Method to plan, administer, and verify supine craniospinal irradiation

Similar documents
A simple technique for craniospinal radiotherapy in the supine position

To Reduce Hot Dose Spots in Craniospinal Irradiation: An IMRT Approach with Matching Beam Divergence

Radiotherapy techniques in brain tumors (2D, 3D CRT, IMRT) including craniospinal irradiation

A Smart Setup for Craniospinal Irradiation

Treatment Planning Evaluation of Volumetric Modulated Arc Therapy (VMAT) for Craniospinal Irradiation (CSI)

Intrafractional Junction Shifts Utilizing Multileaf Collimation: A Novel CSI Planning Technique. Rodney Hood RT(R)(T)CMD

Nuclear Associates

A new geometric and mechanical verification device for medical LINACs

Intensity modulated radiotherapy (IMRT) for treatment of post-operative high grade glioma in the right parietal region of brain

IMRT FOR CRANIOSPINAL IRRADIATION: CHALLENGES AND RESULTS. A. Miller, L. Kasulaitytė Institute of Oncolygy, Vilnius University

Advanced Technology Consortium (ATC) Credentialing Procedures for 3D Conformal Therapy Protocols 3D CRT Benchmark*

Lung Spine Phantom. Guidelines for Planning and Irradiating the IROC Spine Phantom. MARCH 2014

Unrivaled, End-to-End

Evaluation of Whole-Field and Split-Field Intensity Modulation Radiation Therapy (IMRT) Techniques in Head and Neck Cancer

A Comparison of IMRT and VMAT Technique for the Treatment of Rectal Cancer

IROC Liver Phantom. Guidelines for Planning and Irradiating the IROC Liver Phantom. Revised July 2015

A method to predict patient specific table coordinates for quality assurance in external beam radiation therapy

IMRT QUESTIONNAIRE. Address: Physicist: Research Associate: Dosimetrist: Responsible Radiation Oncologist(s)

Importance of daily portal imaging for Head and Neck IMRT treatments. Luciant Wolfsberger Brigham & Women s Hospital

Evaluation of Monaco treatment planning system for hypofractionated stereotactic volumetric arc radiotherapy of multiple brain metastases

Herlev radiation oncology team explains what MRI can bring

THE TRANSITION FROM 2D TO 3D AND TO IMRT - RATIONALE AND CRITICAL ELEMENTS

IROC Lung Phantom 3D CRT / IMRT. Guidelines for Planning and Irradiating the IROC Lung Phantom. Revised Dec 2015

Hybrid VMAT/IMRT Approach to Traditional Cranio-Spinal Irradiation (CSI): A Case Study on Planning Techniques and Delivery

Stereotactic Radiosurgery. Extracranial Stereotactic Radiosurgery. Linear accelerators. Basic technique. Indications of SRS

Quality Assurance of Ultrasound Imaging in Radiation Therapy. Zuofeng Li, D.Sc. Murty S. Goddu, Ph.D. Washington University St.

IMRT/IGRT Patient Treatment: A Community Hospital Experience. Charles M. Able, Assistant Professor

Sasa Mutic a) Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri 63110

The technique of craniospinal irradiation of paediatric patients in supine position

SUPERIORITY OF A REAL TIME PLANNING TECHNIQUE OVER IMAGE GUIDED RADIATION THERAPY FOR THE TREATMENT OF PRIMARY PROSTATE CANCERS

Normal tissue doses from MV image-guided radiation therapy (IGRT) using orthogonal MV and MV-CBCT

I. Equipments for external beam radiotherapy

Varian Treatment. Streamlined Treatment Delivery Management Application. Specifications

RPC Liver Phantom Highly Conformal Stereotactic Body Radiation Therapy

SBRT fundamentals. Outline 8/2/2012. Stereotactic Body Radiation Therapy Quality Assurance Educational Session

Reena Phurailatpam. Intensity Modulated Radiation Therapy of Medulloblastoma using Helical TomoTherapy: Initial Experience from planning to delivery

Additional Questions for Review 2D & 3D

The objective of this lecture is to integrate our knowledge of the differences between 2D and 3D planning and apply the same to various clinical

