein (c). P < 5, relative to respective controls ( PL). : P < 5, between nonirradiated and UV radiated cells. Error bars represent standard deviation, n=4. and 1(b)). UVB radiation significantly inhibited TIMP-1 and TIMP-2 protein levels to 48% and 49% of control [TIMP- 1: 10: 71 μg/ml; TIMP-2: 10: 75 μg/ml] (P < 5) (Figures 1(b) and 1(c)). P. leucotomos significantly stimulated TIMP-1 and -2 expression in nonirradiated and UV radiated keratinocytes. In nonirradiated keratinocytes, the expression of TIMP-1 and TIMP-2 was significantlystimulatedby P. leucotomos at 1% (TIMP-1: 191% of control; TIMP-2: 308% of control) and 0.1% (TIMP-1: 523% of control; TIMP-2: 582% of control) (P < 5) (Figures 1(b) and 1(c)). In UVA radiated keratinocytes, TIMP-1 and TIMP-2 protein levels were significantly stimulated by P. leucotomos at 1% (TIMP-1: 152% of UVA respective control; TIMP-2: 517% of UVA respective control), and 0.1% (TIMP-1: 22 of UVA respective control; TIMP- 2: 2041% of UVA respective control) (P < 5) (Figures 1(b) and 1(c)). In UVB radiated keratinocytes, P. leucotomos significantly stimulated TIMP-1 and TIMP-2 protein levels at 1% (TIMP-1: 1028% of UVB respective control; TIMP-2: 892% of UVB respective control) and 0.1% (TIMP-1: 3018% of UVB respective control; TIMP-2: 300 of UVB respective control) (P < 5) (Figures1(b) and 1(c)). 3.3. P. leucotomos Stimulates Fibrillin Expression in Keratinocytes. UVA radiation significantly inhibited fibrillin- 1and-2proteinlevelstoabout45%and48%ofrespective controls (Figures 2(a) and 2(b)). UVB radiation did not significantly alter fibrillin-1 expression but significantly inhibited fibrillin-2 protein levels to 69% of control (P < 5) (Figures 2(a) and 2(b)). P. leucotomos significantly (P < 5) stimulated expression of fibrillin-1 and -2 in nonirradiated and UV radiated

4 ISRN Oxidative Medicine Fibrillin-1 (μg/ml) 3.5 3.0 2.5 2.0 1.5 1.0 0.5 Fibrillin-2 (μg/ml) 0.7 0.6 0.5 0.4 0.3 0.2 0.1 1% PL 1% PL (a) (b) 3.0 2.5 TGF-β (ng/ml) 2.0 1.5 1.0 0.5 1% PL (c) Figure 2: Stimulation of fibrillin-1, fibrillin-2, and TGF-β expression by P. leucotomos in epidermal keratinocytes. Nonirradiated (NI), UVA, or UVB radiated keratinocytes were exposed to PL (0, 1% or 0.1%) for 24 hours and examined for fibrillin-1 protein (a), fibrillin-2 protein (b), and TGF-β protein (c). P < 5, relative to respective controls ( PL). : P < 5, between nonirradiated and UV radiated cells. Error bars represent standard deviation, n=4. keratinocytes (Figures 2(a) and 2(b)). The expression of fibrillin-1 was significantly stimulated in nonirradiated and UV radiated keratinocytes by P. leucotomos at 1% (nonirradiated: 219% of control; UVA: 274% of UVA respective control; UVB: 164% of UVB respective control) and at 0.1% (nonirradiated: 358% of control; UVB: 318% of UVB respective control; UVA: 70 of UVA respective control) (P < 5)(Figure 2(a)). Relative to respective controls, 1% and 0.1% P. leucotomos significantly stimulated fibrillin-2 protein levels to 186% and 489% in nonirradiated keratinocytes, to 1006% and 2959% in UVA irradiated keratinocytes, and to 75 and 210 in UVB irradiated keratinocytes (P < 5) (Figure 2(b)). 3.4. P. leucotomos Stimulates TGF-β Expression in Keratinocytes. In keratinocytes, UVA and UVB radiation significantly inhibited the expression of TGF-β to 68% and 53% of control (10: 300 pg/ml), respectively (P < 5) (Figure 2(c)). P. leucotomos significantly stimulated TGF-β expression in nonirradiated and UV radiated keratinocytes (P < 5) (Figure 2(c)). The expression of TGF-β was significantly stimulated by P. leucotomos at 1% in nonirradiated and UVA radiated keratinocytes to about 15 of respective controls, and at 0.1% in nonirradiated, UVA, and UVB radiated keratinocytes to 286%, 285%, and 172% of their respective controls (P < 5)(Figure 2(c)). 3.5. P. leucotomos Stimulates HSP-27 and -70 in Nonirradiated Keratinocytes and Counteracts Its Induction in UVA Radiated Keratinocytes. In UVA irradiated keratinocytes, HSP 27 was significantly elevated to 283% and HSP 70 to 217% of UVA respective controls [HSP-27: 10: 8 ng/ml; HSP-70: 10: 20 n/ml] (P < 5) (Figures 3(a) and 3(b)). UVB radiation did not significantly alter the expression of HSP-27 and HSP- 70 (Figures 3(a) and 3(b)). P. leucotomos significantly stimulated HSP-27 and HSP- 70 in nonirradiated keratinocytes; it significantly stimulated

