High Performance Liquid Chromatographic Determination of Cyclooxygenase II Inhibitor Rofecoxib in Rat and Human Plasma

Similar documents
Determination of propranolol in dog plasma by HPLC method

Simultaneous estimation of Metformin HCl and Sitagliptin in drug substance and drug products by RP-HPLC method

RP-HPLC Analysis of Temozolomide in Pharmaceutical Dosage Forms

Pharmacokinetics of Celecoxib in the Presence and Absence of Interferon- Induced Acute Inflammation in the Rat: Application of a Novel HPLC Assay

PDF hosted at the Radboud Repository of the Radboud University Nijmegen

Simultaneous determination of triacetin, acetic ether, butyl acetate and amorolfine hydrochloride in amorolfine liniment by HPLC

Determination and pharmacokinetics of manidipine in human plasma by HPLC/ESIMS

HPLC-UV Determination of Abacavir Sulphate in Pharmaceutical Dosage Forms

Heparin Sodium ヘパリンナトリウム

F. Al-Rimawi* Faculty of Science and Technology, Al-Quds University, P.O. Box 20002, East Jerusalem. Abstract

Determination of 6-Chloropicolinic Acid (6-CPA) in Crops by Liquid Chromatography with Tandem Mass Spectrometry Detection. EPL-BAS Method No.

SIMULTANEOUS ESTIMATION OF VALSARTAN AND HYDROCHLOROTHIAZIDE IN TABLETS BY RP-HPLC METHOD

Asian Journal of Pharmaceutical Analysis and Medicinal Chemistry Journal home page:

DEVELOPMENT AND VALIDATION OF RP-HPLC METHOD ESTIMATION OF TOLVAPTAN IN BULK PHARMACEUTICAL FORMULATION

IJPAR Vol.3 Issue 4 Oct-Dec-2014 Journal Home page:

Determination of Clarithromycin in Human Plasma by LC-EI Tandem Mass Spectrometry: Application to Bioequivalence Study

MEDAK DIST. ANDHRA PRADESH STATE, INDIA. Research Article RECEIVED ON ACCEPTED ON

Scholars Research Library

World Journal of Pharmaceutical Research

DEVELOPMENT AND VALIDATION OF RP-HPLC METHOD FOR QUANTITATIVE ANALYSIS TOLBUTAMIDE IN PURE AND PHARMACEUTICAL FORMULATIONS

International Journal of Pharma and Bio Sciences DEVELOPMENT AND VALIDATION OF RP-HPLC METHOD FOR THE ESTIMATION OF STRONTIUM RANELATE IN SACHET

DEVELOPMENT OF RP-HPLC METHOD FOR ESTIMATION OF DROTAVERINE HYDROCHLORIDE IN PHARMACEUTICAL FORMULATIONS

ARTESUNATE TABLETS: Final text for revision of The International Pharmacopoeia (December 2009) ARTESUNATI COMPRESSI ARTESUNATE TABLETS

Development and Validation of RP-HPLC Method for the Estimation of Gemigliptin

DEVELOPMENT AND VALIDATION OF RP-HPLC METHOD FOR ESTIMATION OF LACOSAMIDE IN BULK AND ITS PHARMACEUTICAL FORMULATION

Screening of Antihistamine Agents (Diphenhydramine) with Blood and Urine Samples by REMEDi-HS System

Quetiapine Tablets. Expert Committee Monographs Chemical Medicines 4 Reason for Revision Compliance

Development and Validation for Simultaneous Estimation of Sitagliptin and Metformin in Pharmaceutical Dosage Form using RP-HPLC Method

Analysis of Amino Acids Derived Online Using an Agilent AdvanceBio AAA Column

Development and Validation of HPLC-UV Method for Simultaneous Determination of Nevirapine, 2-OH Nevirapine and 3-OH Nevirapine in Human Plasma.