FEE RULES RADIATION ONCOLOGY FEE SCHEDULE CONTENTS

RADIATION ONCOLOGY RESIDENCY PROGRAM Competency Evaluation of Resident

Advancing critical clinical decisions

WHOLE-BRAIN RADIOTHERAPY WITH SIMULTANEOUS INTEGRATED BOOST TO MULTIPLE BRAIN METASTASES USING VOLUMETRIC MODULATED ARC THERAPY

The Physics of Oesophageal Cancer Radiotherapy

Evaluation of Three-dimensional Conformal Radiotherapy and Intensity Modulated Radiotherapy Techniques in High-Grade Gliomas

3D Conformal Radiation Therapy for Mucinous Carcinoma of the Breast

Dosimetric verification and quality assurance of runningstart-stop (RSS) delivery in tomotherapy

IROC Head and Neck Phantom. Guidelines for Planning and Irradiating the IROC IMRT Phantom. Revised MARCH 2014

Spinal Cord Doses in Palliative Lung Radiotherapy Schedules

Quality Assurance of TPS: comparison of dose calculation for stereotactic patients in Eclipse and iplan RT Dose

A VMAT PLANNING SOLUTION FOR NECK CANCER PATIENTS USING THE PINNACLE 3 PLANNING SYSTEM *

Eric E. Klein, Ph.D. Chair of TG-142

Multilayer Gafchromic film detectors for breast skin dose determination in vivo

Varian Edge Experience. Jinkoo Kim, Ph.D Henry Ford Health System

Measurement of Dose to Critical Structures Surrounding the Prostate from. Intensity-Modulated Radiation Therapy (IMRT) and Three Dimensional

Abstract: A National Project for the in-vivo dosimetry in radiotherapy: first results

TomoTherapy. Michelle Roach CNC Radiation Oncology Liverpool Hospital CNSA. May 2016

An anthropomorphic head phantom with a BANG polymer gel insert for dosimetric evaluation of IMRT treatment delivery

CURRICULUM OUTLINE FOR TRANSITIONING FROM 2-D RT TO 3-D CRT AND IMRT

Radiosurgery. Most Important! 8/2/2012. Stereotactic Radiosurgery: State of the Art Technology and Implementation Linear Accelerator Radiosurgery

ph fax

Dose Homogeneity of the Total Body Irradiation in vivo and in vitro confirmed with Thermoluminescent Dosimeter

Medical Dosimetry Graduate Certificate Program IU Graduate School & The Department of Radiation Oncology IU Simon Cancer Center

Performance Evaluation of Calypso (R) 4D Localization and Kilovoltage Image Guidance Systems for Interfraction Motion Management of Prostate Patients

Head and Neck Service

SHIELDING TECHNIQUES FOR CURRENT RADIATION THERAPY MODALITIES

Defining Target Volumes and Organs at Risk: a common language

Medical Errors in Radiation Therapy 2014

Measure the Errors of Treatment Set-Ups of Prostate Cancer Patient Using Electronic Portal Imaging Device (EPID)

Corporate Medical Policy

On the use of virtual simulation in radiotherapy of the intact breast

Chapter 7 General conclusions and suggestions for future work

Helical Tomotherapy Experience. TomoTherapy Whole Brain Head & Neck Prostate Lung Summary. HI-ART TomoTherapy System. HI-ART TomoTherapy System

Credentialing for the Use of IGRT in Clinical Trials

Certification Review. Module 28. Medical Coding. Radiology

A TREATMENT PLANNING STUDY COMPARING VMAT WITH 3D CONFORMAL RADIOTHERAPY FOR PROSTATE CANCER USING PINNACLE PLANNING SYSTEM *

JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 6, NUMBER 2, SPRING 2005

IROC Prostate Phantom. Guidelines for Planning and Treating the IROC IMRT Prostate Phantom. Revised March 2014

Intensity Modulated Radiation Therapy: Dosimetric Aspects & Commissioning Strategies

vertaplan the spine surgeon s software vertaplan System for successful reconstruction of the individual sagittal balance

