Chapter 18 Carboxylic Acids and Their Derivatives. Nucleophilic Addition- Elimination at the Acyl Carbon

Similar documents
Chapter 18. Carboxylic Acids and Their Derivatives. Nucleophilic Addition-Elimination at the Acyl Carbon

1/3/2011. Chapter 17 Carboxylic Acids and Their Derivatives. Nucleophilic Addition- Elimination at the Acyl Carbon

CARBOXYLIC ACIDS AND THEIR DERIVATIVES: NUCLEOPHILIC ADDITION-ELIMINATION AT THE ACYL CARBON

Fundamentals of Organic Chemistry CHEM 109 For Students of Health Colleges Credit hrs.: (2+1)

Chapter 10. Carboxylic Acids and Derivatives. Naming Carboxylic Acids and Derivatives. Carboxylic Acids: RCOOH (RCO 2 H)

10. CARBOXYLIC ACIDS AND THEIR DERIVATIVES 10.1 Nomenclature of Carboxylic Acids 10.2 Physical Properties of Carboxylic Acids 10.

Carboxylic Acid Derivatives Reading Study Problems Key Concepts and Skills Lecture Topics: Structures and reactivity of carboxylic acid derivatives

Esters of Carboxylic Acids These are derivatives of carboxylic acids where the hydroxyl group is replaced by an alkoxy group.

Chapter 20: Carboxylic Acid Derivatives: Nucleophilic Acyl Substitution

Carboxylic Acids and their Derivatives I

Carboxylic Acids and Their Derivatives. Chapter 17. Carboxylic Acids and Their Derivatives

Chapter 19: Carboxylic Acid Derivatives: Nucleophilic Acyl Substitution 19.1: Nomenclature of Carboxylic Acid Derivatives (please read)

R O R' Acid anhydride. Acid halide. Carboxylic acid. Ester O O O O. Nitrile Acyl phosphate Thioester. Amide

Carboxylic Acid Derivatives: Nucleophilic Acyl Substitution

Lecture 19. Nucleophilic Acyl Substitution Y - + X - Y X R C X. April 2, Chemistry 328N

Carboxylic Acids. The Importance of Carboxylic Acids (RCO 2 H)

Loudon Chapter 21 Review: Carboxylic Acid Derivatives Jacquie Richardson, CU Boulder Last updated 3/20/2018

Carboxylic Acids and Nitriles. Chapters 20, 21 Organic Chemistry, 8th Edition John McMurry

Carboxylic Acid Derivatives: Nucleophilic Acyl Substitution Reactions

Alehydes, Ketones and Carboxylic Acid

EXPERIMENT 8 (Organic Chemistry II) Carboxylic Acids Reactions and Derivatives

Lecture 20. Herman Emil Fischer Nobel Prize 1902 Sugars, Esters and Purines. April 4, Chemistry 328N

Chapter 20: Carboxylic Acids and Nitriles شیمی آلی 2

Chapter 20 Carboxylic Acids. Introduction

Carboxylic Acids and Carboxylic Acid Deriva3ves. Nucleophilic Acyl Subs0tu0on (Addi0on- Elimina0on)

Ch 21 Carboxylic Acid Derivatives and Nu Acyl Subst n

DERIVATIVES OF CARBOXYLIC ACIDS

Physical properties: C L = L. Cl, NH 2, OCH 3, OH, OCR O O O NH 2 CH 3 N(CH 3 ) 2. Sol. in H 2 O

Carbonyl Chemistry VI + C O C. 1pm In Geology Room 112. Exam is Monday 11am-1pm. Chemistry /06/02

Prelab 6: Carboxylic Acids

Chapter 21 The Chemistry of Carboxylic Acid Deriva7ves

Carboxylic acid derivatives

Lecture Notes Chemistry Mukund P. Sibi Lecture 31 Reactions at the Alpha-Carbon of Carbonyl Compounds

13. Carboxylic Acids (text )

Chapter 17 Carboxylic Acids, Esters, and Amides Prepared by Andrea D. Leonard University of Louisiana at Lafayette