DEVELOPMENT, VALIDATION AND APPLICATION OF THE HPLC METHOD FOR DETERMINATION OF MIANSERIN IN HUMAN SERUM

A Stability Indicating HPLC Method for the Determination of Fluvoxamine in Pharmaceutical Dosage Forms

Quantification of lovastatin in human plasma by LC/ESI/MS/MS using the Agilent 6410 Triple Quadrupole LC/MS system

International Journal of Pharma and Bio Sciences

DEVELOPMENT AND VALIDATION OF RP-HPLC METHOD FOR QUANTITATIVE ANALYSIS OF TRAMADOL IN PURE AND PHARMACEUTICAL FORMULATIONS

Hyderabad, India. Department of Pharmaceutical Chemistry, Glocal University, Saharanpur, India.

ASSAY AND IMPURITY METHOD FOR DURACOR TABLETS BY HPLC

A HIGH PERFORMANCE LIQUID CHROMATOGRAPHIC ASSAY FOR LERCANIDIPINE HYDROCHLORIDE

Determination of β2-agonists in Pork Using Agilent SampliQ SCX Solid-Phase Extraction Cartridges and Liquid Chromatography-Tandem Mass Spectrometry

ISSN (Print)

Estimation of Etoricoxib in Tablet Dosage form by RP- HPLC using Internal Standard with Emphasize on Specificity Parameter Method

A New Stability-Indicating and Validated RP-HPLC Method for the Estimation of Liraglutide in Bulk and Pharmaceutical Dosage Forms

TENOFOVIR TABLETS: Final text for addition to The International Pharmacopoeia (June 2010)

Pelagia Research Library

ISSN: ; CODEN ECJHAO E-Journal of Chemistry 2011, 8(3),

Pelagia Research Library

Reverse Phase HPLC Analysis of Atomoxetine in Pharmaceutical Dosage Forms

METHOD DEVELOPMENT AND VALIDATION BY RP-HPLC FOR ESTIMATION OF ZOLPIDEM TARTARATE

REVERSE PHASE HPLC METHOD FOR THE ANALYSIS OF ALFUZOSIN HYDROCHLORIDE IN PHARMACEUTICAL DOSAGE FORMS

CHAPTER 3: ANALYTICAL METHOD DEVELOPMENT AND VALIDATION

CHAPTER INTRODUCTION OF DOSAGE FORM AND LITERATURE REVIEW

J Pharm Pharmaceut Sci ( 6(2): , 2003

This revision also necessitates a change in the table numbering in the test for Organic Impurities.

Residue Monograph prepared by the meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA), 82 nd meeting 2016.

SIMPLE AND VALIDATED RP-HPLC METHOD FOR THE ESTIMATION OF CARBOPLATIN IN BULK AND FORMULATION DOSAGE FORM. Subhashini.Edla* B.

Simultaneous Estimation of Gemcitabine Hydrochloride and Capecitabine Hydrochloride in Combined Tablet Dosage Form by RP-HPLC Method

36 J App Pharm Vol. 6; Issue 1: 36-42; January, 2014 Rao et al., 2014

A Sensitive and Simple High Performance Liquid Chromatographic Method for Quantification of Tadalafil in Human Serum

Application Note. Agilent Application Solution Analysis of ascorbic acid, citric acid and benzoic acid in orange juice. Author. Abstract.

Isocratic Reversed Phase Liquid Chromatographic Method Validation for the Determination of Cilostazol in Pure and Formulations

Core E Analysis of Neutral Lipids from Human Plasma June 4, 2010 Thomas J. Leiker and Robert M. Barkley

Development, Optimization and Validation of HPLC Method for Determination of Pravastatin Sodium in Tablets

SUMMARY, CONCLUSION & RECOMMENDATIONS

A simple validated RP-HPLC method for quantification of sumatriptan succinate in bulk and pharmaceutical dosage form

HPLC method for Pharmacokinetics of cis and trans isomer of cefprozil diastereomers in human plasma

