Research Article Evaluation of a Novel Rapid Test System for the Detection of Specific IgE to Hymenoptera Venoms

Similar documents
R. Lucassen, 1 J. Schulte-Pelkum, 1 C. Csuvarszki, 2 J. Kleine-Tebbe, 2 M. Fooke, 1 and M. Mahler Material and Methods. 1.

Spiking with recombinant allergens to improve allergen extracts: benefits and limitations for the use in routine diagnostics

Allergy Update. because you depend upon results. Abacus ALS

11/5/2013. Insect Allergy Update. Diagnostic Testing for Insect Allergy. ACAAI Annual Meeting Nov , Baltimore. ACAAI 2013 Workshop

New Test ANNOUNCEMENT

Molecular Allergy Diagnostics Recombinant or native Allergens in Type I Allergy Diagnostics

The Quest for Clinical Relevance

slge112 Molecular Allergology Product Characteristics ImmunoCAP ISAC slge 112

Preliminary Communication Cichocka-Jarosz, Dorynska, Pietrzyk & Spiewak

Allergy The diagnostic process Main examinations and interpretation

RESEARCH Open Access Abstract Background: Methods: Results: Conclusions: Keywords: Background

Single venom-based immunotherapy effectively protects patients with double positive tests to honey bee and Vespula venom

UNIVERSITY OF ZAGREB SCHOOL OF MEDICINE. Plan of the course. Basics of Pediatric Allergy. Academic year 2015/2016. Mirjana Turkalj

Improving allergy outcomes. Allergen Component Testing. Jay Weiss Ph.D and Gary Kitos, Ph.D. H.C.L.D.

Allergy School on Investigating allergic effects of environmental exposures. Brindisi, Italy, 2-5 July Venom Allergy. M.

PRODUCT CATALOG. All products are CE marked

Clinical Study Principal Components Analysis of Atopy-Related Traits in a Random Sample of Children

University of Groningen. Hymenoptera venom allergy Vos, Byrthe

Hypersensitivity Reactions and Peanut Component Testing 4/17/ Mayo Foundation for Medical Education and Research. All rights reserved.

ImmunoCAP Tryptase Product information

Clinical Study Phadiatop Infant in the Diagnosis of Atopy in Children with Allergy-Like Symptoms

Threshold levels in food challenge and specific IgE in patients with egg allergy: Is there a relationship?

Grass pollen immunotherapy induces Foxp3 expressing CD4 + CD25 + cells. in the nasal mucosa. Suzana Radulovic MD, Mikila R Jacobson PhD,

THE SMART WAY TO EXPLORE ALLERGY

Southern Derbyshire Shared Care Pathology Guidelines. Allergy Testing in Adults

Quality Controls in Allergy Diagnosis

Agenda. 1. Introduction to Hymenoptera venom Allergy. 2. Diagnosis. Skin tests. In Vitro testing. 3. Therapy and Immunotherapy

A longitudinal study of hymenoptera stings in preschool children

Component resolved diagnostics for hymenoptera venom allergy

Prevalence and risk factors of latex sensitization in an unselected pediatric population

Department of Dermatology, Fukuoka National Hospital, National Hospital Organization, Yakatabaru, Minami-ku, Fukuoka , Japan 2

Clinical and Molecular Allergy

Comparison of specific IgE detection by immunoblotting and fluorescence enzyme assay with in vivo skin prick test

e. Elm Correct Question 2 Which preservative/adjuvant has the greatest potential to breakdown immunotherapy because of protease activity? a.

William W. Hale III, 1 Quinten A. W. Raaijmakers, 1 Anne van Hoof, 2 and Wim H. J. Meeus 1,3. 1. Introduction

University of Groningen. Hymenoptera venom allergy Vos, Byrthe

ImmunoCAP Systems. Optimized for allergy testing - Precision - Accuracy - Consistency

Insect Sting Reactions and Specific IgE to Venom and Major Allergens in a General Population

Research Article Comparison of Colour Duplex Ultrasound with Computed Tomography to Measure the Maximum Abdominal Aortic Aneurysmal Diameter

Documentation, Codebook, and Frequencies

Baris Beytullah Koc, 1 Martijn Schotanus, 1 Bob Jong, 2 and Pieter Tilman Introduction. 2. Case Presentation

