Mumps virus neutralizing antibodies do not protect against reinfection with a heterologous mumps virus genotype

Similar documents
Characterization of two decades of temporal co-circulation of four mumps virus genotypes in Denmark: identification of a new genotype

Genetic Diversity of Mumps Virus in Oral Fluid Specimens: Application to Mumps Epidemiological Study

Longitudinal Studies of Neutralizing Antibody Responses to Rotavirus in Stools and Sera of Children following Severe Rotavirus Gastroenteritis

Home. The Topic of This Month Vol.34 No.8 (No.402) Mumps (infectious parotitis) in Japan, as of July (IASR 34: , August 2013) Phoca PDF

Identification of Microbes Lecture: 12

Coronaviruses cause acute, mild upper respiratory infection (common cold).

Update on Mumps and Current Status of Outbreak in NW Arkansas

Influenza or flu is a

Mumps. October Susan Even MD University of Missouri-Columbia. Robert Palinkas MD University of Illinois at Urbana-Champaign

Antigenic Variation of Envelope and Internal Proteins of Mumps Virus Strains Detected with Monoclonal Antibodies

Laboratory Diagnosis of Viral Infections. G. Jamjoom 2005

Introduction * Shahkarami MK 1*, Taqavian M 1, Alirezaie B 1

Immobilized Virions, and Mixed Hemadsorption

Gastroenteritis and viral infections

The Crossroads of Immunology and Homeopathy. Tetyana Obukhanych, PhD HP Worldwide Choice Conference, 2016

Viral Infections of the Respiratory System. Dr. MONA BADR Assistant Professor College of Medicine & KKUH

E E Hepatitis E SARS 29, Lancet. E A B Enterically-Transmitted Non-A, Hepatitis E. Virus HEV nm. 1.35g/cm s ALT AST HEV HEV

Viruse associated gastrointestinal infection

Orthomyxoviridae and Paramyxoviridae. Lecture in Microbiology for medical and dental medical students

PARAMYXOVIRUS FAMILY properties of attachment protein

Gene Vaccine Dr. Sina Soleimani

Chapter 4. Antibody detection methods for laboratory confirmation of measles, rubella, and CRS

الحترمونا من خري الدعاء

In the Name of God. Talat Mokhtari-Azad Director of National Influenza Center

Laboratory diagnosis of congenital infections

Overview. Symptoms Treatment Prevention Surveillance Mumps in the News Role of the ICP

Mumps vaccine failure investigation in Novosibirsk, Russia, A. V. Atrasheuskaya 1, M. V. Kulak 1, S. Rubin 2 and G. M.

Weekly Influenza Surveillance Report. Week 11

INFLUENZA VIRUS. INFLUENZA VIRUS CDC WEBSITE

Etiology. only one antigenic type. humans are its only known reservoir

Diagnostic Methods of HBV and HDV infections

Existence of reassortant A (H1N2) swine influenza viruses in Saitama Prefecture, Japan

ANTIBODIES TO HERPES-SIMPLEX VIRUS IN THE CEREBROSPINAL FLUID OF PATIENTS WITH HER- PETIC ENCEPHALITIS

Aseptic meningitis: inflammation of meninges with sterile CSF (without any causative organisms which can be grown on culture media).

BCCDC Measles, Mumps and Rubella Enhanced Surveillance Case Report Form

Lipopolysaccharide, and Outer Membrane in Adults Infected with

Measles is a chilhood disease caused

Identification of Mutation(s) in. Associated with Neutralization Resistance. Miah Blomquist

Respiratory Syncytial Virus Genetic and Antigenic Diversity

Innovation in Diagnostics. ToRCH. A complete line of kits for an accurate diagnosis INFECTIOUS ID DISEASES

ph1n1 H3N2: A Novel Influenza Virus Reassortment

Epidemiologic and Clinical Features of Measles and Rubella in a Rural Area in China

Measles & rubella outbreaks in Maharashtra State, India

ORIGINAL ARTICLE /j x

J07 Titer dynamics, complement fixation test and neutralization tests

: AccuPower ZIKV(DENV, CHIKV) Multiplex Real-Time RT-PCR Kit. Copyright, Bioneer Corporation. All rights reserved.