REACTIONS OF CARBOXYLIC ACID DERIVATIVES WITH NUCLEOPHILES A. Reactions of Acid Chlorides with Nucleophiles

Carboxylic Acid Derivatives

Chem 263 Nov 26, 2013 O R' alkyl. acid. ethyl. acetic acid. ethyl acetate ethyl ethanoate

Functional Derivatives of Carboxylic Acids

Ch. 21: CARBOXYLIC ACID DERIVATIVES AND NUCLEOPHILIC ACYL SUBSTITUTION REACTIONS Nomenclature of Carboxylic Acid Derivatives:

ORGANIC SYNTHESIS VIA ENOLATES

Carboxylic Acids, Esters and Acyl Chlorides

CH 3 C H 3 O. anhydride acid. ester amide. O acid O. amide. acid. amide. acid. nitriles

Chapters 13/14: Carboxylic Acids and Carboxylic Acid Derivatives

Carboxylic Acids and Their Derivatives

Chemistry Chapter 19

H 3 C OCH 3 3 C N(CH 3 ) 2 H 3 C H H 3 C CH 3. ketone. pk a = 9 H H. 1,3-keto ester pk a = 11

Chem 263 Nov 21, 2013

A carboxylic acid is an organic compound that contains a carboxyl group, COOH

Chapter 16 and GHW#6 Questions. Carboxylic Acids, Esters, and Other Acid Derivatives

Chapter 21. Carboxylic Acid Derivatives: Nucleophilic Acyl Substitution Reactions شیمی آلی 2

Organic Chemistry. Chapter 23. Hill, Petrucci, McCreary & Perry 4 th. Ed. Alkane to Substituent Group methane CH 4 methyl CH 3

(iii). Decarboxylation (iv)kolbe Electrolysis

Chem 263 B6 Notes March 30, 2006 Demo-In-Class: O

Paper 9: ORGANIC CHEMISTRY-III (Reaction Mechanism-2) Module17: Reduction by Metal hydrides Part-II CHEMISTRY

H O. rapidly reduces. They dissolve. because they can hydrogen bond to the water molecules.

REVIEW IN CARBOXYLIC ACIDS AND ITS DERIVATIVES

where R doesn t have to equal R or R

ORGANIC AND BIOORGANIC CHEMISTRY

Chemistry 212 Fall Semester 1996 Examination #2

Carboxylic Acids and Esters

Chapter 21. Carboxylic Acid Derivatives. and Nucleophilic Acyl Substitution. Reactions. - many carboxylic acid derivatives are known:

Chemistry 1120 Exam 1 Study Guide

Chap 7: Alcohols, Phenols, & Thiols

Chapter 15. Alcohols, Diols, and Thiols. B. Sources: there are two principal sources of simple aliphatic alcohols

Ch14. Carboxylic Acids. Combining the hydroxyl and carbonyl functional groups. To make more powerful functional groups. version 1.

Carboxylic Acids and Esters

Carbon s unique bonding pattern arises from the hybridization of the electrons.

Fundamentals of Organic Chemistry CHEM 109 For Students of Health Colleges

Alcohol aldehydes cetones and carboxylic acids

Carboxylic Acids. Carboxylic acid groups are always terminal groups with a carbonyl carbon also bound to a hydroxyl For example:

Chemistry B11 Chapters 13 Esters, amides and carbohydrates

Esterification. Preparation of β-d-glucose pentaacetate. Dr. Zerong Wang at UHCL. Table of contents

Identifying Functional Groups. (Chapter 2 in the Klein text)

ESTERS AND RELATED CARBOXYLIC ACID DERIVATIVES. Jack DeRuiter

Ch07. Carboxylic Acids. Combining the hydroxyl and carbonyl functional groups. To make organic acids. version 1.0

Carboxylic Acids and Derivatives. Decarboxylation R H + CO 2. R OH Reaction type: Elimination. H H Malonic acid. Mechanism:

Esters. What intermolecular forces do you think esters have? δ + CH 3

ANSWERS BIOCHEMISTRY CARBOHYDRATES

Chemistry B11 Chapters 14 Amines, aldehydes, ketones and carboxylic acids

A. Carboxylic acid functional groups contain the carboxyl structural feature. 1. Features of the carboxyl group

Chapter 9 Lecture Notes: Carboxylic Acids, Amines, and Amides

Chem 263 Dec 1, 2016

Carboxylic Acids. Seminar_7

Organic Chemistry Diversity of Carbon Compounds

AA s are the building blocks of proteins

Topic 4.5 COMPOUNDS CONTAINING THE CARBONYL GROUP. Aldehydes and Ketones Carboxylic Acids and their Salts Esters Acyl Chlorides and Acid Anhydrides

Oxidizing Alcohols. Questions. Prediction. Analysis. Safety Precautions. Materials. Conclusions. Procedure. 74 MHR Unit 1 Organic Chemistry

Chapter 9 Educational Goals

ORGANIC AND BIOLOGICAL CHEMISTRY SYSTEMATIC NOMENCLATURE

Infrared Spectroscopy

CELLULAR METABOLISM. Metabolic pathways can be linear, branched, cyclic or spiral

Chapter 4 - Carbon Compounds

Ex17. Analgesics, TLC Analysis. Analgesics. The Experiment. Part A. Carboxylic Acids. Part B. Willow Bark Esters & Esterification

Amines. Learning Check. Subclasses of Amines. IUPAC Naming for Amines. Common Naming for Amines. Chapter 16 Amines and Amides

Nu: - Addition or Nu: - Acyl Substitution?

Lecture'11:'February'21,'2013 Reac&ons*of*Deriva&ves*( )

6/9/2015. Unit 15: Organic Chemistry Lesson 15.2: Substituted Hydrocarbons & Functional Groups

KMnO 4 1 O 4'' Apigenin. 1 In the following reactions draw the structures of products B and C. 1. NaH/DMF 2. excess MeI. acetic anhydride(excess)

IR Spectroscopy Part II

Transcription:

Chapter 18 Carboxylic Acids and Their Derivatives. Nucleophilic Addition- Elimination at the Acyl Carbon

Introduction The carboxyl group (-CO 2 H) is the parent group of a family of compounds called acyl compounds or carboxylic acid derivatives Chapter 18 2

Nomenclature and Physical Properties In IUPAC nomenclature, the name of a carboxylic acid is obtained by changing the -e of the corresponding parent alkane to -oic acid The carboxyl carbon is assigned position 1 and need not be explicitly numbered The common names for many carboxylic acids remain in use Methanoic and ethanoic acid are usually referred to as formic and acetic acid Carboxylic acids can form strong hydrogen bonds with each other and with water Carboxylic acids with up to 4 carbons are miscible with water in all proportions Chapter 18 3

Chapter 18 4

Acidity of Carboxylic Acids The carboxyl proton of most carboxylic acids has a pk a = 4-5 Carboxylic acids are readily deprotonated by sodium hydroxide or sodium bicarbonate to form carboxylate salts Carboxylate salts are more water soluble than the corresponding carboxylic acid Electron-withdrawing groups near the carboxyl group increase the carboxylic acid s acidity They stabilize the carboxylate anion by inductive delocalization of charge Chapter 18 5

Dicarboxylic Acids Dicarboxylic acids are named as alkanedioic acids in the IUPAC system Common names are often used for simple dicarboxylic acids Chapter 18 6

Esters The names of esters are derived from the names of the corresponding carboxylic acid and alcohol from which the ester would be made The alcohol portion is named first and has the ending -yl The carboxylic acid portion follows and its name ends with -ate or -oate Esters cannot hydrogen bond to each other and therefore have lower boiling points than carboxylic acids Esters can hydrogen bond to water and have appreciable water solubility Chapter 18 7

Chapter 18 8

Acid Anhydrides Most anhydrides are named by dropping the word acid from the carboxylic acid name and adding the word anhydride Acid Chlorides Acid chlorides are named by dropping the -ic acid from the name of the carboxylic acid and adding -yl chloride Chapter 18 9