9.5. CONVENTIONAL RADIOTHERAPY TECHNIQUE FOR TREATING THYROID CANCER

Introduction of FIREFLY Technology

IMRT - the physician s eye-view. Cinzia Iotti Department of Radiation Oncology S.Maria Nuova Hospital Reggio Emilia

A Patient s Guide to SRS

Radiation Therapy for Metastatic Non-Small Cell Lung Carcinoma of the Right Hip

Image Guided Stereotactic Radiotherapy of the Lung

Institute of Oncology & Radiobiology. Havana, Cuba. INOR

The Effects of DIBH on Liver Dose during Right-Breast Treatments Introduction

RTOG DOSIMETRY DATA SUBMISSION

Completion of Treatment Planning. Eugene Lief, Ph.D. Christ Hospital Jersey City, New Jersey USA

Page 1. Helical (Spiral) Tomotherapy. UW Helical Tomotherapy Unit. Helical (Spiral) Tomotherapy. MVCT of an Anesthetized Dog with a Sinus Tumor

Original Date: April 2016 Page 1 of 7 FOR CMS (MEDICARE) MEMBERS ONLY

Independent corroboration of monitor unit calculations performed by a 3D computerized planning system

Quality Assurance of Helical Tomotherapy Machines

THE AIO SOLUTION ALL-IN-ONE PATIENT POSITIONING SYSTEM

CT Scanning Protocol For V2R Guided Surgery Solutions

IROC Head and Neck Phantom. Guidelines for Planning and Irradiating the IROC IMRT Phantom. Revised April 2014

IMAGE-GUIDED RADIATION THERAPY

AAPM Task Group 180 Image Guidance Doses Delivered During Radiotherapy: Quantification, Management, and Reduction

Ritu Raj Upreti, S. Dayananda, R. L. Bhalawat*, Girish N. Bedre*, D. D. Deshpande

Transcription:

JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 3, NUMBER 4, FALL 2002 Method to plan, administer, and verify supine craniospinal irradiation Jeff M. Michalski,* Eric E. Klein, and Russell Gerber Department of Radiation Oncology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110 Received 8 April 2002; accepted for publication 23 July 2002 Craniospinal irradiation remains an important technique in the management of malignancies of the central nervous system. It is technically demanding, with potential for treatment field overlap or gaps to yield unacceptable dosimetric heterogeneity. A method to accurately simulate and verify the three-field junction is described. We use a comfortable supine position to minimize patient movement. The supine position provides airway access by anesthesiology in patients requiring sedation or anesthesia. Virtual simulation is performed with a dedicated computed tomography CT simulator. Multiplanar sagittal and coronal CT reconstructions allow visual confirmation of three-field matching at the cervical region. The placement of isocenters for each field, table position, and collimator angles are determined by calculation of field sizes accommodating for beam divergence. At treatment, exact matching of the three fields is assured using the record and verify confirmation of beam collimator settings and rotation, digital couch readouts, and gantry parameters. Mini-verification silver halide Kodak XV films (6 6 cm) are placed behind the patient s neck and are exposed by all treatment fields posterior flash from the lateral cranial fields and entrance from the PA spine field. These films assess field placement accuracy at the junction of these three fields. Finally, placement of radio-opaque markers at the junction is visualized in each clinical portal radiograph. Patients readily accept the supine position as their treatment setup is eased. Field placement using digital couch settings is efficient and accurate. Daily miniverification films are simple, inexpensive, and allow verification of each treatment field matching. Field placement errors of greater than 1 mm can be readily identified and corrected at subsequent treatment sessions. Virtual simulation and direct junction verification with mini-verification films allow for simple and quantitative evaluation of the junction associated with the three-field craniospinal irradiation technique. The supine patient position does not present any difficulties in field matching or verification. 2002 American College of Medical Physics. DOI: 10.1120/1.1508013 PACS number s : 87.53. j, 87.53. j Key words: craniospinal, radiotherapy, treatment verification BACKGROUND AND INTRODUCTION Craniospinal irradiation CSI remains an important element in the management of several malignant neoplasms that affect the central nervous system. Medulloblastoma and other intracranial primitive neuroectodermal tumors, ependymomas, gliomas, or leukemias may seed the neuroaxis and are effectively or prophylactically treated with CSI. Many methods have been described to deliver craniospinal irradiation. 1 5 Often technical constraints have limited the flexibility with which this treatment was administered. Treatment couch range limited the length for posterior spine field s, and patients were therefore treated in prone position. One advantage of the prone position is that it allows direct visual confirmation of the 310 1526-9914Õ2002Õ3 4 Õ310Õ7Õ$17.00 2002 Am. Coll. Med. Phys. 310