RITONAVIRI COMPRESSI RITONAVIR TABLETS. Final text for addition to The International Pharmacopoeia (July 2012)

SIMULTANEOUS DETERMINATION OF ATORVASTATIN AND EZETIMIBE BY RP-HPLC IN PURE AND PHARMACEUTICAL DOSAGE FORM

New RP - HPLC Method for the Determination of Valproic acid in Human Plasma

Renal Clearance and Urinary Excretion of Roxithromycin in Healthy Adult Female Subjects

Determination of Amantadine Residues in Chicken by LCMS-8040

A HIGHLY SENSITIVE HPLC METHOD WITH NON-EXTRACTIVE SAMPLE PREPARATION AND UV DETECTION FOR TRACE DETERMINATION OF CINACALCET IN HUMAN PLASMA

Gradient Elution LC-MS/MS Determination of Gefitinib in Rat Plasma and its Pharmacokinetic Study

EASIMIP TM PATULIN Product Code: P250 / P250B

INTERNATIONAL PHARMACOPOEIA MONOGRAPH ON LAMIVUDINE TABLETS

Journal of Chemical and Pharmaceutical Research, 2018, 10(2):1-5. Research Article. RP- HPLC Method for Estimation of Furosemide in Rabbit Plasma

High-performance liquid chromatographic assay of amiodarone in rat plasma

Sci Pharm

Research and Reviews: Journal of Pharmaceutical Analysis

Application Note. Abstract. Authors. Pharmaceutical

Development and validation of stability indicating RP-LC method for estimation of calcium dobesilate in pharmaceutical formulations

Development, Estimation and Validation of Lisinopril in Bulk and its Pharmaceutical Formulation by HPLC Method

Method Development and Validation for the Estimation of Saroglitazar in Bulk and Pharmaceutical Dosage Form by RP-HPLC

Pelagia Research Library

Detection of Low Level of Chloramphenicol in Milk and Honey with MIP SPE and LC-MS-MS

Determination of Tetracyclines in Chicken by Solid-Phase Extraction and High-Performance Liquid Chromatography

L. Sriphong, A. Chaidedgumjorn, and K. Chaisuroj

Amphetamines, Phentermine, and Designer Stimulant Quantitation Using an Agilent 6430 LC/MS/MS

A stability indicating HPLC method for the determination of clobazam and its basic degradation product characterization

J Pharm Sci Bioscientific Res (4): ISSN NO

MS/MS as an LC Detector for the Screening of Drugs and Their Metabolites in Race Horse Urine

Department of Pharmaceutical Analysis, Amrutvahini College of Pharmacy, Tal: Sangamner, Dist: Ahmednagar, Maharashtra, India 2.

RP- HPLC and Visible Spectrophotometric methods for the Estimation of Meropenem in Pure and Pharmaceutical Formulations

Dry eye disease commonly known as atopic keratoconjunctivitis is an autoimmune disease of

Tenofovir disoproxil fumarate (Tenofoviri disoproxili fumaras)

Application Note. Agilent Application Solution Analysis of fat-soluble vitamins from food matrix for nutrition labeling. Abstract.

Title Revision n date

438 Full Text Available On

Development of a Validated RP-HPLC Method for the Analysis of Citicoline Sodium in Pharmaceutical Dosage Form using Internal Standard Method

Development and validation of UV and RP-HPLC method for estimation of Nepafenac in bulk drug and opthalmic formulation

UV-Spectrophotometric methods for estimation of Valsartan in bulk and tablet dosage form

Transcription:

High Performance Liquid Chromatographic Determination of Cyclooxygenase II Inhibitor Rofecoxib in Rat and Human Plasma Saeed Sattari and Fakhreddin Jamali Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada Received November 3rd, 2000, Revised December 3st, 2000, Accepted December 3st, 2000 Abstract Rofecoxib is a relatively new non-steroidal anti-inflammatory drug with high selectivity in cyclooxygenase 2 inhibitory activity. There is only one assay reported for determination of the drug in biological samples. The assay requires a post-column UV reactor for photocyclization before detection with fluorescence detector. In addition, the internal standard (IS) used in the assay in not commercially available. We developed a new assay for determination of rofecoxib. Rat blank plasma (200 ml) or human blank plasma (500 ml) was spiked with rofecoxib to make final concentrations of 0 to 3000 ng/ml, and 00 ml of a 2 mg/ ml of ketoprofen as IS, 00 ml of a ph 4.5 acetate buffer, and 6 ml of ethyl acetate were added. The resultant was vortex-mixed for 90 seconds and centrifuged at 2500 g for 3 min. The organic layer was separated and evaporated to dryness under vacuum. The residues were reconstituted in 70 ml of mobile phase and 50 ml was injected into an HPLC consisting of an autoinjector, an isocratic pump, a 0 cm 4.6 i.d. C 8 analytical column packed with 5 mm reversed phase particles, a variable UV spectrophotometer detector set at 272 nm, and an integrator. The mobile phase consisted of water (77%), acetonitrile (23%), acetic acid (0.%), and triethylamine (0.03%) and was pumped at ml/min at ambient temperature. The drug and IS were eluted at 3 and 24 min, respectively. The peak drug/is area ratio versus drug concentrations relationship was linear (r>0.99). The extraction efficiency was >87%. The minimum quantifiable concentration was set at 0 ng/ml (correlation coefficient of <0%). This convenient, sensitive, and simple method is suitable to pharmacokinetic studies of rofecoxib in rats and humans. INTRODUCTION Non-steroidal anti-inflammatory drugs (NSAIDs) are used in the treatment of various inflammatory diseases and pain (). NSAIDs produce their pharmacological and toxic effect by inhibiting cyclooxygenases (COX)- 2 and -, respectively (2). Recently introduced NSAIDs, celecoxib and rofecoxib, selectively inhibit COX-2 and hence cause little or no gastrointestinal side effect (3). Thus far, only one assay has been reported for quantitation of rofecoxib (Fig.) in plasma. O O Figure : Chemical structure of rofecoxib SO 2 Me This method requires a fluorescence detector and postcolumn UV photocyclization of the parent drug and internal standard (4). In addition, the internal standard used in the assay is not commercially available. The objective of this work was to develop and validate an efficient, sensitive, and simple HPLC method for determination of rofecoxib in rat and human plasma using liquid-liquid extraction. EXPERIMENTAL Corresponding Author: Dr. F. Jamali, Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada, T6G 2N8, fjamali@pharmacy.ualberta.ca Materials Racemic ketoprofen was used as internal standard (IS) (Upjohn Company, Don Mills, Ontario, Canada). Ethyl acetate (Assurance grade) was obtained from 32

