Biomembranes structure and function. B. Balen

Similar documents
Lipids and Membranes

Membrane Structure and Membrane Transport of Small Molecules. Assist. Prof. Pinar Tulay Faculty of Medicine

Lecture Series 5 Cellular Membranes

A. Membrane Composition and Structure. B. Animal Cell Adhesion. C. Passive Processes of Membrane Transport. D. Active Transport

Cell Membranes and Signaling

Lecture Series 4 Cellular Membranes. Reading Assignments. Selective and Semi-permeable Barriers

Lecture Series 4 Cellular Membranes

Membrane Structure. Membrane Structure. Membrane Structure. Membranes

Membranes. Chapter 5. Membrane Structure

Membranes. Chapter 5

Chapter 7: Membrane Structure & Function

Chapter 7: Membrane Structure & Function. 1. Membrane Structure. What are Biological Membranes? 10/21/2015. Why phospholipids? 1. Membrane Structure

Cell Membranes Valencia college

Lecture Series 4 Cellular Membranes

Ch7: Membrane Structure & Function

Membrane transport. Pharmacy Dr. Szilvia Barkó

CHAPTER 8 MEMBRANE STUCTURE AND FUNCTION

Chapter 1 Membrane Structure and Function

Membrane Structure and Function

The Cell Membrane & Movement of Materials In & Out of Cells PACKET #11

Chapter 7: Membranes

CWDHS Mr. Winch Grade 12 Biology

The Cell Membrane AP Biology

The Cell Membrane. Lecture 3a. Overview: Membranes. What is a membrane? Structure of the cell membrane. Fluid Mosaic Model. Membranes and Transport

PLASMA MEMBRANE. Submitted by:- DR.Madhurima Sharma PGGCG-II,Chandigarh

Phospholipids. Extracellular fluid. Polar hydrophilic heads. Nonpolar hydrophobic tails. Polar hydrophilic heads. Intracellular fluid (cytosol)

The Cell Membrane & Movement of Materials In & Out of Cells PACKET #11

membranes cellular membranes basic structure basic structure chapter ECM CYTOPLASM

Chapter 7: Membrane Structure and Function

Chapter 7: Membrane Structure and Function. Key Terms:

Membrane Structure and Function

Cells: The Living Units

The Cell Membrane. Cell membrane separates living cell from nonliving surroundings. Controls traffic in & out of the cell

Phospholipids. Phosphate head. Fatty acid tails. Arranged as a bilayer. hydrophilic. hydrophobic. Phosphate. Fatty acid. attracted to water

Diffusion across cell membrane

Gateway to the Cell 11/1/2012. The cell membrane is flexible and allows a unicellular organism to move FLUID MOSAIC MODEL

MEMBRANE STRUCTURE AND FUNCTION

Monday, September 30 th :

BIOLOGY. Membrane Structure and Function CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson

The Plasma Membrane - Gateway to the Cell

Chapter 4: Cell Membrane Structure and Function

Chapter 5: Cell Membranes and Signaling

membranes membrane functions basic structure membrane functions chapter 11-12

Membrane Structure. Membrane Structure. Membranes. Chapter 5

MEMBRANE STRUCTURE. Lecture 8. Biology Department Concordia University. Dr. S. Azam BIOL 266/

BIOH111. o Cell Biology Module o Tissue Module o Integumentary system o Skeletal system o Muscle system o Nervous system o Endocrine system

Membrane Structure and Function

MEMBRANE STRUCTURE AND FUNCTION

TRANSPORT ACROSS MEMBRANES

BIOL 158: BIOLOGICAL CHEMISTRY II

AP Biology. Overview. The Cell Membrane. Phospholipids. Phospholipid bilayer. More than lipids. Fatty acid tails. Phosphate group head

Division Ave High School Ms. Foglia AP Biology

The Cell Membrane. Usman Sumo Friend Tambunan Arli Aditya Parikesit. Bioinformatics Group Faculty of Mathematics and Science University of Indonesia

Lecture 36: Review of membrane function

Chapt. 10 Cell Biology and Biochemistry. The cell: Student Learning Outcomes: Describe basic features of typical human cell

Cell Membrane: a Phospholipid Bilayer. Membrane Structure and Function. Fluid Mosaic Model. Chapter 5

Membrane Structure and Function

10/28/2013. Double bilayer of lipids with imbedded, dispersed proteins Bilayer consists of phospholipids, cholesterol, and glycolipids

Chapter 9 - Biological Membranes. Membranes form a semi-permeable boundary between a cell and its environment.