ImmunoCAP. Specific IgE blood test

Case Report Successful Implantation of a Coronary Stent Graft in a Peripheral Vessel

Correspondence should be addressed to Martin J. Bergman;

Case 1: HPI. Case 1: PMHx + SHx. Case 1: PMHx + SHx. Case 1: Salient features of Examination. Case 2: Diagnosis and Management. Immunology Meeting

Allergy Testing in Childhood: Using Allergen-Specific IgE Tests

Hypersensitivity Reactions

INVESTIGATIONS & PROCEDURES IN PULMONOLOGY. Immunotherapy in Asthma Dr. Zia Hashim

Research Article Clinical Outcome of a Novel Anti-CD6 Biologic Itolizumab in Patients of Psoriasis with Comorbid Conditions

Introduction to new concepts in diagnosis of allergy diseases Basis of allergy diagnosis

Clinical Study Safety and Efficacy of Tree Pollen Specific Immunotherapy on the Ultrarush Administration Schedule Method Using Purethal Trees

Introduction. Methods. Results 12/7/2012. Immunotherapy in the Pediatric Population

CONCLUSIONS: For the primary end point in the total population, there were no significant differences between treatments. There were small, but statis

Biomed Environ Sci, 2014; 27(7):

Research Article Prevalence and Trends of Adult Obesity in the US,

Comparison of VIDAS Stallertest and Pharmacia CAP Assays for Detection of Specific IgE Antibodies in Allergic Children

Allergy Skin Prick Testing

IgE antibody in the serum detection and diagnostic significance

Research Article Decreasing Prevalence of Transfusion Transmitted Infection in Indian Scenario

Six years of INSTAND e. V. sige proficiency testing

Case Report Diagnostic Challenges of Tuberculous Lymphadenitis Using Polymerase Chain Reaction Analysis: A Case Study

Research Article Hb A1c Separation by High Performance Liquid Chromatography in Hemoglobinopathies

Case Report Three-Dimensional Dual-Energy Computed Tomography for Enhancing Stone/Stent Contrasting and Stone Visualization in Urolithiasis

Case Report Patellofemoral Joint Replacement and Nickel Allergy: An Unusual Presentation

appropriate olive pollen SIT

Cross-reactive carbohydrate determinants and allergenicity

Conference Paper Programmed Cell Death Induced by Modulated Electrohyperthermia

Learning Objective. Conflicts of Interest 11/28/13

Case Report Complete Obstruction of Endotracheal Tube in an Infant with a Retropharyngeal and Anterior Mediastinal Abscess

An Insight into Allergy and Allergen Immunotherapy Co-morbidities of allergic disease

Michaela Lucas. Clinical Immunologist/Immunopathologist. Pathwest, QE2 Medical Centre, Princess Margaret Hospital

Detection of Food Allergens using ELISA. Arman Alimkulov Health Products and Food Branch Health Canada

Publication Dr. Simon Blank

Case Report Asymptomatic Pulmonary Vein Stenosis: Hemodynamic Adaptation and Successful Ablation

NIH Public Access Author Manuscript Ann Allergy Asthma Immunol. Author manuscript; available in PMC 2012 February 1.

Laboratory evaluation of a commercial immunoassay for fire ant allergen-specific IgE antibodies

Discover the connection

Journal. ImmunoDiagnostics. 3 Overview. 5 CAPture. Scientific news, opinions and reports. Journal No

Molecular allergens in the diagnosis of latex allergy

Correspondence should be addressed to Taha Numan Yıkılmaz;

Conference Paper Antithrombotic Therapy in Patients with Acute Coronary Syndromes: Biological Markers and Personalized Medicine

Centers. Austria (2), Germany (5), Belgium (1), Netherlands (1), Denmark (1), Slovenia (1)

FOR IN VITRO DIAGNOSTIC USE

Clinical and Experimental Allergy, 37,

Proficiency Survey-Based Evaluation of Clinical Total and Allergen-Specific IgE Assay Performance. Robert G. Hamilton, PhD, D (ABMLI)

Case Report IgG4-Related Nasal Pseudotumor

Research Article Predictive Factors for Medical Consultation for Sore Throat in Adults with Recurrent Pharyngotonsillitis