311 Michalski, Klein, and Gerber: Method to plan, administer, and verify... 311 junction between the lateral brain fields and posterior spine field. On occasion a single spine field will suffice for pediatric cases. Unfortunately, the prone position has some significant disadvantages. Many patients are uncomfortable, and their tolerance for the long simulation process is limited. Access to the oral cavity and airways is restricted, a definite problem for young children requiring sedation or anesthesia. In addition, the flexed head position is not conducive to immobilization. Recent modifications of treatment tables to accommodate long field sizes and asymmetric or independent collimation, virtual simulation technology and record and verify computers, have simplified the simulation, treatment delivery, and verification process for this complex treatment technique. This report details our technique that uses these technological advances. METHODS Our technique involves virtual simulation, followed by verification simulation, followed by treatment. The field arrangement is a variation on the method described by van Dyk et al. 1 Field matching is accomplished by use of independent, asymmetric jaws, collimator rotation, and table angulation. 2 After five fraction intervals, the field junctions are shifted 1 cm by changing the independent collimator jaw settings. Simulation Initial simulation begins with patient positioning and immobilization. Patients are placed supine with their heads on a modified headrest that extends their necks enough to minimize exit of the superior edge of the superior spine field into the oral cavity. An immobilization mask is fabricated from thermal plastic material. In patients requiring anesthesia, an airway opening is cut out of the mask over the mouth. The immobilization masks are fastened to a thin Lucite platform that fixates to the tables of the CT scanner, verification simulator, or treatment table. This allows co-ordinate assignment and registration of the patient throughout simulation and treatment process. CT scans range from the top of the head to the mid-pelvis. CT spacing and thickness vary from 3mm 3mmto5mm 5 mm, respectively. The 3 mm slices are done through the cervical and upper lumbar spine where high quality digital reconstruction radiographs DRRs are necessary to verify cervical junctions and lumbar spine field gaps. Two hundred or more CT slices are typically acquired in this simulation procedure. Patients are marked with sagittal and lateral laser lines to facilitate repositioning during the verification simulation and subsequent treatment. Positioning laser marks are placed at the C 2 -C 3 interspace where the first junction between cranial and spinal fields is anticipated. Another set of positioning laser marks is placed mid-trunk, corresponding to the position of the anticipated isocenter of the spine field. This laser marking may change at the verification simulation once the final isocenter is chosen. The CT acquisition generally takes 30 to 45 min. This is a sufficiently short time that minimizes patient discomfort and anesthesia risk. The digital CT scans are then transferred to a VoxelQ virtual simulation workstation Picker Medical Systems, Cleveland, OH. In a method analogous to conventional simulation, treatment fields are designed for treatment. First, the posterior spine fields are simulated, and the superior beam divergence is calculated. The superior border of the spine field is initially placed at the C 2 3 interspace or lower to avoid exit radiation through the oral cavity. If necessary, an inferior spine field is simulated with an appropriate gap on the posterior skin surface in order to match the fields at the depth of the spine. The gap and divergence can be visualized by a sagittal reconstruction. Cranial ports are then planned with collimator rotations to match the superior spine field s divergence. The isocenter of the cranial fields is established at midplane just behind the eyes. This placement minimizes beam divergence into the contralateral lens. 3 Because the inferior divergence of the cranial fields may overlap into the spinal cord, a treatment table rotation is calculated to effectively have all three field edges from both lateral brain ports and the posterior spine port to meet at the cervical junction as a single plane. The formulas to calculate these divergences are