CH 7.2 & 7.4 Biology

The Plasma Membrane. 5.1 The Nature of the Plasma Membrane. Phospholipid Bilayer. The Plasma Membrane

Membrane Structure and Function. Cell Membranes and Cell Transport

The Plasma Membrane - Gateway to the Cell

Ch. 7 Cell Membrane BIOL 222

The Cell. Biology 105 Lecture 4 Reading: Chapter 3 (pages 47 62)

Membrane Structure and Function

Membrane Structure and Function - 1

Cell Membranes. Dr. Diala Abu-Hassan School of Medicine Cell and Molecular Biology

Plasma Membrane Function

Membrane Structure & Function (Learning Objectives)

Membrane Structure and Function

Draw and label a diagram to show the structure of membranes

Membrane Structure and Function

Chapters 9 and 10 Lipids and Membranes

Concept 7.1: Cellular membranes are fluid mosaics of lipids and proteins

Rama Abbady. Odai Bani-Monia. Diala Abu-Hassan

Membrane Transport. Anatomy 36 Unit 1

Cell Boundaries Section 7-3

Unit 1 Matter & Energy for Life

Diffusion, Osmosis and Active Transport

Cell Transport & the Cell Membrane

What do you remember about the cell membrane?

BIOH111. o Cell Biology Module o Tissue Module o Integumentary system o Skeletal system o Muscle system o Nervous system o Endocrine system

6 MEMBRANES AND TRANSPORT

MEMBRANE STRUCTURE & FUNCTION

Membrane Structure and Function

Transport. Slide 1 of 47. Copyright Pearson Prentice Hall

BSC Exam I Lectures and Text Pages

I. Chemical Properties of Phospholipids. Figure 1: Phospholipid Molecule. Amphiphatic:

I. Fluid Mosaic Model A. Biological membranes are lipid bilayers with associated proteins

Unit 1 Matter & Energy for Life

7.3 Cell Boundaries. Regents Biology. Originally prepared by Kim B. Foglia. Revised and adapted by Nhan A. Pham

BIOLOGICAL CHEMISTRY Prof. J.H.P. Bayley, Dr. R.M. Adlington and Dr. L. Smith Trinity Term First Year. Lecture 2 Hagan Bayley

Describe the Fluid Mosaic Model of membrane structure.

Questions in Cell Biology

The Cell Membrane. Phospholipids. Chapter 7: Arranged as a Phospholipid bilayer. Cell membrane defines cell! Cell membrane separates living cell from

5.6 Diffusion, Membranes, and Metabolism

1. Which of the following statements about passive and primary active transport proteins is FALSE?

Membrane structure & function

Transcription:

Biomembranes structure and function B. Balen

All cells are surrounded by membranes Selective barrier But also important for: 1. Compartmentalization 2. Biochemical activities 3. Transport of dissolved substances 4. Transport of ions 5. Signal transduction 6. Cell-cell interaction 7. Energy conversion Dynamic structures: Figure 4.2. Karp, Cell Biology, 7 th edition, 2013. 1. Constant movements 2. Continuous building and degradation of their components

Indirect membrane observations: Nägeli (1855.) Isotonic solution Hypertonic solution

Biomembrane thickness: 5-10 nm (not visible with light microscope) J.D. Robertson (1950s) first EM photos of membranes membranes of bacteria, plant and animal cells have equal structural plan

