Brain Stimulation in the Study and Treatment of Addiction. From Animal Models to Humans

Similar documents
MOLECULAR BIOLOGY OF DRUG ADDICTION. Sylvane Desrivières, SGDP Centre

Substance Use and Mental Health Disorders: Challenges for Primary Care

ECHO Presentation Addiction & Brain Function

Understanding Addiction. Understanding Addiction. Acknowledgements. KP Regional Pain Symposium August 8, Mary Eno MD, MPH

The Biology of Addiction

America is a drugged society

General introduction. Chapter 1

Neurobiology of Addiction JeanAnne Johnson Talbert, DHA, APRN BC, FNP, CARN AP

Neurobiology of Addiction

The Biology of Addiction Eric J. Nestler

Council on Chemical Abuse Annual Conference November 2, The Science of Addiction: Rewiring the Brain

nucleus accumbens septi hier-259 Nucleus+Accumbens birnlex_727

Cogs 107b Systems Neuroscience lec9_ neuromodulators and drugs of abuse principle of the week: functional anatomy

The Neurobiology of Addiction

590,000 deaths can be attributed to an addictive substance in some way

The Neurobiology of Addiction

The Neurobiology of Addiction. Angela Haliburda, DO

Food restriction: enhancing effects on drug reward and striatal cell signaling

CHAPTER 2. THE NEUROBIOLOGY OF SUBSTANCE USE, MISUSE, AND ADDICTION

Introduction to TMS Transcranial Magnetic Stimulation

PERSPECTIVE. Is there a common molecular pathway for addiction? Eric J Nestler NEUROBIOLOGY OF ADDICTION

Synaptic plasticity and addiction

Effects of lesions of the nucleus accumbens core and shell on response-specific Pavlovian i n s t ru mental transfer

The Biological Perspective. Jørg Mørland Senior researcher, Norwegian Institute of Public Health Professor em of Medicine University of Oslo

National Institute on Drug Abuse (NIDA) Understanding Drug Abuse and Addiction: What Science Says

The Role of Smoking in Cocaine. Addiction

BRAIN MECHANISMS OF REWARD AND ADDICTION

Classes of Neurotransmitters. Neurotransmitters

C81ADD Psychology of Addiction. Alcohol. Ethyl alcohol (ethanol) School of Psychology. Tobias Bast.

The Adolescent Developmental Stage

Brain Health and Opioid Abuse

Drugs, The Brain, and Behavior

NEUROBIOLOGY ALCOHOLISM

The future of pharmacological treatment.

Draft 2 Neuroscience DRAFT work in progress

processes in the central nervous system (CNS), affecting many of the during the course of ethanol treatment. Ethanol stimulates the release of

Nervous System, Neuroanatomy, Neurotransmitters

Basic definition and Classification of Anhedonia. Preclinical and Clinical assessment of anhedonia.

Eighth Edition. Part I: Current Science of Addiction, Relapse & Recovery: Dispelling The Stigmas

Understanding Addiction and Its Impact on the Brain. SDSMA Webinar Matthew Stanley, DO

Behavioral Neuroscience: Fear thou not. Rony Paz

At a Glance. Background Information. Lesson 3 Drugs Change the Way Neurons Communicate

Substance Abuse and Addictions Substance abuse: a pattern of substance use that produces clinically significant impairment or distress.

Psychoactive Drugs & The Brain

The Nervous System Mark Stanford, Ph.D.

Prefrontal dysfunction in drug addiction: Cause or consequence? Christa Nijnens

MeCP2 and psychostimulantinduced behavioral adaptations. Anne E. West, M.D., Ph.D. Department of Neurobiology Duke University Medical Center

Drugs, Brain and Behavior

The Neurobiology of Drug Addiction

If you give any person a prescription of something like Valium and have them take it on

Nanoparticles and Gene Therapies for Addictions: What to Do with DARPP-32

Drugs, addiction, and the brain

11/3/2014. Opiates: methadone, buprenorphine, heroin, prescription drugs: Vicodin, OxyContin, Percocet

Opiate Addiction: Treatment Perspectives

A Coil Design for Transcranial Magnetic Stimulation of Deep Brain Regions

Understanding Addiction: Why Can t Those Affected Just Say No?