312 Michalski, Klein, and Gerber: Method to plan, administer, and verify... 312 FIG. 1. Clinical portal radiographs of a lateral cranial field and posterior upper spine field. Lead beads can be seen at the inferior field edge of the cranial portals and at the top level of the upper spine portal on the double exposure. The lead beads are taped to the immobilization mask at the level of C 2. Cr,Col tan 1 Y 2,US SAD 1 for the appropriate cranial collimator rotation and Cr,table tan 1 Y 1,Cr SAD 2 for the appropriate cranial table rotation, where Y 2,US superior collimator setting of upper spine field, and Y 1,Cr inferior collimator setting of cranial field. The field edge matching can be visually verified as the junctions share a common, overlapping plane. Unlike older methods that used symmetric collimator jaw settings, the total length of the fields should not be used when calculating the appropriate diverging angles. On the virtual simulator workstation, the distance between the two isocenters three if two spine fields are required can be calculated once the beams have been set. This distance can then be used as the digital longitudinal table distance shift. Custom shields protecting normal tissue are then created using the virtual simulator field shaping software. It is our preference to use cerrobend shielding in this site due to the fine detail required to shield sensitive structure in close proximity to the target volume. When 5 mm multileaf collimators become available in our clinic, we may use them in this situation. Design of the fields is facilitated with anatomic definition of eyes and the brain at the cribriform plate and middle cranial fossa. Patients return to a conventional simulator after block fabrication for a verification simulation. Isocenters determined at the virtual simulation process are verified and marked. Registered coordinates for digital table positions are assigned during the virtual simulation process. Shifts from the positioning laser marks to the treatment isocenters are described on a set-up sheet for the therapists. Films are taken at the verification simulation and compared to the DRR from the virtual simulation. The verification simulation takes approximately 1 h, 30 to 60 min less time than previously dedicated to the same process after a conventional simulation. The table and immobilization devices are inspected to assure they do not obstruct or shadow the spine field. Lead beads are placed on the immobilization mask at the level of the cervical three-field junction. These markers are visible on clinical portal radiographs to assist in verifying the junction placement during therapy Fig. 1.

313 Michalski, Klein, and Gerber: Method to plan, administer, and verify... 313 The gantry angle, collimator angle, table angle, asymmetric jaw settings, and table positions vertical, lateral, and longitudinal are digitally acquired during the verification simulation into the record and verify system Varis, Varian Oncology, Palo Alto, CA for treatment. The future treatment parameters accounting for scheduled junction shifts are also programmed into the record and verify system and scheduled appropriately. The record and verify system provides a large in-room screen display of the nominal values and allows auto-setup functions of the jaw and collimator settings. Setup deviations greater than 1 mm or 1 require user password intervention. Treatment The longitudinal distance between each isocenter can be calculated using straightforward geometric and trigonometric principles. These calculations may be verified using the ruler tool on the virtual simulation software or by the difference between the two isocenters three if two spine fields couch vertical coordinates. They are also verified at the verification simulation. Isocenter marks on the mask corresponding to the cranial fields are placed after review and approval of films taken at the verification simulation. Setup marks are also placed on the patient s trunk corresponding to the spinal fields in the same manner. Filming at the verification simulation provides hard copy film documentation of both adequate block design and field localization. Therefore, preporting at the linear accelerator is not required unless changes in block shaping or field localization are required. After the first day s treatment, portal radiographs are evaluated. The position of the lead beads at the cervical junction is verified in each of the lateral cranial and posterior superior spine radiographs. Coordinates of both the cranial and spinal field isocenters are recorded into Varis once satisfactory localization is determined by review of portal and match films. Table position tolerances are then restricted to 1 mm in order to maintain appropriate field junctions and gaps at the cervical and lumbar spine regions, respectively. Visual verification of the junction is possible. The inferior border of the cranial fields can be marked on the mask or the patient s neck. When the PA spine field has been set up, the x-collimator lateral can be opened wide to allow light field to illuminate on the neck through the Mylar sheet or tennis racket of the treatment table. Once the superior border of the spine field matching the inferior border of the cranial field is confirmed, the lateral borders are re-set to the actual width of the spine field before treatment. MINI-VERIFICATION FILMS To further confirm proper field matching, the headrest for CSI has been modified to hold a 6 6 cm 2 piece of Kodak XOMAT V film. These mini-films are prepared in a darkroom and sealed with opaque tape. At each daily treatment, a mini-film is placed in a horizontally sliced opening in the headrest. This film lies directly behind the patient s neck at the C 2 5 vertebral body levels Fig. 2. The film is exposed during treatment by the posterior flash of the inferior border of each cranial field and the entrance of the superior field edge of the upper spine field. The mini-films are developed and examined daily to verify the three-field junction. The processing of these mini-films requires taping them to a large standard size film to prevent jamming within the film processor. The films are reviewed by a clinic physicist or the treating radiation oncologist prior to the next day s treatment. All overlaps are corrected. Gaps in the junction of 3 mm or more are corrected. Gaps of 2 mm or less are considered ideal. To illustrate the utility of the mini-verification films, we irradiated a solid water phantom with the verification films placed in craniospinal treatment geometry. Both ideal and incorrect setups were used. These films were then scanned with a film densitometer to demonstrate the magnitude of dose error with incorrect setups. The densities were converted to dose by corrections according to dose/density film conversion film sets acquired at the time of measurement.

