Estimation of organogel formation and influence of solvent viscosity and molecular size on gel properties and aggregate structures

Similar documents
GC Column Solvent Retention Table

Supporting information for

Supporting Information. as the nitro source

1 000 ml 50% CAS: ml Ref : F Price : DB

yellow coloured amorphous powder, which on crystallization from hot acetone resulted in pale

Zaiput Flow Technologies

Catalytic decarboxylative alkylation of β-keto acids with sulfonamides via the cleavage of carbon nitrogen and carbon carbon bonds

Isopropanol (2-propanol) 49.5% CAS: Toluene 50% CAS: Water, ion-free 0.5% CAS:

EPA TO-15 QC Criteria

Supporting Information for. Use of the Curtius Rearrangement of Acryloyl Azides in the Synthesis of. 3,5-Disubstituted Pyridines: Mechanistic Studies

Chapter 13: Alcohols, Phenols, and Ethers

Volatile Organic Compounds (VOCs)

Electronic Supplementary Material

Manganese powder promoted highly efficient and selective synthesis of fullerene mono- and biscycloadducts at room temperature

SUPPLEMENTARY MATERIAL

Supporting Information for. Boronic Acid Functionalized Aza-Bodipy (azabdpba) based Fluorescence Optodes for the. analysis of Glucose in Whole Blood

Supporting information

A pillar[2]arene[3]hydroquinone which can self-assemble to a molecular zipper in the solid state

Supporting Information

Electronic Supplementary Information

ESI MATERIAL. Manuscript: Co-crystals of the antiretroviral nevirapine: crystal structures, thermal analysis and dissolution behaviour

Supporting Information

Copper(II) Ionic Liquid Catalyzed Cyclization-Aromatization of. Hydrazones with Dimethyl Acetylenedicarboxylate: A Green Synthesis

Rameshwar Prasad Pandit and Yong Rok Lee * School of Chemical Engineering, Yeungnam University, Gyeongsan , Korea

ph Switchable and Fluorescent Ratiometric Squarylium Indocyanine Dyes as Extremely Alkaline Sensors

Direct ortho-c H Functionalization of Aromatic Alcohols Masked by Acetone Oxime Ether via exo-palladacycle

L-Carnosine-Derived Fmoc-Tripeptides Forming ph- Sensitive and Proteolytically Stable Supramolecular

Supporting Information. Efficient copper-catalyzed Michael addition of acrylic derivatives with primary alcohols in the presence of base

Electronic Supplementary Information

SUPPLEMENTARY MATERIAL. Choline Carboxylate Surfactants: Biocompatible and Highly Soluble in Water

Supporting Information

Specific N-Alkylation of Hydroxypyridines Achieved by a Catalyst- and Base-Free Reaction with Organohalides

Electronic Supplementary Information. Quinine/Selectfluor Combination Induced Asymmetric Semipinacol Rearrangement of

# Supplementary Material (ESI) for Chemical Communications # This journal is The Royal Society of Chemistry 2005

Idaho Bureau of Laboratories 2220 Old Penitentiary Road Boise, Idaho Phone: (208) Fax: (208)

Supporting Information. Transformation of Framework Solids into Processible Metallo-polymers

TO-3 BTEX and TPH. Table 13.1a Summary of QC Criteria for TO-3 BTEX Oxygenates

July 9, Freeman Avenue Telephone: (562) Signal Hill, California Facsimile: (562)

Bio Ionic Liquids: Room Temperature Ionic Liquids Composed Wholly of Biomaterials

1,5-Electrocyclization of conjugated azomethine ylides derived from 3-formyl chromene and N-alkyl amino acids/esters

p-toluenesulfonic Acid-Mediated 1,3-Dipolar Cycloaddition of

Supporting Information

The classification reflects the performance in relation to three essential characteristics:

Supporting Information

Q3C Tables and List Guidance for Industry

Supporting Information

Accessory Publication

Lewis acid-catalyzed regioselective synthesis of chiral α-fluoroalkyl amines via asymmetric addition of silyl dienolates to fluorinated sulfinylimines