Transcriptional and Epigenetic Mechanisms of Addiction

ATHS 2015 Workshop and Discussion:

Defining & diagnosing addiction

How Addiction Affects the Brain: The Neuroscience of Compulsive Behavior

The Neurobiology of Psychiatric Disorders

Possession by evil spirits? Demon rum. Lack of moral fiber? War on drugs Just say no

Effects of Drugs on the Brain and Behavior in Adolescents

Basal Ganglia Anatomy, Physiology, and Function. NS201c

Cogs 107b Systems Neuroscience Lecture 7: 02/02/16 neuromodulators and drugs of abuse principle of the week:

Neurobiology of Pain and Addiction

Understanding the Brain: What Drugs Can Tell Us

Behavioral Neuroscience: Fear thou not. Rony Paz

Neural Mechanisms of Addiction: The Role of Reward-Related Learning and Memory

The Brain, Behavior and Addiction National Family Dialogue January 27, 2010 Presenter: Flo Hilliard, MSH University of Wisconsin-Madison

Ken Winters, Ph.D. Department of Psychiatry University of Minnesota Midwest Conference on Problem Gambling August 11, 2004

Key Concepts. Machinery of the Mind. The Growing Cycle. Six Brain Mind Functions. Machinery of the Mind 6/1/2012

A Decade of Orexin/Hypocretin and Addiction: Where Are We Now?

TREATMENT-SPECIFIC ABNORMAL SYNAPTIC PLASTICITY IN EARLY PARKINSON S DISEASE

The Neuroscience of Addiction: A mini-review

SUPPLEMENTARY INFORMATION

Tobacco Addiction. Addiction Terminology. Jack E. Henningfield, PhD Johns Hopkins School of Medicine Pinney Associates

Relationship Between Stress and Substance Use Disorders: Neurobiologic Interface

Neurotransmitter Functioning In Major Depressive Disorder

Encyclopedia of Addictive Behaviours: Article Template

Effects of mgluii Receptor Antagonist LY on Nicotine-Sensitized Rats

Biological Psychology 2012 Spring 2005 Patterson

Memory Systems II How Stored: Engram and LTP. Reading: BCP Chapter 25

Synaptic plasticityhippocampus. Neur 8790 Topics in Neuroscience: Neuroplasticity. Outline. Synaptic plasticity hypothesis

Any use of the contents of this presentation is authorized, on the condition of informing the author about it and quoting the source.

Involvement of the endocannabinoid system in drug addiction

Keep off the grass? Cannabis, cognition and addiction

Part IV: Slipping Up: Neuroscience Basis of Relapse & Recovery July 31, am 12:30 pm with Break 10-10:15am

The Three Pearls DOSE FUNCTION MOTIVATION

MOLECULAR BASIS OF LONG-TERM PLASTICITY UNDERLYING ADDICTION

The Neurobiology of Schizophrenia

Understanding Addiction and Dugs Of Abuse

Neurocircuitry of Addiction

Nicotine Decreases Ethanol-induced Dopamine Signaling and Increases Self-administration via Steroid Hormones

The role of the orbitofrontal cortex in reward related behavior in addiction and alcoholism in particular

Course Calendar - Neuroscience

Embargoed until Nov. 12, 10:30 a.m. PST Contacts: Kat Snodgrass, (202) Press Room, Nov. 9 13: (619) Anne Nicholas, (202)

Pharmacotherapy for Substance Use Disorders

C ommon to most descriptions of drug addiction or substance dependence is the idea of a compulsion to

The Neurobiology of Drug Addiction

Transcription:

The Weizmann Institute of Science Brain Stimulation in the Study and Treatment of Addiction From Animal Models to Humans Abraham Zangen Department of Neurobiology The Weizmann Institute of Science

Drug addiction is induced by repeated exposure NEURAL ADAPTATIONS Aversive/appetitive feeling Gradual increase in reward feeling Gradual decrease in reward (liking) gradual increase in craving (wanting) High craving Low reward Aversive feelings 1 st Experience Several Intakes Repeated Intakes; Gradual Dose Increase Compulsive Use Peer pressure Curiosity I Liked It It relaxes me Don t worry, I can handle it I Need It