Research Article Urinary Catheterization May Not Adversely Impact Quality of Life in Multiple Sclerosis Patients

FinTest IgG4 Screen 20 ELISA KIT

Allergen extracts and recombinant proteins: comparison of efficiency of in vitro allergy diagnostics using multiplex assay on a biological microchip

Research Article Photovoice: A Novel Approach to Improving Antituberculosis Treatment Adherence in Pune, India

Skin prick testing: Guidelines for GPs

Basophil Activation Test (BAT)ting for better allergy diagnosis

The legally binding text is the original French version TRANSPARENCY COMMITTEE OPINION. 29 February 2012

Clinical Study Rate of Improvement following Volar Plate Open Reduction and Internal Fixation of Distal Radius Fractures

Formulating hypotheses and implementing research in allergic disorders in rural Crete, Greece

ALK-Abelló Research & Development. Henrik Jacobi MD, EVP Research & Development

Scope of Practice Allergy Skin Testing in Australia In relation to revised Medicare Benefits Schedule item numbers effective 1 November 2018

Transcription:

Allergy Volume 202, Article ID 862023, 7 pages doi:0.55/202/862023 Research Article Evaluation of a Novel Rapid Test System for the Detection of Specific IgE to Hymenoptera Venoms Nikolai Pfender, Ralf Lucassen, 2 Nadine Offermann, 2 Johannes Schulte-Pelkum, 2 Margrit Fooke, 2 and Thilo Jakob Allergy Research Group, Department of Dermatology, University Medical Center Freiburg, Hauptstraße 7, 7904 Freiburg, Germany 2 Dr. Fooke Laboratorien GmbH, Habichtweg 6, 4468 Neuss, Germany Correspondence should be addressed to Nikolai Pfender, nikolai.pfender@spitalaffoltern.ch Received 5 September 20; Revised 25 November 20; Accepted 26 November 20 Academic Editor: Ting Fan Leung Copyright 202 Nikolai Pfender et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Background. The Allergy Lateral Flow Assay (ALFA) is a novel rapid assay for the detection of sige to allergens. The objective of this study is the evaluation of ALFA for the detection of sige to bee venom (BV) and wasp venom (WV) in insect venom allergic patients. Methods. Specific IgE to BV and WV was analyzed by ALFA, ALLERG-O-LIQ, and ImmunoCAP in 80 insect venom allergic patients and 60 control sera. Sensitivity and specificity of ALFA and correlation of ALFA and ImmunoCAP results were calculated. Results. The sensitivity/specificity of ALFA to the diagnosis was 00%/83% for BV and 82%/97% for WV. For insect venom allergic patients, the Spearman correlation coefficient for ALFA versus ImmunoCAP was 0.79 for BV and 0.80 for WV. However, significant differences in the negative control groups were observed. Conclusion. ALFA represents a simple, robust, and reliable tool for the rapid detection of sige to insect venoms.. Introduction Reliable diagnosis of insect venom allergy is based on the combination of patient s history, skin testing (SPT) and laboratory tests for the detection of specific IgE (sige) [ 4]. The methodology for the measurement of sige has evolved during the recent years [5, 6]. Lately, rapid assays for the detection of sige as point-of-care diagnostics have been developed using various strategies [7, 8]. ALFA, the Allergy Lateral Flow Assay (Dr. Fooke Laboratorien GmbH, Neuss, Germany), combines the advantages of lateral flow devices with the flexibility of choosing different allergens as already shown for cat epithelia (e), Dermatophagoides pteronyssinus (d), Alternaria alternata (m6), birch pollen (t3) [9], and also in depth for timothy grass pollen (g6) [0]. In contrary to other rapid tests like the ImmunoCAP Rapid (Phadia, Uppsala, Sweden) [8], which employs a fixed panel of single allergens immobilized on membranes, ALFA utilizes liquid allergens and allergen mixtures. The open architecture of the ALFA system allows for the selection of the required allergen in combination with a universal basis set (see Figure ). Biotinylated insect venoms of honey bee, Apis mellifera (BV) andwasp, Vespulavulgarisand germanica (WV) werecharacterized and prepared for use with ALFA. The objective of this study was the evaluation of ALFA, for the detection of sige to bee venom (BV) and wasp venom (WV) in a well-defined cohort of patients. Sera were also analyzed by ImmunoCAP (Phadia, Uppsala, Sweden) and ALLERG-O-LIQ (Dr. Fooke Laboratorien GmbH). The correlation between methods was calculated, and agreement between ALFA and the diagnosis (based on patient s history, positive skin test, and detection of sige by ImmunoCAP ( ku/l)) wasdetermined. 2. Patients and Methods Sera of four groups were analyzed as follows. (A) 40 patients with insect venom allergy to either bee (n = 2) or wasp (n = 28) venom with agreement of patient s history, sige against the given venom by ImmunoCAP and skin test. Mean age 4.8 y (SD 4.96 y). 23 (57.5%) males, 7 (42.5%) females.