ISRN Oxidative Medicine 5 30 60 HSP-27 (ng/ml) 25 20 15 10 HSP-70 (ng/ml) 50 40 30 20 5 0 10 0 (a) (b) Figure 3: Antagonistic effects of P. leucotomos and UVA radiation on HSP-27 and -70 in epidermal keratinocytes. Nonirradiated (NI),UVA, or UVB radiated keratinocytes were exposed to PL (0, 1% or 0.1%) for 24 hours and examined for HSP-27 protein (a) and HSP-70 (b). P < 5, relative to respective controls ( PL). : P < 5, between nonirradiated and UV radiated cells. Error bars represent standard deviation, n=4. HSP-27 to 195% of control and HSP-70 to 238% of control (P < 5) (Figures 3(a) and 3(b)). P. leucotomos counteracted the stimulation of HSPs in UVA radiated keratinocytes; it inhibited the expression of HSP-27 and HSP-70 to 1 and 12% of UVA respective controls, respectively (P < 5) (Figures 3(a) and 3(b)). 4. Discussion With intrinsic aging or photoaging there is increased activity of MMPs/elastase, reduced expression of TIMPs, fibrillin, and TGF-β, and altered cellular stress response proteins (HSPs), which collectively compromise the ECM integrity andtherebyskinhealth.theprimarycellsoftheskinthat contribute to the ECM integrity are the dermal fibroblasts and the epidermal keratinocytes. The primary mediators of the ECM alterations in aging or photoaging are ROS; and P. leucotomos extract with its high polyphenolic antioxidant components beneficially regulates the ECM proteins in nonirradiated or UV radiated dermal fibroblasts [2, 3]. We herein present that the P. leucotomos extract directly inhibits elastase activity and beneficially regulates the expression of TIMPs, fibrillin, TGF-β, and HSPs in nonirradiated UVA or UVB radiated keratinocytes. The structural integrity of the ECM is compromised with theincreaseinthebasalorinducedlevelsofmmps/elastase enzymes as well as their activity with aging or exposure to UV radiation. The ECM proteolytic enzymes (MMPs/elastases) are produced by epidermal keratinocytes, dermal fibroblasts, neutrophils and melanoma cells in the mediation of skin aging or cancer [3, 15 18]. P. leucotomos extract directly inhibits the activities of MMPs (MMP-1, 2, 3, 9) as well as the cellular expression of MMPs (MMP-1, 2) in nonirradiated or UV radiated dermal fibroblasts or epidermal keratinocytes [2, 3]. In addition, P. leucotomos extract directly inhibits elastase activity and may thereby inhibit the fragmentation of elastin/fibrillin fibers. Along with the increase in MMPs, there is decrease in TIMPs with aging or photoaging, which increases the cellular MMPs/TIMPs ratio and ECM damage [9 11, 18]. P. leucotomos extract stimulates the expression of TIMPs in nonirradiated or UV radiated dermal fibroblasts [3]. It also stimulates the expression of TIMP-1 and TIMP-2 in nonirradiated and UVA or UVB radiated keratinocytes, suggesting its potential to also prevent the loss of structural or microfibrillar ECM proteins with aging or exposure to UV radiation through its effects on keratinocytes. The fibrillins compose the microfibrils that provide the scaffold for the assembly of the elastin fibers and a network at the epidermal-dermal junction as well as the dermis. There are three known fibrillin proteins; fibrillin-1 is most abundant in mature tissue and fibrillin-2 is associated with elastin fibers [19, 20]. The microfibrils are degraded by proteases or reduced in expression at the epidermal junction and in the elastin fibers with aging or photoaging [4 6]. The induction of fibrillin is associated with skin repair, and is a target in the screening for cosmetic products [5, 6]. P. leucotomos extract stimulates the expression of elastin in nonirradiated or UVA or UVB radiated fibroblasts and keratinocytes [2]. It also stimulates the expression of fibrillin-1 and -2 in nonirradiated and UVA or UVB radiated keratinocytes, suggesting the strengthening of microfibrils and the elastin fibers. A major regulator of the ECM proteins is TGF-β, which stimulates the expression of TIMPs and fibrillin [10, 18, 21]. UV radiation counteracts the expression or effect of TGF-β in dermal fibroblasts, and keratinocytes [10, 11]. P. leucotomos stimulates TGF-β expression in nonirradiated and UV radiated fibroblasts [3]. It also stimulates the expression of TGF-β expression in nonirradiated UVA or UVB radiated