Amides Amides with no substituents on nitrogen are named by replacing -ic acid in the name with amide Groups on the nitrogen are named as substitutents and are given the locants N- or N,N- Amides with one or two hydrogens on nitrogen form very strong hydrogen bonds and have high melting and boiling points N,N-disubstituted amides cannot form hydrogen bonds to each other and have lower melting and boiling points Chapter 18 10

Hydrogen bonding between amides in proteins and peptides is an important factor in determining their 3-dimensional shape Nitriles Acyclic nitriles are named by adding the suffix -nitrile to the alkane name The nitrile carbon is assigned position 1 Ethanenitrile is usually called acetonitrile Chapter 18 11

Spectroscopic Properties of Acyl Compounds IR Spectra The carbonyl stretching frequency varies according to the type of carboxylic acid derivative present O-H stretching vibrations of the carboxylic acid give a broad band at 2500-3100 cm -1 N-H stretching vibrations of amides appear at 3140-3500 cm -1 Chapter 18 12

1 H NMR Spectra The a hydrogens of carboxylic acids and their derivatives appear at d 2.0-2.5 The carboxyl group proton appears downfield at d 10-12 13 C NMR Spectra The carbonyl carbon signal for carboxylic acids and their derivatives appears at d 160 to 180 Chapter 18 13

Preparation of Carboxylic Acids By Oxidation of Alkanes By Oxidation of Aldehydes and Primary Alcohols By Oxidation of Alkylbenzenes Chapter 18 14

By Oxidation of the Benzene Ring By Oxidation of Methyl Ketones (The Haloform Reaction) By Hydrolysis of Cyanohydrins and Other Nitriles Hydrolysis of a cyanohydrin yields an a-hydroxy acid Chapter 18 15

Primary alkyl halides can react with cyanide to form nitriles and these can be hydrolyzed to carboxylic acids By Carbonation of Grignard Reagents Chapter 18 16

Nucleophilic Addition-Elimination at the Acyl Carbon Recall that aldehydes and ketones undergo nucleophilic addition to the carbon-oxygen double bond The carbonyl group of carboxylic acids and their derivatives undergo nucleophilic addition-elimination The nucleophile reacts at the carbonyl group to form a tetrahedral intermediate The tetrahedral intermediate eliminates a leaving group (L) The carbonyl group is regenerated; the net effect is an acyl substitution Chapter 18 17

To undergo nucleophilic addition-elimination the acyl compound must have a good leaving group or a group that can be converted into a good leaving group Acid chlorides react with loss of chloride ion Anhydrides react with loss of a carboxylate ion Chapter 18 18

Esters, carboxylic acids and amides generally react with loss of the leaving groups alcohol, water and amine, respectively These leaving groups are generated by protonation of the acyl compound Aldehydes and ketones cannot react by this mechanism because they lack a good leaving group Chapter 18 19

Relative Reactivity of Acyl Compounds The relative reactivity of carboxylic acids and their derivatives is as follows: In general, reactivity can be related to the ability of the leaving group (L) to depart Leaving group ability is inversely related to basicity Chloride is the weakest base and the best leaving group Amines are the strongest bases and the worst leaving groups As a general rule, less reactive acyl compounds can be synthesized from more reactive ones Synthesis of more reactive acyl derivatives from less reactive ones is difficult and requires special reagents (if at all possible) Chapter 18 20

Acid Chlorides Synthesis of Acid Chlorides Acid chlorides are made from carboxylic acids by reaction with thionyl chloride, phosphorus trichloride or phosphorus pentachloride These reagents work because they turn the hydroxyl group of the carboxylic acid into an excellent leaving group Chapter 18 21

Reactions of Acyl Chlorides Acyl chlorides are the most reactive acyl compounds and can be used to make any of the other derivatives Since acyl chlorides are easily made from carboxylic acids they provide a way to synthesize any acyl compound from a carboxylic acid Acyl chlorides react readily with water, but this is not a synthetically useful reaction Chapter 18 22

Chapter 18 23

Carboxylic Acid Anhydrides Synthesis of Carboxylic Acid Anhydrides Acid chlorides react with carboxylic acids to form mixed or symmetrical anhydrides It is necessary to use a base such as pyridine Sodium carboxylates react readily with acid chlorides to form anhydrides Chapter 18 24