All biological membranes have common basic structure: very thin layer of lipid and protein molecules connected with non-covalent interactions dynamic and fluid structures biochemical composition: lipids, proteins, sugars membranes with similar functions (e.g. from the same organelles) are similar in different cells membranes with different functions (e.g. different organelles) are very different within the same cell

Lipids double bilayer (thickness 5-10 nm) basic fluid structure Proteins involved in membrane functions transport, catalyses, structure, receptors A EM-photo erythrocyte membrane B 2D membrane C 3D membrane Figure 10-1 Molecular Biology of the Cell ( Garland Science 2008)

Membrane lipids Amphipathic molecules Spontaneous formation of bilayer in aqueous solution

Lipid bilayer: TEM - the railroad track appearance of the plasma membrane Figure 12-1. 2000. Cooper

Phospholipids phosphatidylcholine sphingomyelin phosphatidylethanolamine phosphatidylserine phosphatidylinositol outer (extracellular) leaflet inner (cytoplasmic) leaflet Cholesterol Glycolipids Figure 12-2. 2002. Cooper

Phospholipids Phosphatidylcholin polar head + two hydrophobic carbohydrate chains tails fatty acids (14 24 C atoms) 1 st tail no double bonds (saturated) 2 nd tail 1 or more cis-double bonds (unsaturated) differences in length and saturations membrane fluidity Figure 10-2 Molecular Biology of the Cell ( Garland Science 2008)

Bacteria mostly one phospholipid type; no cholesterol Eucaryota mixture of different phospholipid types + cholesterol + glycolipids outer leaflet: phosphatidylcholine sphingomyelin inner leaflet: phosphatidylethanolamine phosphatidylserine* phosphatidylinositol derived from glycerol (phosphoglycerides) Figure 10-3 Molecular Biology of the Cell ( Garland Science 2008) derived from sphingosine (sphingolipid) * translocation to the outer leaflet apoptosis

phosphatidylinositol glycerole derivative important for cell signalization carries - charge contributes to negative charge of the inner leaflet

Orientation in membrane 2002 Bruce Alberts, et al.

Spontaneous formation of lipid bilayer one tail micelle two tails bilayer energetically most favored distribution Spontaneous closure of lipid bilayer Animation http://www.youtube.com/watch?v=lm-davbl330 Figures 10-7;10-8 Molecular Biology of the Cell ( Garland Science 2008)

Phospholipid mobility in lipid bilayer Flip-flop rare (< 1x per month) Lateral diffusion frequent (~10 7 per sec) Rotation Flexion Figure 10-11 Molecular Biology of the Cell ( Garland Science 2008)

Phases and phase transitions Membrane fluidity is dependent on: - composition - temperature Composition - the double bonds make it more difficult to pack the chains together lipid bilayer more difficult to freeze - because the fatty acid chains of unsaturated lipids are more spread apart lipid bilayers are thinner than bilayers formed from saturated lipids *bacteria, yeast adjust their lipid composition according to the environmental temperature Figure 10-12 Molecular Biology of the Cell ( Garland Science 2008)

Lipid unsaturation effect Diagram showing the effect of unsaturated lipids on a bilayer. The lipids with an unsaturated tail (blue) disrupt the packing of those with only saturated tails (black) The resulting bilayer has more free space and is consequently more permeable to water and other small molecules

Cholesterol steroid - amphipathic molecule important for membrane fluidity regulation eucaryotic cells. animal cells cholesterol plant cells cholesterol + similar compounds (sterols) Figures 10-4; 10-5 Molecular Biology of the Cell ( Garland Science 2008) cholesterol inserts into the membrane with its polar hydroxyl group close to the polar head groups of the phospholipids high temp. decreases permeability for small water-soluble molecules low temp. separates tails and prevents phase transition Figure 2.47 2000 Cooper

Glycolipids lipids with sugars lipid molecules with the highest asymmetry only in outer leaflet Plants glycerol derivatives Animal cells sphingosine derivatives Bacteria no glycolipids Figure 10-18 Molecular Biology of the Cell ( Garland Science 2008)