314 Michalski, Klein, and Gerber: Method to plan, administer, and verify... 314 FIG. 2. a A modified headrest allows placement of a mini-verification film under the patient s neck. b Patient in treatment position with his head on the headrest. The mini-verification film rests posterior to his neck. Lead beads are taped to the mask at C 2. RESULTS Figures 3 a 3 d demonstrate the appearance of the mini-films with corresponding optical density scans. With a clinically acceptable junction, a faint thin line of underexposure is seen at the three-field junction. The slight dosimetric variations across the junction are related to differences in build up and scatter between the three fields and are not due to any field misplacement or misalignment. Typically there is evidence of handling artifact on the end of films. In the case of a treatment overlap, there is a dark linear region of exposure corresponding to the excessive radiation dose. Because the film is exposed in situ, the size of the overlap region correlates closely to the treatment overlap at the patient s neck. Similarly, a linear region of underexposure corresponds FIG. 3. Mini-verification films have been exposed to mock treatments and developed. An optical density scan corresponding to each film and corresponding isodoses for this plane are displayed. a An ideal clinical match: a faint thin film of underexposure is present. b An intentional overlap causes a dark line corresponding to over exposure. c An excessive gap causes a thick light line corresponding to an under-dosed region. d Incorrect table angle causes large irregularly shaped areas of dosimetric inhomogeneity.