2 Allergy S T C Allergen-ligand Anti-IgE gold Sample (sige) conjugate Immobilized antiligand (test line) Complex of Excess conjugate gets allergen-ligand, bound by anti sige and conjugate conjugate antibody Immobilized anticonjugate antibody (control line) Figure : Principle of ALFA. A test cassette showing a positive test result is presented in and the principle of the test in. The patient s sample is transferred to the sample application point. Immediately afterwards the allergen solution of interest is applied. During incubation time of 20 min, the liquid is driven through the device by capillary flow. Allergen specific IgE of the sample binds specifically to the corresponding antigens of the allergen solution. The antigens are labeled and are retained at the test line (T) by a capture molecule. At the same time the sige bound to the allergen is bound by an antibody coupled to colored particles (conjugate). The intensity of the color reaction at the test line is proportional to the amount of immune complexes consisting of ligand tagged antigens, sige, and IgE specific conjugate. The signal intensity ranges from faintly pink (low titer of sige) to dark ruby (high titer of sige). Access conjugate, which is not bound at the test line, will form a dark ruby control line (C) after 20 min of incubation. 3 (7.5%) Patients presented with anaphylactic reactions grade (according to Ring and Messmer [, 2]), 23 (57.5%) with anaphylactic reaction grade 2 and 4 (35%) with anaphylactic reaction grade 3 to insect venom sting. None of the patients presented with a grade 4 anaphylaxis. None of the patients were under immunosuppressive medication or specific immunotherapy. Mean total IgE was 78.7 ku/l (range.6 372 ku/l). (B) 40 patients with insect venom allergy and double sensitization (serological) to bee and wasp venom, determined by ImmunoCAP, patient s history and skin test. Mean age 42.25 y (SD 7.5 y). 20 (50%) males, 20 (50%) females. 4 (0%) Patients presented with anaphylactic reactions grade (according to Ringb and Messmer [, 2]),27 (67.5%) with anaphylactic reaction grade 2 and 9 (22.5%) with anaphylactic reaction grade 3 to insect venom sting. None of the patients presented with a grade 4 anaphylaxis. None of the patients were under immunosuppressive medication or specific immunotherapy. Mean total IgE was 50.5 ku/l (range 6.5 667 ku/l). (C) Atopic individuals (Sx positive, total IgE mean = 2986 ku/l, range 86 2383 ku/l, history of at least one atopic disease) without history of insect venom allergy (n = 30). Mean age 33.5 y (SD 5.75 y). 6 (53.34%) males, 4 (46.67%) females. 9 (63.34%) patients presented with atopic dermatitis, 2 (40%) patients with allergic rhinoconjunctivitis, and 7 (23.34%) with allergic asthma (some patients presented with two or three manifestations). None of the patients were under immunosuppressive medication or specific immunotherapy. (D) Non atopic individuals without history of insect venom allergy (n = 30). None of the patients were under immunosuppressive medication or specific immunotherapy. Mean total IgE was 35.60 ku/l (range 2 99.3 ku/l). Diagnosis of insect venom allergy was based on patient s history (anaphylaxis due to bee or wasp sting [, 2]), positive skin test, and detection of sige by ImmunoCAP ( ku/l). 2.. Skin Test. In patients with insect venom allergy, skin prick tests with increasing concentrations of BV and WV (, 0, 00 μg/ml) (ALK- Abello, Reinbeck, Germany) were performed. If negative, intradermal tests at μg/ml were added as recommended by the position paper of the EAACI Interest Group on Insect Venom Hypersensitivity [3, 4]. Histamine chloride at a concentration of mg/ml served as positive and saline solution (0.9%) as negative control. 2.2. Detection of sige. All sera in this study (n = 40) were assayed for sige to BV and WV by ALFA, ALLERG-O-LIQ, a reversed-type, quantitative, WHO 75/502 calibrated immunoassay [], and ImmunoCAP according to the instructions given by the manufacturer. Specific IgE values >00 IU/mL were considered as 00 IU/mL. ALFA results were quantified by a scanning device with an appropriate software [0], which measures the colour intensity of the test line and evaluates the validity of the test run by measuring the existence and intensity of the control line. All samples were measured after the same incubation time of 20 min. The test values are converted into relative units (RUs). Using individually diluted allergen solutions, the test kits are validated for identical discrimination of positive and negative results. Cut-off values were set using ROC-decision analysis made with Analyze-it v2.2 for Excel (data not shown). 2.3. Statistical Analysis. Spearman correlation, P-values (- tailed Student s t-test), and Receiver Operating Characteristic analysis were performed with GraphPad Prism Ver. 5.0. 3. Results and Discussion 3.. Detection of sige to Bee and Wasp Venom. When compared to the diagnosis (based on patients history, skin test, and sige detection by ImmunoCAP) comparative receiver operating characteristic analysis of groups A and B revealed area under the curve values for ALFA of 0.97 (BV) and 0.9 (WV). In monosensitized patients (group A only), 2/2 BV allergic patients and 23/28 WV allergic patients were positive in ALFA using a cut-off value for ALFA of 0.0 RU,