Lipid composition of different cell membranes Others phosphatidylinositol and some other minor lipids Table 10-1 Molecular Biology of the Cell ( Garland Science 2008)

Asymmetrical distribution of phospholipids and glycolipids in lipid bilayer of human red blood cells glycolipids phosphatidylcholine sphingomyelin phosphatidylethanolamine phosphatidylserine Figure 10-16 Molecular Biology of the Cell ( Garland Science 2008)

Membrane proteins Membrane proteins can be associated with the lipid bilayer in various ways 1, 2, 3 transmembrane proteins (amphipathic) 4, 5, 6 anchored proteins (exposed at only one side) 7, 8 periphery proteins (noncovalent interactions with other proteins) Figure 10-17. 2002 Bruce Alberts, et al.

Transmembrane protein A) α-helix α-helix is neutralizing polar character of peptide bonds Gly and Phe hydrophobic aminoacids Figure 10-19; 10-22. 2002 Bruce Alberts

Transmembrane protein b) β-barrel folding of β-sheets (8-22) into a barrel conformation β barrel formation is neutralizing polar character of peptide bonds 2002 Bruce Alberts, et al.

Anchored proteins examples of proteins anchored in the plasma membrane by lipids and prenyl group Figure 10-20 Molecular Biology of the Cell ( Garland Science 2008)

Bind to proteins or lipids Only in outer leaflet Membrane carbohydrates

Glycocalix revealed by TEM https://www3.nd.edu/~aseriann/chap12b.html/sld071.htm http://www.nfsdsystems.com/w3bio315/ Electron microscopy image of the endothelial glycocalyx in a coronary capillary http://www.nature.com/nr neph/journal/v6/n6/fig_tab /nrneph.2010.59_ft.html Glycocalix composed of sugars from: glycolipids glycoproteins proteoglycans

R

Figure 4.4. Karp, Cell Biology, 7 th edition, 2013.

Membrane transport

The relative permeability of a synthetic lipid bilayer to different classes of molecules small uncharged molecules can diffuse freely through a phospholipid bilayer bilayer is impermeable to: larger polar molecules (such as glucose and amino acids) ions the smaller the molecule and, more importantly, the less strongly it associates with water, the more rapidly the molecule diffuses across the bilayer Figure 11 Molecular Biology of the Cell ( Garland Science 2008) Figure 12.15 2000. Cooper

Three ways in which molecules can cross the membrane Passive diffusion Facilitated diffusion Passive transport - down the concentration gradient! Active transport http://science.nayland.school.nz/graemeb/yr12%20biology/cells/cells.html

Two main classes of membrane transport proteins Carriers bind the specific solute to be transported and undergo a series of conformational changes to transfer the bound solute across the membrane Channels interact with the solute to be transported much more weakly A - carrier protein alternates between two conformations, solute-binding site is sequentially accessible on one side of the bilayer and then on the other B - channel protein forms a water-filled pore across the bilayer through which specific solutes can diffuse Figure 11-3. 2002 Bruce Alberts, et al.

Passive and active transport Passive transport all channel proteins and many carriers Active transport only carriers; requires energy Passive transport down an electrochemical gradient occurs spontaneously simple diffusion through the lipid bilayer facilitated diffusion through channels and passive carriers Active transport requires an input of metabolic energy mediated by carriers that harvest metabolic energy to pump the solute against its electrochem. gradient Figure 11-4. 2002 Bruce Alberts, et al.

Channels simply form open pores in the membrane, allowing small molecules of the appropriate size and charge to pass freely through the lipid bilayer porins permit the free passage of ions and small polar molecules through the outer membranes of bacteria aquaporins water channel proteins water molecules cross membrane much more rapidly than they can diffuse ion channels mediate the passage of ions across plasma membranes 2002 Bruce Alberts, et al.

Porins Figure 12.8 Bacterial outer membranes The plasma membrane of some bacteria is surrounded by a cell wall and a distinct outer membrane The outer membrane contains porins form open aqueous channels allowing the free passage of ions and small molecules Cooper 2000.