315 Michalski, Klein, and Gerber: Method to plan, administer, and verify... 315 to a gap equal to the line s width. If there is an incorrect setup of beam angles, the films can show a bow-tie or wedge-shaped area of exposure. This would indicate that the cranial fields erroneously diverged into the spine field. DISCUSSION CSI is a complex treatment technique that is difficult to simulate, treat, and verify. Errors in any step of the process could lead to disastrous consequences, such as radiation myelitis. The conventional simulation process with the prone position had been the standard in our department as recently as 1994. It had been our impression that the prone position was uncomfortable for patients and as such, patients would either shift during simulation and/or treatment or even simply be unable to endure the simulation process in a single session. The supine position appears to be much more comfortable for our patients. Although we have not quantified patient satisfaction, acceptance of this technique is subjectively better than our older technique. Generally, a2to3h initial simulation time period was reserved to allow for patient positioning, simulation with filming, fluoroscopy, and documentation. The CT simulation approach has also reduced patient time for the initial simulation process. Most patients can remain still for the 30 40 min CT scanning session. The actual simulation with field placement and block design takes place on the virtual simulation workstation after the patient has left the department. Mah et al. 4 has described similar time saving and ease of set up with the use of virtual CT simulation. The CT scans can also be used for three-dimensional 3D conformal treatment planning of boost fields. We have used the supine position in nearly all CSI patients, children and adults, since introducing the method in our clinic. The virtual simulation process is no more complicated than the conventional simulation process. In fact, the flexible large fields-of-view and various magnification factors simplifies placement of field boundaries. An entire 40 cm field with margin can be seen on one computer screen. Conventional simulators would require moving the image intensifier during fluoroscopy or taking multiple films to document the entire field length. The three-field junction of the cranial ports and posterior spine port can be directly visualized on the virtual simulation monitor. This immediate visual verification helps discover simple arithmetic errors that may prolong the simulation process or worse, allow field placement errors to occur. Record and verify constraints on the treatment machine are accepted by the treating radiation therapists. Considerable care is given in setting up and aligning patients for daily treatment. Once the patient treatment position has been reproduced, the record and verify computers prevent treatment errors that would result in field overlap or unnecessarily large gaps. We have become so confident with the record and verify constraints during treatment that we now limit the mini-film verification acquisition to once weekly to correspond to each field junction shift. The independent collimation of the modern linear accelerators allows maintaining the same isocenter during the entire course of CSI. Despite our confidence in our methods of verification, we still employ junction shifts every five fractions in order to prevent error occurring in the same position during an entire treatment course. Patients can still shift slightly during the actual treatment session. Lastly, the mini-verification films have been an easy and accurate method of verifying the treatment junction. These films are relatively inexpensive. A sheet of 14 17 in. film will allow junction verification of an entire treatment course once it has been cut to size and placed in the ready pack paper and further enclosed with light occlusive electrical tape. Use of these films predated the installation of our record and verify. Without a record and verify system, we would recommend their use daily. The use of an electronic portal imaging device would complement, not replace, daily mini-verification films. Additionally, the lead markers at the cervical junction facilitate the clinical review of clinical port films. This gives anatomical confirmation and congruency of the matched fields relative to the cervical spinal cord. Hawkins 5 has described a similar junction film marker.

316 Michalski, Klein, and Gerber: Method to plan, administer, and verify... 316 In summary, giving up direct visualization of the field junction in the prone position by the light field review is not a disadvantage. The digital couch readings with record and verify, miniverification films, and radio-opaque cervical markers are three tools that overcome this problem. CONCLUSION This integrated approach to simulation, treatment, and verification of CSI is well tolerated by patients. Some of the techniques described here are immediately applicable to other clinics, even those lacking some of the technical features of CT simulation, extended couch treatment windows, record and verify computers, and asymmetric collimation. For example, the lead markers on the immobilization mask at the cervical spine junction can be done in either a prone or supine position. The most critical component of our verification method is the use of the mini-films. The therapists find them easy to use, and the treating physician and clinical physicist can easily interpret them. These mini-films allow direct confirmation of the field junction and can be stored as part of the patient s permanent treatment record. These mini-films can be adapted to verify other multifield junctions techniques. *Present address: Department of Radiation Oncology, Mallinckrodt Institute of Radiology, Washington University Medical School, 4939 Children s Place, Suite 5500, St. Louis, MO 63110. FAX: 314 362-8521. Email address: michalski@radonc.wustl.edu 1 J. van Dyk, R. D. Jenkin, P. M. Leung, and J. R. Cunningham, Medulloblastoma: Treatment technique and radiation dosimetry, Int. J. Radiat. Oncol., Biol., Phys. 2, 993 1005 1977. 2 M. Tatcher and A. S. Glicksman, Field matching considerations and craniospinal irradiation, Int. J. Radiat. Oncol., Biol., Phys. 17, 865 869 1989. 3 S. Y. Woo, S. S. Donaldson, R. J. Heck, K. L. Nielson, and C. Shostak, Minimizing and measuring lens dose when giving cranial irradiation, Radiother. Oncol. 16, 183 188 1989. 4 K. Mah, C. E. Danjoux, S. Manship, N. Makhani, M. Cardoso, and K. E. Sixel, Computed tomographic simulation of craniospinal fields in pediatric patients: Improved treatment accuracy and patient comfort, Int. J. Radiat. Oncol., Biol., Phys. 41, 997 1003 1998. 5 R. B. Hawkins, A simple method of radiation treatment of craniospinal fields with patient supine, Int. J. Radiat. Oncol., Biol., Phys. 49, 261 264 2001.