Allergy 3 0.8 0.8 True positive rate (sensitivity) 0.6 0.4 True positive rate (sensitivity) 0.6 0.4 0.2 0.2 0 0 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 False positive rate (-specificity) False positive rate (-specificity) ALFA BV ALLERGO-LIQ BV No discrimination ALFA WV ALLERGO-LIQ WV No discrimination Figure 2: Receiver operating characteristic of ALFA and ALLERGO-LIQ for the diagnosis of bee and wasp venom allergy in monosensitized patients (group A) and control groups (C and D). Curve with dots indicates results for ALFA and curve with squares for ALLERGO- LIQ. Diagnosis of insect venom allergy was based on patient s history, skin testing, and detection of sige to bee or wasp venom by ImmunoCAP. Sensitivity/specificity for ALFA is 00%/83% (BV) and 82%/97% (WV) at a cut-off value of 0.0 RU and 00%/93% (BV) and 82%/93% (WV) for ALLERG-O-LIQ. corresponding to a sensitivity of 00% for BV and 82% for WV. Similar results were obtained by ALLERG-O-LIQ. In ALLERG-O-LIQ 2/2 BV allergic patients and 24/28 WV allergic patients were found positive (Figure 2). For groups A and B high agreement between ALFA, ALLERG-O-LIQ, and skin tests of up to 92% was observed (data not shown). Using atopic (without history of insect venom allergy group C) and nonatopic (group D) sera as controls, the specificity of ALFA for the detection of sige to BV was calculated as 83% and for sige to WV as 97% (Figure 2). 3.2. Comparison of ALFA and ImmunoCAP. For insect venom allergic patients (groups A and B) the Spearman correlation coefficient for ALFA versus ImmunoCAP was 0.79 (P <0.000) for BV and 0.80 (P <0.000) for WV (data not shown). Correlation of ALFA to ImmunoCAP for each group revealed a more defined picture. For the detection of sige to BV the Spearman correlation coefficient for ALFA versus ImmunoCAP was 0.72 (P <0.000) for group A, 0.86 (P < 0.000) for group B, 0.07 (ns) for group C, and 0.8 (ns) for group D (Figure 3). For the detection of sige to WV the Spearman correlation coefficient for ALFA versus Immuno- CAP was 0.82 (P <0.000) for group A, 0.84 (P <0.000) for group B, 0.25 (ns) for group C, and 0.3 (P < 0.05) for group D (Figure 4). These results demonstrate a good quantitative agreement for the detection of sige to BV and WV between ALFA and ImmunoCAP for sera of allergic patients (groups A and B) but poor quantitative agreement for the control groups, especially for BV (groups C and D). This seems to be caused by a surprisingly high number of positive ImmunoCAP results in the control groups, in particular in the group of atopic individuals (without history of insect venom allergy) with high total IgE-a finding that has been described before for different allergens [5, 6]. In the present study in group C (atopic individuals with high total IgE) 9/30 (63.3%) of the samples were BV positive by ImmunoCAP compared to 4/30 (3.3%) samples tested positive by ALFA. For WV 9/30 (30.0%) samples tested positive by ImmunoCAP and /30 sample (3.3%) by ALFA. In group D positive BV results were observed for 3/30 sera (0%) by ImmunoCAP and 6/30 (20.0%) samples tested positive using ALFA. For WV the results in group D showed 4/30 (3.3%) positive tests by ImmunoCAP and /30 (3.3%) positive samples for ALFA, respectively, (Table ). The different results of ALFA and ImmunoCAP in relation to total IgE level of the patient are shown in Figure 5. Since sige to CCDs (cross-reactive carbohydrate determinants) can be responsible for major cross-reactivity of glycosylated allergens (e.g., of pollen, foods, insect venom, etc.), sige to CCDs could also account for the high rate of BV ImmunoCAP positives in the atopic negative controls (Group C). However analyzing CCD reactivity by Immuno- CAP showed that only less than 50% of the ImmunoCAP BV positive sera also displayed CCD reactivity (data not shown).