Basic neuronal adaptations induced by repeated drug use D1 super-sensitivity. D2 autoreceptor sub-sensitivity. Tyrosine Hydroxilase upregulation. Glutamate receptors upregulation in the VTA. Glutamate receptors downregulation in the NAc. LTD-like effect in the glutamatergic afferents towards the NAc. LTP-like effect in the glutamatergic afferents towards the VTA. Low basal release and activity of dopamine. Increased dopamine and glutamate transmission in response to drugs, stress and drug-associated cues. Various desensitization processes (e.g. downregulation of opioid receptors induced by repeated heroin use). Transcranial magnetic stimulation studies show that repeated drug use induce changes in neuronal excitability

Transcranial Magnetic Stimulation Basic Principles Electric field applied over neuronal tissue has been used for many decades of research to induce axonal depolarization. Earlier, Michael Faraday (1831) established the relationship between electrical currents and magnetic fields. Rapidly changing electrical currents induce rapidly changing magnetic fields that can produce an effective local electric field and thereby axonal depolarization. In TMS, capacitors are rapidly discharged into an electric coil to produce an effective magnetic field pulse.

Indeed, it is possible to induce motor activation when placing the coil over the primary motor cortex, or visual effects when placed over the occipital cortex. Even acute cognitive interference when repetitive TMS is applied over the prefrontal cortex. It is possible to measure motor-evoked responses or EEG alterations. Overall, these studies show reduced cortical excitability in cocaine and nicotine addicts. (Feil and Zangen., Neuroscience and Biobehavioral Reviews 2010)

Repeated TMS (rtms) sessions can induce long-lasting effects: High frequency rtms can increase excitability / produces LTPlike effects, induce DA release and alterations in markers for neuroplasticity (e.g. Zeimann 2004; Hyodo and Zangen., 2002). Can such effects on neuroplasticity induce therapeutic effect in addiction?

Where should we interfere? Addiction involves long-lasting alterations in the Brain Reward System Brain centers and pathways that are activated by natural and artificial rewards. Electrical stimulation of these centers generate a positive reward. Different types of rewards induce dopamine release in the nucleus accumbens. Cues that predict reward induce dopamine release in the NAc. Hijacked by drugs of abuse. Ventral tegmental area (VTA), Nucleus Accumbens (NAS) Prefrontal Cortex.

Why would repeated electrical stimulation of rewardrelated brain regions affect addictive behaviors? Repeated drug use induce long-lasting neuroadaptations in reward circuitries, including changes in synaptic strength and neural excitability. Some of these neuroadaptations are thought to mediate cue-induced drug seeking (Kalivas et al., 2009). Electrical stimulation of sites in the mesocorticolimbic pathway causes dopaminergic and glutamatergic elevations in the NAc and VTA (e.g. You et al., 2001), both mediated partly via glutamatergic innervations that originate in the PFC. Therefore, repeated stimulation of reward-related sites may either sensitize or desensitize responses to drugs of abuse or drug-associated cues. For example: Several studies showed that expression of GluR1 in the VTA is increased by repeated exposure to cocaine (e.g. Lu et al., 2003), while repeated hypothalamic ICSS downregulates GluR1 levels in the VTA (Carlezon et al., 2001). We hypothesized that repeated intracranial electrical stimulation (ICES) of reward-related brain areas in rats pretreated with cocaine would hyperactivate the reward system and alter drug-induced neuroadaptations. Therefore, such approach could reduce cocaine reinforcement, seeking, and intake. We have also began to characterize the effects of repeated ICES on cocaine induced neuroadaptations by measuring the expression of glutamate receptor subunits within reward-related brain sites. (Levy et al., JN 27:14179-89, 2007)

Experimental Procedures Cocaine Self-administration: Drug Seeking Test Progressive Ratio Test Surgery Recovery Cocaine Self-Administration Intra-Cranial Electrical Stimulation - ICES Days 1-7 Days 8-14 Days 15-24 Day 25 Day 26 Morris Water Maze Days 27-30 ICES: High frequency stimulation (100Hz or 20Hz), 30min/day for 10 consecutive days. Stimulation was applied at their home cages using ICSS parameters (intensity and pattern)

(Levy et al., JN 27:14179-89, 2007)

Psychomotor Sensitization (Levy et al., JN 27:14179-89, 2007)

Long-term effect of repeated stimulation 1-2 days 9-10 days (Levy et al., JN 27:14179-89, 2007)