Rama Nada. - Malik

The Ebola Virus. By Emilio Saavedra

Enzyme-Linked Immunosorbent Assay for Mumps and

Serological studies on 40 cases of mumps virus

Thursday, December 13, 2018, 12:00-1:00 p.m.

Mumps in the Community Dr. Isabel Oliver, A Webber Training Teleclass

Cover Page. The handle holds various files of this Leiden University dissertation

Cytomegalovirus IgG, IgM, IgG Avidity II Total automation for accurate staging of infection during pregnancy

Mumps disease outbreak in Davangere district of Karnataka, India

Influenza Activity in Indiana

Mumps. Ellen Dorshow-Gordon, MPH Jackson County Health Department March Follow Us on Social Media:

SEROLOGICAL DIAGNOSIS OF VIRAL INFECTIONS:

Effect of Complement and Viral Filtration on the

PERSISTENT INFECTIONS WITH HUMAN PARAINFLUENZAVIRUS TYPE 3 IN TWO CELL LINES

A Novel Duplex Real-Time Reverse-Transcription PCR Assay for the Detection of Influenza A and the Novel Influenza A(H1N1) Strain

Mumps IgG Capture EIA

Evolution of influenza

West Nile Virus. By Frank Riusech

Annual measles notifications & vaccine coverage England and Wales

Isolation of Vaccine-Derived Measles Viruses from Children with Acute Respiratory Infection

Reassortment of influenza A virus genes linked to PB1 polymerase gene

National Institute of Virology

EPIDEMIOLOGICAL INVESTIGATION OF MUMPS OUTBREAK IN PUGA RESIDENTIAL HOSTEL, LEH LADAKH

Vaccine Update Paul A. Offit, MD Division of Infectious Diseases Vaccine Education Center The Children

Human Immunoglobulin Specificity After Group B Arbovirus Infections

Correlates of Protection for Flu vaccines and Assays Overview. by Simona Piccirella, PhD Chief Executive Officer

Viral Genetics. BIT 220 Chapter 16

Hepatitis E in South Africa. Tongai Maponga

THE APPLICATION OF MOLECULAR METHODS IN THE IDENTIFICATION OF ISOLATED STRAINS OF PARAINFLUENZA 3 VIRUS OF CATTLE

Texas Influenza Summary Report, Season (September 28, 2008 April 11, 2009)

VIRAL AGENTS CAUSING GASTROENTERITIS

NEXT GENERATION SEQUENCING OPENS NEW VIEWS ON VIRUS EVOLUTION AND EPIDEMIOLOGY. 16th International WAVLD symposium, 10th OIE Seminar

SURVEILLANCE TECHNICAL

TECHNICAL DOCUMENT. Influenza virus characterisation. Influenza A(H3N2) virus analysis. Summary Europe, December Summary

IASR Back Number Vol.35. The Topic of This Month Vol.35 No.3 (No.409) Rotavirus, , Japan. (IASR 35: 63-64, March 2014) Phoca PDF

ARIZONA INFLUENZA SUMMARY

The humoral immune responses to IBV proteins.

DETECTION OF IgM ANTIBODIES FROM CEREBROSPINAL FLUID AND SERA OF DENGUE FEVER PATIENTS

Appendix B: Provincial Case Definitions for Reportable Diseases

Human Influenza. Dr. Sina Soleimani. Human Viral Vaccine Quality Control 89/2/29. November 2, 2011 HVVQC ١

University of Leipzig, An den Tierkliniken 1, Leipzig, Germany

Viral Agents of Paediatric Gastroenteritis

1. Dengue An Overview. Dengue Expert Advisory Group

E.J. Remarque & G. Koopman. Confiden'al 2

Viral Structure Herpes virus. Pathology of viral disease. Viral Structure. Topics for the first lecture. Virus size

Measles: United States, January 1 through June 10, 2011

Class 10. DNA viruses. I. Seminar: General properties, pathogenesis and clinial features of DNA viruses from Herpesviridae family

Lecture 11. Immunology and disease: parasite antigenic diversity

Chapter 5. Virus isolation and identification of measles and rubella in cell culture

Received 17 December 2003 /Accepted 26 February 2004

SUPPLEMENTARY INFORMATION

Sponsors. Production Assistants Steven Claas Lynn Leary. Layout David Brown

Bioinformation by Biomedical Informatics Publishing Group

Transcription:

Vaccine 19 (2001) 1727 1731 www.elsevier.com/locate/vaccine Mumps virus neutralizing antibodies do not protect against reinfection with a heterologous mumps virus genotype Johan Nöjd a, Tesfaldet Tecle b, Agneta Samuelsson b, Claes O rvell b, * a Department of Infectious Diseases, Uni ersity Hospital of Northern Sweden, S-901 85 Umeå, Sweden b Department of Clinical Virology, Huddinge Uni ersity Hospital, Karolinska Institutet, S-141 86, Huddinge, Sweden Received 16 June 2000; received in revised form 9 October 2000; accepted 10 October 2000 Abstract In April 1999, a previously healthy 22-year-old woman was taken ill with fever and bilateral swelling of the parotid glands. A chronic course of disease extending from April to December was found with swelling of the parotid glands, fatigue, low grade fever, episodes of tachycardia and nightswetting. Mumps virus RNA of genotype A character based on the SH (small hydrophobic) protein gene classification was demonstrated in three serum samples collected during the course of clinical disease. Different criteria for reinfection were fulfilled including demonstration of IgG antibodies by ELISA in a preinfection serum sample. The preinfection serum sample of the patient was able to efficiently neutralize the infectivity of a heterologous genotype D strain but was unable to neutralize the homologous genotype A virus. The findings in the present study may offer an explanation of a mechanism behind previously observed vaccine failures and the occurrence of reinfection with heterologous mumps virus strains. 2001 Elsevier Science Ltd. All rights reserved. Keywords: Mumps virus; Genotype; Neutralization; Immunity 1. Introduction Mumps virus belongs to the family Paramyxoviridae, genus Rubulavirus [1]. The single stranded RNA genome contains seven genes; the nucleocapsid (N), phospho (P), membrane (M), fusion (F), small hydrophobic (SH), haemagglutinin-neuraminidase (HN) and (L) protein genes [2,3]. The SH gene is the most variable gene of mumps virus strains, it encodes a protein of 57 amino acids and it has been used to genotype mumps virus in nine genotypes, named A-I [4,5]. Genotype specific epitopes for induction of neutralizing antibodies have been shown between the A genotype in comparison to the B, C and D genotypes [6,7]. The possibility of reinfection with mumps virus causing clinical symptoms has been debated for a long time. In * Corresponding author. Tel.: +46-8-58581307; fax: +46-8- 58581305. E-mail address: clor@labd.hs.sll.se (C. O rvell). a recent comprehensive study, reinfection with mumps virus has been demonstrated by the application of different serological methods [8]. However, the presence of IgG in the absence of IgM-antibodies in sera from patients with mumps virus reinfection makes serological diagnosis problematic. In such cases it is often necessary to demonstrate the presence of virus RNA by the polymerase chain reaction (PCR). Mumps virus infection is believed to cause a benign disease of short duration. Few cases of chronic mumps virus infection have been described in the literature. Chronic mumps virus infection in the central nervous system (CNS) extending for several years of one human case has been described by Finnish workers [9]. There were signs of chronic neurogenic lesions without active denervation. In the present study the occurrence of a chronic case of mumps is described. The patient was taken ill in spite of the presence of a preexisting humoral immunity directed against a heterologous genotype of mumps virus. The results provide information about the importance of genotype specific immunity for protection against the different genotypes of mumps virus. 0264-410X/01/$ - see front matter 2001 Elsevier Science Ltd. All rights reserved. PII: S0264-410X(00)00392-3