4 Allergy Table : Results for the detection of bee and wasp venom of ALFA and ImmunoCAP for group A (n = 40), group B (n = 40), group C (n = 30), and group D (n = 30). Bee venom positive Bee venom negative ImmunoCAP Wasp venom positive Wasp venom negative Bee venom positive ALFA (cut-off 0 RU) Bee venom negative Wasp venom positive Wasp venom negative Group A 2 28 28 2 7 23 23 7 Group B 36 4 39 27 3 30 0 Group C 9 9 2 4 26 29 GroupD 3 27 4 26 6 24 29 00 00 sige to BV (ImmunoCAP) (ku/l) 0 0. r = 0.72 sige to BV (ImmunoCAP) (ku/l) 0 0. r = 0.86 0.0 0.0 0 00 sige to BV (ALFA) (RU) 000 0 00 sige to BV (ALFA) (RU) 000 00 00 r = 0.07 r = 0.8 sige to BV (ImmunoCAP) (ku/l) 0 0. sige to BV (ImmunoCAP) (ku/l) 0 0. 0.0 0.0 0 00 sige to BV (ALFA) (RU) 000 0 00 000 sige to BV (ALFA) (RU) (c) (d) Figure 3: Spearman correlation diagram of ALFA versus ImmunoCAP for the detection of sige to bee venom. Quantitative agreement was found with a Spearman correlation coefficient of 0.72 (P <0.000) for group A, 0.86 (P <0.000) for group B, 0.07 (P = 0.37) for group C (c), and of 0.8 (P = 0.7) for group D (d) for the detection of sige to BV.

Allergy 5 sige to WV (ImmunoCAP) (ku/l) 00 0 0. r = 0.82 sige to WV (ImmunoCAP) (ku/l) 00 0 0. r = 0.84 0.0 0.0 0 00 sige to WV (ALFA) (RU) 000 0 00 sige to WV (ALFA) (RU) 000 00 r = 0.25 00 r = 0.3 sige to WV (ImmunoCAP) (ku/l) 0 0. sige to WV (ImmunoCAP) (ku/l) 0 0. 0.0 0.0 0 00 000 sige to WV (ALFA) (RU) (c) 0 00 000 sige to WV (ALFA) (RU) (d) Figure 4: Spearman correlation diagram of ALFA versus ImmunoCAP for the detection of sige to wasp venom. Quantitative agreement was found with a Spearman correlation coefficient of 0.82 (P <0.000) for group A, 0.84 (P <0.000) for group B, 0.25 (P = 0.088) for group C (c), and of 0.3 (P = 0.047) for group D (d) for the detection of sige to WV. This suggests that the high rate of BV positive results by ImmunoCAP in atopic patients (without history of insect venom allergy) with strongly elevated total IgE levels (mean = 2986 ku/l, range 86 2383 ku/l) cannot be explained by CCD reactivity but rather may reflect nonspecific IgE binding due to the solid phase architecture of the ImmunoCAP assay system. Recently recombinant allergens have been introduced into the in vitro diagnostic of insect venom allergy. In particular for dissecting true double sensitization from crossreactivity recombinant allergens seems to be of great relevance [7 9]. Since ALFA s open architecture allows for the use of any biotinylated allergen, the introduction of recombinant bee and wasp venom allergens will be useful and will certainly further increase the clinical sensitivity and specificity. 4. Conclusion Detection of sige to bee and wasp venom by ALFA shows in the present study a good discrimination between sera of bee or wasp allergic patients and control sera with a comparable performance to the ALLERG-O-LIQ and ImmunoCAP system. Noteworthy ALFA detected no sige to BV in WV