GluR1 in the VTA and NAc % compared to saline non-stimulated 1000% 900% 800% 700% 600% 500% 400% 300% 200% LH rats - avta * # % compared to saline non-stimulated PFC rats anac core 180% 160% 140% 120% 100% 80% 60% 40% * # 100% 0% 20% 0% (Levy et al., JN 27:14179-89, 2007)

Interim Summary 1 Repeated ICES of the LH decreases drug-seeking, but not cocaine reinforcement. Repeated ICES of the PFC decreases seeking behavior and cocaine reinforcement. No effect on natural reward consumption (did not present the data). The ICES effects are partly associated with normalization of glutamatergic neural-adaptations in sub-regions of the VTA and NAc. (Levy et al., JN 27:14179-89, 2007)

Transcranial Magnetic Stimulation (TMS) Potential application in humans Repeated stimulation of the PFC using TMS may become a novel treatment strategy for various addictions in humans. It is also used to measure alterations in cortical excitability in addicts.

10 Days of rtms Treatment over the PFC 10 Hz 5 sec each train 50 pulses/train 100 msec ISI 15 sec ITI 20 trains/day 100% of motor threshold 5 cm 4 Groups: Sham Stim Neutral Pics Sham Stim Smoke Pics Real Stim Neutral Pics Real Stim Smoke Pics (Amiaz et al., Addiction, 2009)

Pictures Smoke Neutral (Amiaz et al., Addiction, 2009)

Number of cigarettes smoked per day (Self-Report) * * ** Sham Neutral Sham Smoke Active Neutral Active Smoke (Amiaz et al., Addiction, 2009)

Cotinine/Creatinin in Urine Sham Neutral Sham Smoke Active Neutral Active Smoke (Amiaz et al., Addiction, 2009)

Cue-induced Craving (VAS) Sham Neutral Sham Smoke Real Neutral Real Smoke (Amiaz et al., Addiction, 2009)

Tobacco Craving Questionnaire (TCQ) General craving Sham Neutral Sham Smoke Real Neutral Real Smoke (Amiaz et al., Addiction, 2009)

Fagerström Test for Nicotine Dependence (FTND) Sham Neutral Sham Smoke Active Neutral Active Smoke (Amiaz et al., Addiction, 2009)

Follow-Up: 6 months later (phone interview) (Amiaz et al., Addiction, 2009)

Interim Summary 2 Multiple rtms sessions of the PFC Reduces cigarette consumption. Reduces cue-induced craving when stimulation is applied while the memory trace is active. Limitations: Only partial effects; Does not induce full quitting.

Where should we interfere? Addiction involves long-lasting alterations in the Brain Reward System Brain centers and pathways that are activated by natural and artificial rewards. Standard TMS Electrical stimulation of these centers generate a positive reward. Different types of rewards induce dopamine release in the nucleus accumbens. Cues that predict reward induce dopamine release in the NAc. Hijacked by drugs of abuse. Ventral tegmental area (VTA), Nucleus Accumbens (NAS) Prefrontal Cortex.

Deep TMS Computerized simulations of electric field induced by various coil shapes E A A = t Φ Induced field: E = Φ Electrostatic field: Total field: Right Hemisphere Left Hemisphere Right Hemisphere Left Hemisphere E = E + E A Φ => The electrostatic charge induced by non-tangential coil elements plays a critical role.

Fundamental principles based on computerized calculations and confirmed by phantom brain measurements: It is possible to induce summation of fields in depth by spreading several elements of a coil around a theoretical meeting point, as long as the return elements of the circuit (that produce cancellation) are placed far enough from the deep target. Non-tangential components of any coil shape would decrease efficacy and facilitate the rate of electric field reduction as a function of distance. Zangen et al., 2005

Different versions of the H-Coil H2 H1 Considerations: Target in depth, directions of axons to be stimulated, decreasing facial pain and other risks or side effects.