Supplementary Information. Solvatochromic Dye LDS 798 as Microviscosity and ph Probe

Supplementary Information

Supporting Information

Supporting Information. for. Synthesis of 2,1-benzisoxazole-3(1H)-ones by basemediated. photochemical N O bond-forming

Supporting Information

From Discovery to Scale-up: α-lipoic. Acid:Nicotinamide Co-crystals in a Continuous. Oscillatory Baffled Crystalliser

Preparation of Fluorinated Tetrahydropyrans and Piperidines using a New Nucleophilic Fluorination Reagent DMPU/HF

Table 1 Fuel Oil UST Closure Soil Analytical Results St. Ann Center for Intergenerational Care Sigma Project No

Synthesis and Blastocyst Implantation Inhibition Potential of Lupeol Derivatives in Female Mice

Breath Biomarkers to Measure Uptake of Volatile Organic Compounds by Bicyclists

SUPPORTING INFORMATION

Highly enantioselective tandem enzyme-organocatalyst crossed aldol reactions. with acetaldehyde in deep-eutectic-solvents.

Supporting Information. Palladium-catalyzed reductive cleavage of tosylated arene using isopropanol as the mild reducing agent

Regioective Halogenation of 2-Substituted-1,2,3-Triazole via sp 2 C-H Activation

Supporting Information

Fig.S1 ESI-MS spectrum of reaction of ApA and THPTb after 16 h.

EU-LCI Master list. Xylene (o-, m-, p-) and mix of o-, m- and p-xylene isomers. Trimethylbenzene (1,2,3-,1,2,4-,1,3,5-) 450 Derived EU-LCI 2013

Supporting Information

Charles S. McEnally* and Lisa D. Pfefferle. Department of Chemical Engineering and Center for Combustion Studies, Yale University, New Haven

Electronic Supplementary Information (ESI)

Synthesis, Characterization and Application Study of Two Glycosides as Flavour Precursors

Base-promoted acetal formation employing aryl salicylates

Self-organization of dipyridylcalix[4]pyrrole into a supramolecular cage for dicarboxylates

Chemo- and Enantioselective Rh-Catalyzed Hydrogenation of 3-Methylene-1,2-diazetidines: Application to Vicinal Diamine Synthesis

Biomass Oxidation to Formic Acid in Aqueous Media Using Polyoxometalate Catalysts Boosting FA Selectivity by In-situ Extraction

Supporting Information. Copper-catalyzed cascade synthesis of benzimidazoquinazoline derivatives under mild condition

Naoya Takahashi, Keiya Hirota and Yoshitaka Saga* Supplementary material

Thermal shift binding experiments were carried out using Thermofluor 384 ELS system. Protein

Optimized Volatile Organic Compound Analysis Using Agilent VOC Application Solution

Supporting Information. A Two-In-One Fluorescent Sensor With Dual Channels to. Discriminate Zn 2+ and Cd 2+

Supplementary Information

Supporting Information. An Efficient Synthesis of Optically Active Physostigmine from Tryptophan via Alkylative Cyclization

1. Butane. 2. trans-2-methylcyclohexanol. 3. 1,2-dimethylcyclohexene. Chem 131 Spring 2018 Exam I Practice

Electronic Supplementary Information

Supporting Information. Palladium-Catalyzed Formylation of Aryl Iodides with HCOOH as

Supporting Information

Organic Chemistry Laboratory Fall Lecture 3 Gas Chromatography and Mass Spectrometry June

Evaluation of a New Ionic Liquid Stationary Phase with PEG Like Selectivity

Supporting Information. Self-assembly in a drying nanofluid droplet: Spontaneous formation of 3D fibre network structures

MOF-Derived Zn-Mn Mixed Hollow Disks. with Robust Hierarchical Structure for High-Performance. Lithium-Ion Batteries

SUPPORTING INFORMATION for. Identification of key structural characteristics of Schisandra chinensis lignans

VCP ASSESSMENT ACTIVITIES CONDUCTED IN NOVEMBER 2018

Fluorescent Chemo-Sensor for Organic Guests Based on Regioselectively Modified 6 A,6 B -, 6 A,6 C -, and 6 A,6 D -Bisdansylglycine-Modified

Journal of Chemical and Pharmaceutical Research, 2015, 7(8): Research Article

The oxazoline 6 was prepared according to a literature procedure 2 but on a 30g scale. The 1 H NMR is identical to what was reported.