6 Allergy ImmunoCAP specific IgE (ku/l) 35 3.5 Patient group A Patient group B Negative control group D 0000 000 00 0 Negative control group C ImmunoCAP total IgE (ku/l) ALFA (RU) 000 00 0 Patient group A Patient group B Negative Negative control control group D group C 0000 000 00 0 ImmunoCAP total IgE (ku/l) ImmunoCAP WV positive ImmunoCAP BV positive ImmunoCAP total IgE ALFA WV positive ALFA BV positive ImmunoCAP total IgE Figure 5: Graphical illustration of the relation of total IgE (green diamond, determined by ImmunoCAP) and sige to BV (red) and WV (blue) for ImmunoCAP and ALFA for each study group. allergic patients and vice versa. In case of specificity, a high degree of correlation was found for ALFA and ALLERG- O-LIQ, whereas differing results were obtained using the ImmunoCAP system. We conclude that the Allergy Lateral Flow assay together with the novel scanner-based system represents a versatile and reliable tool for the measurement of sige to insect venom allergens meeting the growing demand for digital documentation of laboratory results. Further studies with more allergens (e.g., recombinant insect venom allergens) are mandatory to further proof the applicability of the ALFA test system. Conflict of Interests This study was supported in part by a research grant to T. Jakob by Dr. Fooke Laboratorien GmbH. N. Pfender declares that he has no conflict of interests. R. Lucassen, N. Offermann, J. Schulte-Pelkum, and M. Fooke are employees of Dr. Fooke Laboratorien GmbH. Authors Contribution N. Pfender performed the experiments. N. Offermann, R. Lucassen, J. Schulte-Pelkum, and M. Fooke developed the test system. T. Jakob supervised the experiments. All authors have contributed equally to writing and corrections of the manuscript. Acknowledgment The authors thank Andrea Komann for excellent technical assistance. References [] J. Kleine-Tebbe, K. Breuer, U. Lepp et al., Spezifische IgEwerte gegen aero- und nahrungsmittelallergene im vergleich: Dr. Fooke ALLERG-O-LIQ und Pharmacia CAP-System, Allergologie, vol. 27, no. 4, pp. 29 35, 2004. [2] R. G. Hamilton and N. Franklin Adkinson Jr., In vitro assays for the diagnosis of IgE-mediated disorders, Allergy and Clinical Immunology, vol. 4, no. 2, pp. 23 226, 2004. [3] W. K. Dolen, IgE antibody in the serum detection and diagnostic significance, Allergy, vol. 58, no. 8, pp. 77 723, 2003. [4] S. G. Johansson, Raised levels of a new immunoglobulin class (IgND) in asthma, The Lancet, vol. 2, no. 7523, pp. 95 953, 967. [5] R. G. Hamilton, Diagnosis and treatment of allergy to hymenoptera venoms, Current Opinion in Allergy and Clinical Immunology, vol. 0, no. 4, pp. 323 329, 200. [6] U. Jappe, M. Raulf-Heimsoth, M. Hoffmann, G. Burow, C. Hübsch-Müller, and A. Enk, In vitro hymenoptera venom allergy diagnosis: improved by screening for cross-reactive carbohydrate determinants and reciprocal inhibition, Allergy, vol. 6, no. 0, pp. 220 229, 2006. [7] C. Diaz-Vazquez, M. J. Torregrosa-Bertet, I. Carvajal-Urueña et al., Accuracy of immunocap rapid in the diagnosis of allergic sensitization in children between and 4 years with recurrent wheezing: the IReNE study, Pediatric Allergy and Immunology, vol. 20, no. 6, pp. 60 609, 2009. [8] P. A. Eigenmann, M. Kuenzli, V. D Apuzzo et al., The ImmunoCAP rapid Wheeze/Rhinitis child test is useful in the initial allergy diagnosis of children with respiratory symptoms, Pediatric Allergy and Immunology, vol. 20, no. 8, pp. 772 779, 2009. [9] R. Lucassen, M. Fooke, J. Kleine-Tebbe, and M. Mahler, Development and evaluation of a rapid assay for the diagnosis of immunoglobulin E-mediated type I allergies, Investigational Allergology and Clinical Immunology, vol. 8, no. 3, pp. 223 224, 2008. [0] R. Lucassen, J. Schulte-Pelkum, C. Csuvarszki, J. Kleine-Tebbe, M. Fooke, and M. Mahler, Evaluation of a novel rapid test system for the detection of allergic sensitization to timothy grass pollen against established laboratory methods and skin prick test, Allergy, vol. 200, Article ID 524084, 4 pages, 200. [] J. Ring and K. Messmer, Incidence and severity of anaphylactoid reactions to colloid volume substitutes, The Lancet, vol., no. 8009, pp. 466 469, 977.