Phantom Brain Measurements

Rate of reduction in the electric field induced by various coils Ez(Xcm)/Ez(1cm) 1.1 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 1 2 3 4 5 6 7 8 Distance from Coil (cm) fig 8 Double Cone H1 H2 H6a Zangen et al., 2005; Roth et al., 2007, 2009

Ongoing Project - Deep TMS

Acknowledgments Rats Experiments: Dino Levy Maytal Shabat-Simon Noam Barnea-Ygael Ayelet Cooper TMS Experiment: Dino Levy Dr. Revital Amiaz Dana Vainiger

Example (described at Zangen et al., 2005): Summation of electric impulses Sketch of an H-Coil Base complementary to the head Minimization of non-tangential coil elements Return paths location and nontangential elements remote from target Proper orientation of coil elementsparallel to target bundles

Acc VTA FCX AMYG VP ABN Raphé LC GLU GABA ENK OPIOID GABA GABA GABA DYN 5HT 5HT 5HT NE HIPP PAG RETIC To dorsal horn END DA GLU Opiates ICSS Amphetamine Cocaine Opiates Cannabinoids Phencyclidine Ketamine Opiates Ethanol Barbiturates Benzodiazepines Nicotine Cannabinoids OPIOID HYPOTHAL LAT-TEG BNST NE CRF OFT

The Reward Circuitry Can we interfere with the alterations induced in the reward circuitry in addiction?

Potential Treatment for Drug Addiction? Repeated electrical stimulation of inputs to the meso-corticolimbic pathway Hyper-activation of these pathways Neural Adaptations Such as, down-regulation of GluR1 in the VTA Reduction of Drug Craving De-sensitization of the brain reward system Prevention of Relapse

rtms Hypothesis PFC Disruption in the craving network NAc/Striatum Dopamine Replaces Nicotine Desensitization in reward circuitry Neuroadaptaions Reduction in cigarette consumption

Hypothesis Smoking related cues Activation of Smoking related cues circuit/memory rtms The circuit is labile for disruption Blocking of cue-induced craving

Is the PFC the best site of intervention? Can brain stimulation block the association between the cue and the drug? Relapse prevention? Back to the rats and the GluR1

The Basolateral amygdala (BLA) The BLA has been implicated as a critical component of the neural circuits subserving the acquisition, consolidation and expression of cue-drug associations, which likely drive drugseeking during relapse. Long-lasting vulnerability to cue-induced drug-taking behaviors involve maladaptive neuroadaptations. Notable among these are persistent alterations in glutamatergic synapses in the amygdala (e.g. Lu et al. 2005). Low frequency of electrical stimulation of specific brain sites can interfere with local activity and induces long-term depression (LTD) in BLA neurons (Wang and Gean 1999). GluR1 phosphorylation has been shown to play a critical role in synaptic associative learning (Lee et al. 2003) and LTD.

Stimulation of the BLA A single 15-min session of low frequency (1Hz) using an LTD protocol

Effect of BLS stimulation on drug seeking after 1 day cocaine self administration no cocaine

Effect of BLS stimulation on drug seeking after 1 week NO COC

1 day post ICES in the BLA (1 Hz): 5min but not 1min of retrieval induced an extinction process, which dominated behavior in the test session. ICES of the BLA following 5min but not 1min retrieval disrupted extinction. One week post ICES (1 Hz): 5min retrieval did not initiate extinction. ICES of the BLA following 5min retrieval impaired cue induced drug-seeking. 30min retrieval initiated extinction. ICES of the BLA following 30min retrieval disrupted extinction.

Again, the effects of BLA stimulation were opposite in direction depending on the timing of stimulation. The exact same physical intervention (15 min, Hz BLA stimulation at the same intensity) can induce different and even opposite effects depending on timing. This timing-dependent effect of stimulation on GluR1 together with the timing-dependent effect of stimulation on behavior suggest that stimulation parameters per se are not the only factors that direct the neurochemical and behavioral outcomes and that neuronal activity in the stimulated region affects the outcome of stimulation.

(Levy et al., JN 27:14179-89, 2007)

Effect of ICES on Sucrose Self-Administration LH & PFC Acquisition of Self-Administration Drug-Seeking Test (No Cocaine) LH PFC Progressive Ratio Test No effect on sucrose consumption Levy et al., J. Neuroscience (2007) LH PFC

rtms Hypothesis dlpfc Disruption in the craving network NAc/Striatum Dopamine Replaces Nicotine Desensitization in reward circuitry Neuroadaptaions Reduction in cigarette consumption

Hypothesis Smoking related cues Activation of Smoking related cues circuit/memory rtms The circuit is labile for disruption Blocking of cue-induced craving