Engineering Green Lubricants II: Thermal Transition and Flow Properties of Vegetable Oil- Derived Diesters

Enantioselective synthesis of anti- and syn-β-hydroxy-α-phenyl carboxylates via boron-mediated asymmetric aldol reaction

Supporting Information. Enzymatic synthesis of electrospinnable poly(butylene succinate-co-dilinoleic. succinate) thermoplastic elastomer

ENVIRO-BOND CHEMICAL COMPATIBILITY TEST

Support Information. Table of contents. Experimental procedures. S2. Spectroscopic data... S2-S23. Photophysical properties..

RSC Advances.

Volatile Organic Reference Materials for U.S. EPA Method 8260

Transcription:

Journal Name Dynamic Article Links Cite this: DOI: 10.1039/c0xx00000x www.rsc.org/xxxxxx ARTICLE TYPE Electronic Supplementary Information (ESI) for Estimation of organogel formation and influence of solvent viscosity and molecular size on gel properties and aggregate structures Hengqi Xu a, Jian Song a, Tuo Tian a and Rongxiu Feng* a a School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P.R. China. E-mail: rxfeng7091@tju.edu.cn 10 This journal is The Royal Society of Chemistry [year] [journal], [year], [vol], 00 00 1

ARTICLE TYPE CREATED USING THE RSC ARTICLE TEMPLATE (VER. 3.0) - SEE WWW.RSC.ORG/ELECTRONICFILES FOR DETAILS www.rsc.org/xxxxxx XXXXXXXX Ⅰ. Teas plots of eight gelators reported in literatures Figure S1. Teas plot of solubility parameters of the solvents in the gelation test for gelator 1 (< 40 mm, room temperature) (data taken from reference 1). Open circles: precipitate or insoluble; open triangles: gel; oval solid line: gelation domain. 10 Figure S2. Teas plot of solubility parameters of the solvents in the gelation test for gelator 2 (20 g L -1, room temperature) (data taken from reference 2). Open circles: precipitate or insoluble; open triangles: gel; filled squares: solution; oval solid line: gelation domain. S2

Figure S3. Teas plot of solubility parameters of the solvents in the gelation test for gelator 3 (2 g L -1, room temperature) (data taken from reference 3). Open circles: precipitate or insoluble; open triangles: gel; filled squares: solution; oval solid line: gelation domain. Figure S4. Teas plot of solubility parameters of the solvents in the gelation test for gelator 4 (< 70 g L -1, 2-20 C) (data taken from reference 4). Open circles: precipitate or insoluble; open triangles: gel; filled squares: solution; oval solid line: gelation domain. S2

Figure S. Teas plot of solubility parameters of the solvents in the gelation test for gelator (30 g L -1 ) (data taken from reference ). Open circles: precipitate or insoluble; open triangles: gel; filled squares: solution; red solid line: gelation domain. Figure S6. Teas plot of solubility parameters of the solvents in the gelation test for gelator 6 (30 g L -1, room temperature) (data taken from reference 6). Open circles: precipitate or insoluble; open triangles: gel; filled squares: solution; red solid line: gelation domain. S3

Figure S7. Teas plot of solubility parameters of the solvents in the gelation test for gelator 7 (< 16 g L -1, 2 C) (data taken from reference 7). Open circles: precipitate or insoluble; open triangles: gel; filled squares: solution; red arrow: gelation domain (Overlapping to the point) Figure S8. Teas plot of solubility parameters of the solvents in the gelation test for gelator 8 (< 0 g L -1, room temperature) (data taken from reference 8). Open circles: precipitate or insoluble; open triangles: gel; filled squares: solution. S4