6 ISRN Oxidative Medicine keratinocytes; suggesting that the stimulation of TIMPs and fibrillins by P. leucotomos may be mediated through its induction of TGF-β expression. The chaperone proteins that are important in the formation of the ECM proteins as well for cell health are the HSPs. The HSP-27 is considered the marker for epidermal differentiation and HSP-70 for anti-inflammatory activity [12 14]. There is loss of expression of HSPs with aging, whereas they are induced in carcinogenesis [12 14, 22]. P. leucotomos extract counteracts the induction of HSP-27, 70 and 90 as well as MMP-1 by the growth inhibiting but metastasis supporting ascorbate dose in melanoma cells [22]. P. leucotomos extract induces the expression of HSP-27 and HSP-70 in nonirradiated keratinocytes, suggesting facilitation in the formation of the ECM proteins as well as improved cell health. The UVA radiation stimulated HSP-27 and HSP- 70, which was counteracted by counteracted the P. leucotomos extract that may suggest the inhibition of the cellular stress response in these cells. The UVB radiated keratinocytes, with or without P. leucotomos extract, did not show alterations in the HSP-27 or HSP-70 in comparison with nonirradiated keratinocytes, suggesting a different mechanism in the UVB radiated cells than in UVA cells that may also have prevented the intrinsic stimulation of HSPs by the P. leucotomos extract. While the primary mechanism of UVA radiation is through the stimulation of ROS, the primary mechanism of UVB radiation is direct DNA damage and secondarily through ROS. 5. Conclusion P. leucotomos directly inhibits elastase activity, stimulates the cellular expression of TIMPs, fibrillins, and TGF-β, and differentially regulates HSPs in nonirradiated and UVA or UVB radiated epidermal keratinocytes. In combination with its effects on nonirradiated or UVA or UVB radiated fibroblasts, we infer that P. leucotomos extract (Fernblock) is effective in the strengthening of the ECM integrity and thereby the prevention or treatment of intrinsic and photoaging of skin. Acknowledgment Neena Philips is grateful to the assistance of Marvin Tuason and David Bynum from Fairleigh Dickinson University and Hyendo Hwang, Rosemaire Arena, and Donna Leonardi from Bergen Academies. References [1] L. Gombau, F. García, A. Lahoz et al., Polypodium leucotomos extract: antioxidant activity and disposition, Toxicology in Vitro,vol.20,no.4,pp.464 471,2006. [2] N. Philips, J. Smith, T. Keller, and S. Gonzalez, Predominant effects of Polypodium leucotomos on membrane integrity, lipid peroxidation, and expression of elastin and matrixmetalloproteinase-1 in ultraviolet radiation exposed fibroblasts, and keratinocytes, JournalofDermatologicalScience,vol.32,no.1,pp.1 9,2003. [3] N. Philips, J. Conte, Y.-J. Chen et al., Beneficial regulation of matrixmetalloproteinases and their inhibitors, fibrillar collagens and transforming growth factor-β by Polypodium leucotomos, directly or in dermal fibroblasts, ultraviolet radiated fibroblasts, and melanoma cells, Archives of Dermatological Research,vol.301,no.7,pp.487 495,2009. [4] R. E. B. Watson, C. E. M. Griffiths, N. M. Craven, C. A. Shuttleworth, and C. M. Kielty, Fibrillin-rich microfibrils are reduced in photoaged skin. Distribution at the dermalepidermal junction, Investigative Dermatology, vol. 112,no.5,pp.782 787,1999. [5]R.E.B.Watson,N.M.Craven,S.Kang,C.J.P.Jones,C.M. Kielty, and C. E. M. Griffiths, A short-term screening protocol, using fibrillin-1 as a reporter molecule, for photoaging repair agents, Investigative Dermatology,vol.116,no.5,pp. 672 678, 2001. [6] R. E. Watson, S. Ogden, L. F. Cotterell et al., Effects of a cosmetic anti-ageing product improves photoaged skin [corrected], The British Dermatology, vol.161,no.2, pp.419 426,2009. [7] N. Philips, T. Keller, and