1728 2. Materials and methods 2.1. Materials for in estigation J. Nöjd et al. / Vaccine 19 (2001) 1727 1731 3. Results 3.1. Description of disease history Five consecutive serum samples from a patient with chronic mumps virus infection were analyzed by serological testing and molecular analyses. Twenty-five serum samples from an age-matched control group were investigated for determination of neutralization titres against the A and D genotypes of mumps virus. 2.2. ELISA testing of serum samples Titres of IgG and IgM antibodies in the patient s serum samples were determined by ELISA according to accredited test procedures at the Department of Clinical Virology, Huddinge University Hospital. A preparation of purified glycoproteins of the SBL-1 strain was used as the antigen for determination of IgG titers [10]. For IgM determination, a previously described IgM capture procedure was used [10]. 2.3. Virus neutralization assay The procedure for end-point neutralization has been described previously [11]. Serial two-fold dilutions of sera in a volume of 0.15 ml of Eagle s Medium containing 2% fetal calf serum (FCS) were mixed with an equal volume of virus containing 100 200 TCID 50 /0.1 ml. The mixtures were shaken and incubated at 20 C for 1 h. After that time period 0.1 ml of the antigen-antibody mixtures was inoculated on Green Monkey Kidney (GMK) cells in tissue culture tubes; two tubes were inoculated per antibody dilution. The inoculated tubes were incubated at 37 C. The tubes were inspected for cytopathic effects in a light microscope and final readings were made after 7 days incubation. A neutralizing antibody titre of less than 2 was defined as seronegativity. 2.4. Molecular analyses Genotyping by PCR was performed on materials which could be amplified in a nested PCR reaction with primers common to all known genotypes of the SH protein gene [12]. Isolation of mumps virus RNA from the serum samples was performed as described previously [12]. For nucleotide sequencing of the SH gene, a 415 bp fragment was amplified by PCR as described previously [12]. For each fragment one of the inner primers (BJSHPR2) was 5 -biotinylated and the outer primer (BJSHPR1) was coupled at the 5 end to a universal M13 primer sequence. Direct DNA sequencing was performed as described previously [7]. In April 1999, a previously healthy 22-year-old female university student engaged in long distance running was taken ill with bilateral swelling of the parotid glands, a feeling of ill-health, fatigue and shortness of breath at exercise. She was consulting a medical doctor at an out-patient clinic in the beginning of May. She reported that she had been taken ill in mumps at the age of 4 years and that she had received vaccination with measles, mumps and rubella (MMR) virus at the age of 12 years. The patient was given medicine to alleviate breathing. After medical treatment her breathing while exercising was easier, but during the summer she continued to feel decreased strength at exercise, fatigue and bilateral fluctuating swelling of the parotid glands. Late in the summer she also felt uncomfortable from episodes of tachycardia and nightswetting. Due to her ill health she attended the Infectious Disease Clinic in the beginning of October. At medical examination bilateral swelling of the parotid glands and a low-grade fever were recorded. Erythrocyte sedimentation rate and C reactive protein (CRP) were not elevated and a number of laboratory tests on blood, liver and thyroid function were all within normal values. Some laboratory tests to assess immunological function were performed. Quantities of IgA, IgG and IgM immunoglobulin class, subclass determination and CD4/ CD8 counts showed no abnormalities. In the middle of December the patient was beginning to recuperate with less fatigue and reduced swelling of the parotid glands. At her last visit to the Infectious Disease Clinic, on 8 February 2000, the patient felt perfectly healthy and there was no longer any enlargement of the parotid glands. 3.2. Results of irus laboratory tests The results of virus laboratory tests performed on the patient s serum samples are shown in Table 1. PCR reactivity was found in the three samples collected during her clinical illness (serum samples B D), but not in the serum samples taken before and after the disease period. The PCR products of the three samples were sequenced. The three nucleotide sequences were identical and were found to correspond to the so called, SBL strain of genotype A (data not shown, [10]). In all the five samples the presence of high titres of IgG antibodies in the absence of IgM antibodies was found. The serum sample A from 1996 contained neutralizing antibodies against genotype D, but neutralizing antibodies against genotype A were not found. All other serum samples contained neutralizing antibodies against genotype D, but neutralizing antibodies