BDH Chemicals Canada (Edmonton, AB, Canada). Acetonitrile (HPLC grade), Triethylamine, acetic acid and sodium acetate were all analytical grade and were purchased from Fisher Scientific (Edmonton, AB, Canada). HPLC System The instrument consisted of a Sil-9A model autoinjector, a SPD-6A model variable UV spectrophotometer detector set at 272 nm and a CR60 model Chromatopac integrator (Shimadzu, Japan). The autosampler window was blocked using aluminum foil to minimize the possibility of loss of drug potency due to the light sensitivity of the drug. The mobile phase, water-acetonitrile-acetic acid-triethylamine (77:23:0.:0.03), was pumped through the system using a Waters 6000 A model HPLC pump (Waters, Mississauga, Canada) at a flow rate of ml/min. A 0 cm x 4.6 mm i.d. C 8 analytical column packed with 5-µm reversed-phase particles (Chromatography Sciences Company, Canada) and a HPLC pre-column insert packed with C 8 (Waters, MA, USA) were used for separation. Standard solutions Rofecoxib was extracted from Vioxx 25 mg tablets (Merck Frost, Kirkland, Quebec, Canada, Lot Eo3590). Twenty Vioxx tablets crushed to fine powder and suspended in 50 ml of HPLC grade ethyl acetate then shacked for 5 min and filtered. The residue was crystallized from acetonitrile after evaporation of the solvent in vacuum. During the extraction process, the containers were protected from direct light. A capillary melting point apparatus (Thomas Company, PA., USA) was used to determine the melting point. A differential scanning calorimetric (DSC 20, Seiko Instruments USA Inc. PA., USA) was utilized to record the thermal behavior of the powder. Nuclear magnetic resonance spectrum (H NMR, 300 MHz, CDCl3) was recorded on a Bruker AM 300 (Bucker, Germany) retrofitted with a Tecmag MacSpect3 (Tecmag, TX, USA). A VG QUATTRO electrospray mass spectrometer at positive mode (Fisons Instruments, U.K) was used to record the mass spectrum. The extracted powder melted at 207-208C. The differential scanning calorimetric spectrum also showed a sharp peak of heat absorption at 208.4 C. The mass spectrum showed the correct fragmentation of the rofecoxib molecule (M+H at 35 and major fragments at 297, 269, and 237 of mass unit). In addition, the NMR spectrum also confirmed the structure to be rofecoxib. A stock solution (0 µg/ml) of rofecoxib was prepared in ethyl acetate and kept in a lightproof container and refrigerated in order to reduce its degradation and photocyclization (4). Under these circumstances, the solution was stable at least for two months. Solutions of.0 and 0. µg/ml were prepared by diluting the stock solution in ethyl acetate before analysis. A 2 µg/ml ketoprofen (IS) stock solution was prepared by dissolving 2 mg of racemate powder in 0 ml of methanol and sufficient 0.0 M NaOH to 00 ml. Standards curves were prepared by adding 00 µl of ketoprofen and various volumes of rofecoxib stocks solutions to 200 µl of rat or 500 µl of human blank plasma to make the final concentrations of 0, 25, 50, 00, 250, 500, 000, 2000, 3000 ng/ml. Plasma extraction procedure To the test tubes containing 200 µl of rat or 500 µl human plasma were added 00 µl of 2 µg/ml IS solution, 00 µl of ph 4.5 acetate buffer (0.05 M) and 6 ml ethyl acetate. The tubes were vortex-mixed for 90 seconds and centrifuged at 2500 g for 3 min. The organic layer was transferred to a clean tube and evaporated to dryness (Savant Speed Vac concentrator-evaporator, Emerson Instruments, Scarborough, Canada). The residue was dissolved in 70 µl of mobile phase and an aliquot of 50 µl was injected into the HPLC. Stability Rofecoxib stock solutions were protected from direct light by rapping aluminum foil around its containers and keeping the solution at +4 or at room temperature. The stability of these solutions was compared against a freshly prepared stock solution and one that was kept at the room temperature. Extraction efficiency Various organic solvents such as chloroform, dichloromethane and hexane alone or in combinations were tested. Ethyl acetate was chosen due to its greater extraction efficiency. 200 µl of blank rat plasma was spiked with rofecoxib stock solution to make the final concentrations of 00, 500 and 000 ng/ml (n=3). These samples were extracted and evaporated as men- 33