Ⅱ. Plots of correlation T gel vs. δ, δ d, δ p and δ h Figure S9. Effect of solvent Hildebrand solubility parameter, (a) δ, and individual Hansen solubility parameters, (b1) δ d, (b2) δ p, (b3) δ h, on the thermally reversible gel-sol transition temperature, T gel. Open triangles: non-polar aromatic hydrocarbons; filled squares: polar monohydric alcohols. [MPBG]= 40 g L -1. S

Ⅲ. X-ray diffraction patterns of the gels Figure S10. X-ray diffraction patterns of the gels from MPBG in (B1) ethylbenzene, (B2) 1,2,4-trimethylbenzene and (B3) toluene. The concentration of MPBG is 40 g L -1 Figure S11. X-ray diffraction patterns of the gels from MPBG in (a) 2-propanol, (b) 1-propanol and (c) 2-butanol. The concentration of MPBG is 40 g L -1 S6

Ⅴ. Data of gelation test and Hansen solubility parameters Table s1. Gelation test of MPBG in different solvents a and Hansen solubility parameters of solvents solvent State b δ d /MPa 1/2 δ p /MPa 1/2 δ h /MPa 1/2 1-propanol G 16.0 6.8 17.4 1-pentanol S c 1.9 4. 13.9 1-heptanol S c - - - 1-octanol S c 17.0 3.3 11.9 isobutanol G - - - 1-butanol S c 1.9.7 1.7 glycol S c 17.0 11.0 26.0 Isopropyl alcohol G 1.8.7 14. 2-butanol G 1.8.7 14. 1-hexanol S c 1.9.8 12. cyclohexanol G 17.4 4.1 13. anisole G 17.8 4.1 6.7 ethylene glycol monomethyl ether S 16.2 9.2 16.4 ethylene glycol monobutyl ether S 16.0.1 12.3 methanol S 1.1 12.3 22.3 ethanol S 1.8 8.8 19.4 benzyl alcohol S 18.4 6.3 13.7 water I 1. 16.0 42.3 benzene G 18.4 0.0 2.0 toluene G 18.0 1.4 2.0 ethylbenzene G 17.8 0.6 1.4 mesitylene G 18.0 0.0 0.6 nitrobenzene G 20.0 8.6 4.1 xylene G - - - p-xylene G - - - o-xylene G 17.8 1.0 3.1 2-propylbenzene G 18.1 1.2 1.2 1,2,4-trimethylbenzene G 18.0 1.0 1.0 diphenyl G 19.7 1.0 2.0 1,2,3,4-tetrahydronaphthalene G 19.6 2.0 2.9 chlorobenzene G 19.0 4.3 2.0 bromobenzene G 20.. 4.1 o-dichlorobenzene G 19.1 6.3 3.3 chloroform G 17.8 3.1.7 dichloromethane G 18.2 6.3 6.1 dibromoethane G - - - 1,2-dibromoethane G 19.6 6.8 12.1 1,2-dichloroethane G 19.0 7.4 4.1 1-bromobutane G - - - carbon tetrachloride G 17.8 0.0 0.6 1,1,2,2-tetrachloroethane S 18.8.1 9.4 Cyclohexane I 16.8 0.0 0.2 1-hexane I 14.9 0.0 0.0 Methylcyclohexane I 16.0 0.0 0. 1-dodecane I 16.0 0.0 0.0 1-octane I 1. 0.0 0.0 a the gelation was tested in different pure solvents by MPBG (30 g L -1 ) at 16. b G: gel; S: solution; I: precipitate or insoluble at solvent boiling temperature. c MPBG was soluble after cooling (12hr), but the gels were formed after 48hr. S7