J. Nöjd et al. / Vaccine 19 (2001) 1727 1731 1729 against genotype A were not found except for the convalescent (E) serum sample. A significant increase of the titre of neutralizing antibodies against genotype A was found in the convalescent serum sample. In comparison to the sera of the patient, most of the 25 sera from persons in the same age group contained lower titres of neutralizing antibodies against both genotypes (Table 1, Fig. 1). The percent seronegativity in the group against genotype A and D was 68% (17/25) and 64% (16/25), respectively. The titres against genotype D were generally higher, but in some serum samples the titre against genotype A was on the same level as the titre against genotype D (serum no. 16, 18, 19, 20 and 23). The quotas of D/A neutralization titres varied from four or more (serum A,B,C,D,E,21,22,24 and 25) to one or less (serum no. 16, 18, 19, 20 and 23). 4. Discussion In this investigation a chronic case of mumps was identified. There were no signs of a any immunological dysfunction judged from the patient s history or in laboratory testings. The patient informed that she had suffered from mumps at the age of 4 years. It was confirmed that the patient had undergone a previous mumps virus infection by the demonstration of IgG antibodies and neutralizing antibodies against genotype D in a serum sample from 1996, before the disease period. Circulating viral RNA was identified in the serum of the patient three times for a period of 6 months and the time period coincided with the patient s symptoms of mumps. The virus that was identified was similar to the so called SBL-1 strain of genotype A. This mumps virus strain is the current predominant mumps virus strain in Sweden and it is associated with parotitis but seldom causes meningitis [10]. It has been shown that the D genotype of mumps virus was cocirculating with genotype A in Sweden from 1970 to 1985, and after that time period the D genotype has disappeared [10]. The C genotype of mumps has been identified in Sweden in the year 1983 and 1984 [10]. This C genotype is immunologically similar to genotype D [7]. The patient s serum sample from 1996 exhibited neutralizing antibodies against genotype D. It is, therefore, probable that she had undergone an earlier infection with a genotype D like virus. The vaccination with genotype A (Jeryl Lynn strain) that the patient received in 1989 had not resulted in any demonstrable neutralizing antibodies against the A genotype in the same serum sample from 1996. In spite of the fact that the patient had recourse to neutralizing antibodies against genotype D she was not protected against infection with genotype A. After the disease period the patient had built up neutralizing antibodies against genotype A. It has been shown previously that immunological differences exist between the A and the D genotype of mumps virus [6,7]. The major population of neutralizing antibodies formed in rabbits after hyperimmunization with the A and D genotypes of mumps virions have been found to be type specific [7]. Neutralization titres against the homologous strain was always higher than against the heterologous strain. It was, therefore, of interest to investigate if a similar situation existed in Table 1 The results of serological and PCR tests performed on consecutive serum samples from a patient with chronic mumps virus infection (serum A E), neutralization antibody titers were determined against the A and D genotype of mumps virus in the preinfection serum sample (A), samples collected during clinical illness (B D) and the convalescent serum sample (E) and in sera from 25 persons in the age group 20 25 years old a Serum design Time for collection NT titer against genotype IgG IgM PCR Virus genotype A(SBL) D(V6) A Febr., 1996 2 8 1000 Negative Negative B May 5, 1999 2 8 1000 Negative Positive A C Oct. 4, 1999 2 16 1000 Negative Positive A D Nov. 30, 1999 2 16 1000 Negative Positive A E 8 February 2000 4 16 1000 Negative Negative No. 1 15 1998 2 2 No. 16 1998 2 2 No. 17 1998 2 2 No. 18, 19 1998 2 2 No. 20 1998 4 4 No. 21 1998 2 8 No. 22 1998 2 8 No. 23 1998 8 8 No. 24 1998 4 16 No. 25 1998 8 32 a, not determined

1730 J. Nöjd et al. / Vaccine 19 (2001) 1727 1731 Fig. 1. Relationships between neutralization titres against genotype D and A in 25 sera from persons 20 to 25 years old ( ) and in the two sera of the patient taken before ( ) and after ( ) the disease period. humans by determination of genotype specific titres of neutralizing antibodies. The persons in the group were similar in age to the patient. It was not known if the persons in the group had received vaccination against mumps virus. The percentage of seronegativity was found to be in the order of 60 70% against both the genotypes. This figure for seronegativity was higher than the results from a large study on young persons born in 1980 where an unselected age group showed a seronegative value of 38% [13]. In the latter age group, 60% had a documented vaccination against mumps virus [13]. Mass vaccination against mumps with the Jeryl Lynn strain of genotype A was introduced in Sweden in 1982. Vaccination was carried out at the age of 18 months and in some cases around 12 years of age. As the persons in the present study were somewhat older and probably had escaped vaccination at 18 months of age, it is possible that the 25 individuals in the group born during 1973 1978 had a lower rate of vaccination against mumps virus compared with persons born in 1980 which may explain the higher seronegative values in the former age group. In the present study neutralization titres against genotype D were somewhat higher than the titres against genotype A. However, when the quotas of D/A neutralization titres were compared with individual sera a pronounced variation was found which is likely to reflect both immunological differences between the genotypes and a different exposure to the two genotypes in the past. The occurrence of sporadic mumps epidemics is known to have taken place in populations with high vaccine coverage [14,15]. In the epidemics in Switzerland in 1992 1993 and in 1995 and in Portugal in 1996, the populations were vaccinated with a heterologous genotype. Taken together, these reports indicate that the vaccine may not be effective against heterologous genotypes. Determination of genotype specific neutralization titres in the sera of patients before and after mumps virus infection may shed light on the level of cross-protection that can be reached by a prior mumps virus infection with a heterologous genotype. A clear neutralization titre against genotype D did not protect the patient from infection with the A genotype. A similar situation to the one described in the present study may exist also after vaccination with monospecific vaccines containing only one genotype of mumps virus.