tioned before. The residues were dissolved in ml mobile phase and 50 µl was injected into HPLC. The peak area of rofecoxib from the spiked plasma samples were compared with the peak areas obtained after direct injection of 50 µl of 00, 500, and 000 ng/ml rofecoxib solutions. Accuracy and precision Aliquots of 200 µl of blank rat plasma were spiked with 00 µl of 2 µg/ml of IS and of rofecoxib solutions with various strengths to yield concentrations of 0, 25, 50, 00, 250, 500, 000, 2000, and 3000 ng/ml. Each sample was prepared in triplicate on three consecutive days. Accuracy was expressed as the mean % error, [(mean measured concentration )/(expected concentration)] 00. Precision was calculated as inter and intra-day coefficient of variation [%CV=(SD/mean) 00]. Least-squared regression method was used to determine the regression coefficients and the equation for the best fitting line. Rofecoxib determination in rat and human plasma Solutions of 2.5 and 5 mg/ml of rofecoxib were prepared in polyethylene glycol 400 for i.v. and oral dosing. Four male Sprague Dawley rats (300 ± 20 g) were cannulated (5). After overnight recovery, two rats were received 2.5 mg/kg i.v. bolus and two others were administered 5 mg/kg oral doses through gastric gavage. Blood samples were taken at 0, 5, 0, 20, 30, 45 min and,.5, 2, 3, 4, 6 and 8 h through the jugular catheter. Plasma was separated by centrifugation for 2 min at 0000 g and kept at 20 o until analyzed. In an attempt to investigate the applicability of the assay in humans, a 25 mg Vioxx tablet (Merck-Frosst, Kirkland, PQ, Canada) was orally administered to a 75 kg, 42 year-old healthy male volunteer. Written informed consent was obtained before administering the tablet. Venous blood samples were collected at 0, 3 and 24 h post-dose. Plasma was harvested and kept at 20 o until analyzed. Treatment of Data All pharmacokinetic indices were estimated using Win- Nonlin version 3.0 (Pharsight Corporation, California, USA). The non-compartmental model contained in the program was used. RESULTS AND DISCUSSION Rofecoxib and IS appeared on the chromatograph in approximately 3 and 24 min respectively with no interfering peaks (Fig. 2). The run time of the assay, therefore, was set at 30 min. 2 2 A B C 0 Time, min 30 0 Time, min 30 0 Time, min 30 2 D E F Figure 2: Representative 30 min chromatographs depicting rofecoxib (peak ) and internal standard (peak 2). A) blank rat plasma: B) rat plasma spiked with 5 ng/ ml of rofecoxib; C) rat plasma sample 6 h after oral administration of 5 mg/kg; D) blank human plasma, E) human plasma 3 h; F) human plasma 24 hr after a single 25 mg oral dose of rofecoxib tablet (Vioxx) Excellent linearity observed between the peak area ratios and drug concentrations over the range of 0 to 3000 ng/ml (r>0.99). The minimum quantifiable concentration was set at 0 ng/ml based on 200 µl of the rat and 500 µl of human plasma. However, in 500 µl human plasma, a concentration of 4 ng/ml of the drug was measurable with intra-day CV of <0%. The accuracy of the assay was >90% and CV did not exceed 0% (Table ). The sensitivity of the assay is sufficient for determination of rofecoxib at least 6 h and 24 h after administration of single oral doses of 5 mg/kg (Fig. 3) and 25 mg to the rat and humans, respectively. 2 34