Aquaporins Schematic depiction of water movement through the narrow selectivity filter of the aquaporin channel

Ion channels Figure 12.18. Model of an ion channel in the closed conformation, the flow of ions is blocked by a gate opening of the gate allows ions to flow rapidly through the channel channel contains a narrow pore that restricts passage to ions of the appropriate size and charge Figure 12.24. Ion selectivity of Na + channels narrow pore permits the passage of Na + bound to a single water molecule but interferes with the passage of K + or larger ions Cooper 2000.

The gating of ion channels Animations - http://www.youtube.com/watch?v=du-bwt0ul2m -http://www.youtube.com/watch?v=mkalkv9c2iu Figure 11-21 Molecular Biology of the Cell (2008)

Carriers bind the specific solute to be transported involved in passive and active transport Passive transport down the conc. gradient Figure 11-5 Molecular Biology of the Cell ( Garland Science 2008)

Model for the facilitated diffusion of glucose glucose transporter alternates between two conformations glucose-binding site is alternately exposed on the outside and the inside of the cell glucose binds to a site exposed on the outside of the plasma membrane transporter then undergoes a conformational change glucose-binding site faces the inside of the cell and glucose is released into the cytosol transporter then returns to its original conformation Figure 12.17. 2000. Cooper

Active transport requires energy there are three ways of driving active transport Actively transported molecule Energy source A B C A coupled carriers couple the uphill transport of one solute to the downhill transport of another B ATP-driven pumps ATP hydrolysis C light-driven pumps mainly in bacterial cells Figure 11-8. 2002 Bruce Alberts, et al.

uniport Three ways of carrier-mediated transport coupled carriers transport of one molecule is dependent on the transport of the another in the same direction symport in the opposite direction antiport Figure 11-8 Molecular Biology of the Cell ( Garland Science 2008)

Active transport of glucose symport active transport driven by the Na + gradient is responsible for the uptake of glucose from the intestinal lumen transporter coordinately binds and transports 1 glucose and 2 Na + into the cell transport of Na + in the energetically favorable direction drives the uptake of glucose against its concentration gradient Figure 12-31. 2000. Cooper

Na + /K + pump antiport Figure 12.28. 2000 Cooper http://highered.mcgraw-hill.com/sites/0072495855/student_view0/chapter2/animation how_the_sodium_potassium_pump_works.html

Na + /K + important for: osmotic balance stabilization of cell volume Figure 12.29. 2000. Cooper concentrations of Na + and Cl - are higher outside than inside the cell concentration of K + is higher inside than out low concentrations of Na + and Cl - balance the high intracellular concentration of organic compounds equalizing the osmotic pressure and preventing the net influx of water Figure 11-6. 2002 Alberts, et al.

Endocytosis an energy-using process by which cells absorb macromolecules and microorganisms by engulfing them it is used by all cells of the body because most substances important to them are large polar molecules that cannot pass through the hydrophobic plasma membrane the opposite process is exocytosis

Phagocytosis process by which cells bind and internalize particulate matter larger than around 0.75 µm in diameter (small-sized dust particles, cell debris, microorganisms, apoptotic cells) only occurs in specialized cells bacterium membrane fusion lysosome phagosome pseudopodium involve the uptake of larger membrane areas than clathrin-mediated endocytosis and caveolae pathway phagolysosome Animation http://www.youtube.com/watch?v=4gltk8yc1zc&feature=related 2002 Cooper i Hausman

A B A amoeba eating another protiste B makrohages eating red blood cells Animation - Amoeba eats two paramecia (Amoeba's lunch) http://www.youtube.com/watch?v=pvoz4v699gk 2002 Cooper and Hausman

Receptor-mediated endocytosis Mechanism for selective uptake of specific molecules receptors formation of clathrin-coated vesicles fusion with endosome material sorting fusion with lysosome Figure 12.36, 2002 Cooper and Hausman

Cholesterol uptake by endocytosis LDL- low density lipoprotein Low ph! Figure 12.41, 2004 Cooper and Hausman