Cyclic anhydrides with 5- and 6-membered rings can be synthesized by heating the appropriate diacid Reactions of Carboxylic Acid Anhydrides Carboxylic acid anhydrides are very reactive and can be used to synthesize esters and amides Hydrolysis of an anhydride yields the corresponding carboxylic acids Chapter 18 25

Chapter 18 26

Esters Synthesis of Esters: Esterification Acid catalyzed reaction of alcohols and carboxylic acids to form esters is called Fischer esterification Fischer esterification is an equilibrium process Ester formation is favored by use of a large excess of either the alcohol or carboxylic acid Ester formation is also favored by removal of water Chapter 18 27

Esterification with labeled methanol gives a product labeled only at the oxygen atom bonded to the methyl group A mechanism consistent with this observation is shown below Chapter 18 28

The reverse reaction is acid-catalyzed ester hydrolysis Ester hydrolysis is favored by use of dilute aqueous acid Esters from Acid Chlorides Acid chlorides react readily with alcohols in the presence of a base (e.g. pyridine) to form esters Chapter 18 29

Esters from Carboxylic Acid Anhydrides Alcohols react readily with anhydrides to form esters Chapter 18 30

Base-Promoted Hydrolysis of Esters: Saponification Reaction of an ester with sodium hydroxide results in the formation of a sodium carboxylate and an alcohol The mechanism is reversible until the alcohol product is formed Protonation of the alkoxide by the initially formed carboxylic acid is irreversible This step draws the overall equilibrium toward completion of the hydrolysis Chapter 18 31

Lactones g- or d-hydroxyacids undergo acid catalyzed reaction to give cyclic esters known as g- or d-lactones, respectively Chapter 18 32

Lactones can be hydrolyzed with aqueous base Acidification of the carboxylate product can lead back to the original lactone if too much acid is added Chapter 18 33

Amides Synthesis of Amides Amides From Acyl Chlorides Ammonia, primary or secondary amines react with acid chlorides to form amides An excess of amine is added to neutralize the HCl formed in the reaction Carboxylic acids can be converted to amides via the corresponding acid chloride Chapter 18 34

Amides from Carboxylic Anhydrides Anhydrides react with 2 equivalents of amine to produce an amide and an ammonium carboxylate Reaction of a cyclic anhydride with an amine, followed by acidification yields a product containing both amide and carboxylic acid functional groups Heating this product results in the formation of a cyclic imide Chapter 18 35

Amides from Carboxylic Acids and Ammonium Carboxylates Direct reaction of carboxylic acids and ammonia yields ammonium salts Some ammonium salts of carboxylic acids can be dehydrated to the amide at high temperatures This is generally a poor method of amide synthesis A good way to synthesize an amide is to convert a carboxylic acid to an acid chloride and to then to react the acid chloride with ammonia or an amine Chapter 18 36

Dicylohexylcarbodiimide (DCC) is a reagent used to form amides from carboxylic acids and amines DCC activates the carbonyl group of a carboxylic acid toward nucleophilic addition-elimination Chapter 18 37

Hydrolysis of Amides Heating an amide in concentrated aqueous acid or base causes hydrolysis Hydrolysis of an amide is slower than hydrolysis of an ester Chapter 18 38

Chapter 18 39

Chapter 18 40

Nitriles from the Dehydration of Amides A nitrile can be formed by reaction of an amide with phosphorous pentoxide or boiling acetic anhydride Hydrolysis of Nitriles A nitrile is the synthetic equivalent of a carboxylic acid because it can be converted to a carboxylic acid by hydrolysis Chapter 18 41

Chapter 18 42

Chapter 18 43

Decarboxylation of Carboxylic Acids b-keto carboxylic acids and their salts decarboxylate readily when heated Some even decarboxylate slowly at room temperature The mechanism of b-keto acid decarboxylation proceeds through a 6-membered ring transition state Chapter 18 44

Carboxylate anions decarboxylate rapidly because they form a resonance-stabilized enolate Malonic acids also decarboxylate readily Chapter 18 45