Plasma Concentration, g/ml 0.0.0 0. 0.0 0 2 3 4 5 6 7 Figure 3: Individual plasma concentration time profile of rofecoxib after administration of 2.5 mg/kg bolus i.v. ( ) and 5 mg/kg oral ( ) doses to four rats. Lines join experimental data points. Table : Assay Validation Data Time, h Inter-day precision (coefficient of variation, CV) and accuracy for rofecoxib assay in rat plasma (n=3). Concentration (ng/ml) Actual Observed CV (%) Accuracy (%) 0 0.6 0.3 06 ± 0.3 25 25.3 9.2 0 ± 9.2 50 52.4 6.3 05 ± 6.3 00 07 4.8 07 ± 4.8 250 254 3.9 0 ± 3.9 500 56 6.5 03 ± 6.5 000 06 0.98 06 ±.0 2000 2033 2.6 0 ± 4.5 3000 2974 4.8 99 ± 8.7 Intra-day precision (coefficient of variation, CV) and accuracy for rofecoxib assay in rat plasma (n=3) Concentration (ng/ml) Actual Observed CV (%) Accuracy (%) 0 9.8 7.2 98 ± 7.2 25 24. 5.2 96 ± 5.2 50 49.9 5. 00 ± 5. 00 95.6 6.6 96 ± 6.9 250 255 3.8 02 ± 3.8 500 53 4.9 03 ± 6.5 000 984 5.5 99 ±.0 2000 2062 5.2 0 ± 8.2 3000 2930 2.2 00 ± 3.7 The stock solution of rofecoxib was stable at least for two month when it was protected from direct light by rapping aluminum foil around its container and kept refrigerated at +4 or at room temperature. Direct exposure of rofecoxib solution to the laboratory light resulted in degradation of the drug and appearance of a major HPLC peak 3 min before the drug. Rofecoxib crystals extracted from tablets maintained their potency at least for a 4 months period of storage in a container rapped in aluminum foil and kept refrigerated. Based on the limited data (n=2/group), in the rat, rofecoxib exhibited a multi-compartment disposition kinetics after i.v. doses. Assuming linear pharmacokinetics, the average absolute bioavailability was 60% following oral administration. After 5 mg/kg oral doses, peak concentrations of 640 and 200 ng/ml were observed in the two rats examined. The drug had a terminal t /2 of approximately 2 h (2. and 2.4 h after oral;.7 and.9 h after i.v. administration) and a volume of distribution of 5.2 to 7.2 L/kg. The systemic and oral clearance of the drug was 36-0 and 29-34 ml/min/kg, respectively. We cannot offer a reasonable explanation for the observed variability due to the limited sample size used. The only other data available from animals are after administration and determination of [ 4 C] rofecoxib (6). The authors reported the half-life of 6.7 and 2.6 h in rats and dogs, respectively. Following oral administration of a 25 mg dose of rofecoxib to a human subject, plasma concentrations of 330 and 47 ng/ml were observed at 3 and 24 h post-dose, respectively (Fig. 2). CONCLUSION The HPLC assay presented here is suitable for determination of rofecoxib in the rat and human plasma following therapeutic doses. This assay is simple and sensitive and there is no need of utilizing the fluorescence detector and post-column UV photoreactor. ACKNOWLEDGEMENTS This work was financially supported by grant number G86020 of Canadian Institute of Health Research and Canadian Arthritis Network (Networks of Centres of Excellence). REFERENCES [] Cappel, M. S., Schein, J. R. (2000) Diagnosis and treatment of nonsteroidal anti-inflammatory drug- 35

associated upper gastrointestinal toxicity. Gastroenterol. Clin. North Am. 29: 97-24. [2] Cryer, B., Feldman, M. (998) Cyclooxygenase- and cyclooxygenase-2 selectivity of widely used nonsteroidal anti-inflammatory drugs. Am. J. Med. 04: 43-42. [3] Bolten, W. W. (998) Scientific rationale for specific inhibition of COX-2 J. Rheumatol. 25:Suppl. 5, 2-7. [4] Woolf, E., Fu I., Matuszewski, B. (999) Determination of rofecoxib, a cyclooxygenase-2 specific inhibitor, in human plasma using high-performance liquid chromatography with post-column photochemical derivatization and fluorescence detection. J. Chromatogr. B, 730: 22-227. [5] Kulmatychi KM and Jamali F. (997) pharmacodynamics of sotalol enantiomers are influenced by inflammation with no pharmacokinetics consequence. Pharm Res 4: S5. [6] Rita, A., Halpin, L. A., Geer, K. E., Zhang, T. M., Marks, D. C., Dean, A. N., Jones, D. M., George, D., and Kamlesh, P. v. (2000) The absorption, distribution, metabolism and excretion of rofecoxib, a potent and selective Cyclooxygenase-2 inhibitor, in rats and dogs. Drug Metaol Dispo 28: 244-254. 36