S. Gonzalez, TGF β-like regulation of matrix metalloproteinases by anti-transforming growth factor- β, and anti-transforming growth factor-β1 antibodies in dermal fibroblasts: implications for wound healing, Wound Repair and Regeneration,vol.12,no.1,pp.53 59,2004. [8] N. Philips and N. Onwubalili, Anti transforming growth factor-beta (TGF-β) increases the expressions of matrix metalloproteinase-1 (MMP-1) and growth factors in a renal adenocarcinoma cell line, BIOS,vol.73,pp.86 90,2002. [9]G.Zeng,H.M.McCue,L.Mastrangelo,andA.J.T.Millis, Endogenous TGF-β activityismodifiedduringcellular aging: Effects on metalloproteinase and TIMP-1 expression, Experimental Cell Research,vol.228,no.2,pp.271 276,1996. [10] N. Philips, R. Arena, and S. Yarlagadda, Inhibition of ultraviolet radiation mediated extracellular matrix remodeling in fibroblasts by transforming growth factor-b, BIOS, vol. 80, article 1, 2009. [11] N. Philips, An anti TGF-β antibody increased the expression of transforming growth factor-β, matrix metalloproteinase-1, and elastin, and its effects were antagonized by ultraviolet radiation in epidermal keratinocytes, JournalofDermatologicalScience, vol.33,no.3,pp.177 179,2003. [12] C. Jonak, M. Mildner, G. Klosner et al., The hsp27kd heat shock protein and p38-mapk signaling are required for regular epidermal differentiation, Dermatological Science, vol. 61, no. 1, pp. 32 37, 2011. [13]M.Matsuda,T.Hoshino,Y.Yamashitaetal., Preventionof UVB radiation-induced epidermal damage by expression of heat shock protein 70, JournalofBiologicalChemistry,vol.285, no. 8, pp. 5848 5858, 2010. [14] A. Gutsmann-Conrad, A. R. Heydari, S. You, and A. Richardson, The expression of heat shock protein 70 decreases with cellular senescence in vitro and in cells derived from young and old human subjects, Experimental Cell Research,vol.241,no.2, pp.404 413,1998. [15] F. Rijken, R. C. M. Kiekens, and P. L. B. Bruijnzeel, Skininfiltrating neutrophils following exposure to solar-simulated radiation could play an important role in photoageing of human skin, British Dermatology,vol.152,no.2,pp.321 328, 2005.

ISRN Oxidative Medicine 7 [16] N. Tsuji, S. Moriwaki, Y. Suzuki, Y. Takema, and G. Imokawa, The role of elastases secreted by fibroblasts in wrinkle formation: implication through selective inhibition of elastase activity, Photochemistry and Photobiology,vol.71,pp.283 290, 2001. [17] J. Labat-Robert, A. Fourtanier, B. Boyer-Lafargue, and L. Robert, Age dependent increase of elastase type protease activity in mouse skin effect of UV-irradiation, Photochemistry and Photobiology B, vol. 57, no. 2-3, pp. 113 118, 2000. [18] N. Philips, T. Keller, C. Hendrix et al., Regulation of the extracellular matrix remodeling by lutein in dermal fibroblasts, melanoma cells, and ultraviolet radiation exposed fibroblasts, Archives of Dermatological Research,vol.299,no.8,pp.373 379, 2007. [19] H. Zhang, W. Hu, and F. Ramirez, Developmental expression of fibrillin genes suggests heterogeneity of extracellular microfibrils, JournalofCellBiology,vol.129,no.4,pp.1165 1176,1995. [20] F. Ramirez and L. Pereira, The fibrillins, International Journal of Biochemistry and Cell Biology,vol.31,no.2,pp.255 259,1999. [21] H. H. Kim, S. Cho, S. Lee et al., Photoprotective and anti-skinaging effects of eicosapentaenoic acid in human skin in vivo, Lipid Research,vol.47,no.5,pp.921 930,2006. [22] N. Philips, L. Dulaj, and T. Upadhya, Growth inhibitory mechanism of ascorbate and counteraction of its matrix metalloproteinases-1 and transforming growth factor-beta stimulation by gene silencing or P. leucotomos, AntiCancer Research,vol.29,pp.3233 3238,2008.

MEDIATORS of INFLAMMATION The Scientific World Journal Gastroenterology Research and Practice Diabetes Research International Endocrinology Immunology Research Disease Markers Submit your manuscripts at BioMed Research International PPAR Research Obesity Ophthalmology Evidence-Based Complementary and Alternative Medicine Stem Cells International Oncology Parkinson s Disease Computational and Mathematical Methods in Medicine AIDS Behavioural Neurology Research and Treatment Oxidative Medicine and Cellular Longevity