J. Nöjd et al. / Vaccine 19 (2001) 1727 1731 1731 Acknowledgements This work was supported by grants from the Stockholm City Council and the foundation to the memory of Elsa and Sigurd Golje. References [1] Rima BK, Alexander DJ, Billeter MA, et al. The paramyxoviridae. In: Murphy FA, Fauquet CM, Bishop DHL, Ghabrial SA, Jarvis AW, Martelli GP, Mayo MA, Summers MD, editors. Virus Taxonomy. Sixth Report of the International Committee on Taxonomy of Viruses. New York: Springer, 1995:268 74. [2] Elango N, Varsanyi TM, Kövamees J, Norrby E. Molecular cloning and characterization of six genes, determination of gene order and intergenic sequences and leader sequence of mumps virus. J Gen Virol 1988;69:2893 900. [3] Elliott GD, Afzal MA, Martin SJ, Rima BK. Nucleotide sequence of the matrix, fusion and putative SH protein genes of mumps virus and their deduced amino acid sequences. Virus Res 1989;12:61 75. [4] Jin L, Beard S, Brown WG. Genetic heterogeneity of mumps virus in the United Kingdom: identification of two new genotypes. J Infect Dis 1999;18:829 33. [5] Kim SH, Song KJ, Shin YK, Choi SM, Park KS, Back LJ, Lee Song JW. Phylogenetic analysis of the small hydrophobic (SH) gene of mumps virus in Korea: identification of a new genotype. Microbiol Immunol 2000;44:173 7. [6] Yates PJ, Afzal MA, Minor PD. Antigenic and genetic variation of the HN protein of mumps virus strains. J Gen Virol 1996;77:2491 7. [7] O rvell C, Alsheikhly A-R, Kalantari M, Johansson B. Characterization of genotype-specific epitopes of the HN protein of mumps virus. J Gen Virol 1997;78:3187 93. [8] Gut J-P, Lablanche C, Behr S, Kirn A. Symptomatic mumps virus reinfections. J Med Virol 1995;45:17 23. [9] Vaheri A, Julkunen I, Koskiniemi ML. Chronic encephalomyelitis with specific increase in intrathecal mumps antibodies. Lancet 1982;25:685 8. [10] Tecle T, Johansson B, Jejcic A, Forsgren M, O rvell C. Characterization of three co-circulating genotypes of the small hydrophobic protein gene of mumps virus. J Gen Virol 1998;79:2929 37. [11] O rvell C. Identification of paramyxyovirus specific haemolysis-inhibiting antibodies separate from haemagglutinating-inhibiting and neuraminidase inhibiting antibodies. Acta Pathol Microbiol Scand Sect B 1976;84:441 57. [12] O rvell C, Kalantari M, Johansson B. Characterization of five conserved genotypes of the mumps virus small hydrophobic (SH) protein gene. J Gen Virol 1997;78:91 5. [13] Broliden K, Abreu ER, Arneborn M, Böttiger M. Immunity to mumps before and after MMR vaccination at 2 years of age in the first generation offered the two-dose immunization programme. Vaccine 1998;16:323 7. [14] Ströhle A, Bernasconi C, Germann D. A new mumps virus lineage found in the 1995 mumps outbreak in western Switzerland identified by nucleotid sequence analysis of the SH gene. Arch Virol 1996;141:733 41. [15] Afzal MA, Buchanan J, Dias JA, Cordeiro M, Bentley ML, Shorrok CA, Minor PD. RT-PCR based diagnosis and molecular characterization of mumps viruses derived from clinical specimens collected during the 1996 mumps outbreak in Portugal. J Gen Virol 1997;52:349 53..