Allergy 7 [2] J. Ring, H. Behrendt, and A. De Weck, History and classification of anaphylaxis, Chemical Immunology and Allergy, vol. 95, pp., 200. [3] Position paper: allergen standardization and skin tests. The European Academy of Allergology and Clinical Immunology, Allergy, vol. 48, pp. 48 82, 993. [4] B. M. Biló, F. Rueff, H. Mosbech et al., Diagnosis of Hymenoptera venom allergy, Allergy, vol. 60, no., pp. 339 349, 2005. [5] M.Zidarn,M.Silar,M.Vegnuti,P.Korošec, and M. Košnik, The specificity of tests for anti-β-lactam IgE antibodies declines progressively with increase of total serum IgE, Wiener Klinische Wochenschrift, vol. 2, no. 9-0, pp. 353 356, 2009. [6] G. J. Sturm, A. Heinemann, C. Schuster et al., Influence of total IgE levels on the severity of sting reactions in Hymenoptera venom allergy, Allergy, vol. 62, no. 8, pp. 884 889, 2007. [7] S. C. Hofmann, N. Pfender, S. Weckesser, J. Huss-Marp, and T. Jakob, Added value of IgE detection to rapi m and rves v 5 in patients with Hymenoptera venom allergy, Allergy and Clinical Immunology, vol. 27, no., pp. 265 267, 20. [8] G. J. Sturm, W. Hemmer, T. Hawranek et al., Detection of IgE to recombinant Api m and rves v 5 is valuable but not sufficient to distinguish bee from wasp venom allergy, Allergy and Clinical Immunology, vol. 28, no., pp. 247 248, 20. [9] S. C. Hofmann, N. Pfender, S. Weckesser et al., Detection of IgE to a panel of species specific allergens further improves discrimination of bee and wasp venom allergy, Allergy and Clinical Immunology, vol. 28, no., 248 pages, 20.

MEDIATORS of INFLAMMATION The Scientific World Journal Volume 204 Gastroenterology Research and Practice Volume 204 Diabetes Research Volume 204 Volume 204 Volume 204 International Endocrinology Immunology Research Disease Markers Volume 204 Volume 204 Submit your manuscripts at BioMed Research International PPAR Research Volume 204 Volume 204 Obesity Ophthalmology Volume 204 Evidence-Based Complementary and Alternative Medicine Stem Cells International Volume 204 Volume 204 Oncology Volume 204 Volume 204 Parkinson s Disease Computational and Mathematical Methods in Medicine Volume 204 AIDS Behavioural Neurology Research and Treatment Volume 204 Volume 204 Volume 204 Oxidative Medicine and Cellular Longevity Volume 204