Ⅵ. Data of gelation time Table s2. Gelation behavior of MPBG in various monohydric alcohols at room temperature a t /hr 12 24 48 1-propanol G G G Isopropyl alcohol G G G 2-butanol G G G 1-butanol S CG CG 1-pentanol S PG G 1-hexanol S S CG 1-heptanol S S CG 1-octanol S S CG a Concentration: 30 g L -1. Time: t. G: gel; PG: partial gel; CG: clear gel; S: solution. Ⅵ. Data of T gel, N gel, molar volume and viscosity of solvents Table s3. Molar volume (V) and viscosity (η) values for different solvents and the corresponding T gel and N gel values a Solvent T gel / N gel V /cc mole -1 η b /mn s m -2 1-propanol 39.6 27.4-1.4 1-pentanol 3.0 91.4-1.7 1-heptanol - 80.0 - - 1-octanol 38.7 64.6-4.6 isobutanol - 218.0 - - 1-butanol 28.4 60.7-2.4 Isopropyl alcohol 69. 4.8-0.6 2-butanol 46.0 238.6-1.6 1-hexanol 42.1 79.3-2.8 anisole - 78.1 - - benzene 86.8 337.3 89.4 - toluene 94. 421.6 106.8 - ethylbenzene 102. 79.3 - - mesitylene 107. 469.2 - - nitrobenzene.6 138.6 - - p-xylene - 686.8 - - o-xylene 98.7 47.0 121.2-2-propylbenzene - 1028.3 - - 1,2,4-trimethylbenzene 104.2 641.9 - - 1,2,3,4-tetrahydronaphthalene 100.4 2.8 136.0 - a T gel values using different solvents, determined using a ball-drop method; [MPBG]= 40 g L -1. N gel : gelation number (determined by measuring critical gelator concentration). b η: viscosity at T gel. 10 Ⅶ Characteristic XRD data of the crystals and the xerogels Table s4. The characteristic X-ray diffraction data of the crystals and the xerogels obtained from different solvents Crystals and solvents d /Å MPBG crystals 12.01 6.02 3.90 3.48 toluene 12.10 6.03 3.91 3.49 1,2,4-trimethylbenzene 12.04 6.02 3.90 3.48 2-propanol 13.3 6.96 4.9 3.9 2-butanol 13.70 7.01 4.61 3.60 1-propanol 13.66 7.01 4.60 3.60 1 Ⅶ. Analytical data of MPBG This compound was synthesized by the method reported in literature. 9 White solid (yield 20.1%). M.p. 166.-168.2. 1 H NMR (00MHz, CDCl 3, δ ppm): 7.83 (2H, d, J= 8. Hz, Ar), 7.43 (2H, d, J= 8. Hz, Ar),.49 (1H, s, ArCH[OR] 2 ), 4.79 (1H, d, J= 3.9 Hz, H- 1), 4.28 (1H, dd, J= 9.8, 4.4 Hz, H-6), 3.91 (1H, t, J= 9.3 Hz, H-3), 3.8 3.69 (2H, m, H-, H-6), 3.61 (1H, dd, J= 6.7, 3.3 Hz, H-2), 3.6 3.36 (4H, m, H-4, OCH 3 ), 2.36 (2H, br s, OH 2). 13 C NMR (12 MHz, DMSO-d 6, δ ppm): 137.42, 134.09, 128.96, 128.80, 101.23, 100.61, 82.00, 73.10, 70.4, 68.86, 62.99,.46. Anal. Calcd. for C 14 H 17 O 6 Cl: C, 3.1; H,.4; Found: C, 1.7; H,.6; C 14 H 17 O 6 Cl 0.4H 2 O requires: C, 1.9; H,.%. S8

Ⅷ. 1 H and 13 C NMR Spectras of MPBG Figure S12. 1 H and 13 C NMR spectra of MPBG. 1 H NMR: 00MHz, CDCl 3 ; 13 C NMR: 12 MHz, DMSO-d 6 S9

Ⅸ. Calculation of the Teas plot of the gelator MPBG Table s. Teas parameters of solvents in gelation test of MPBG solvent f d 10 2 f p 10 2 f h 10 2 1-propanol 39.8009902 16.9142289 43.2838209 1-pentanol 46.36813 13.119333 40.2478134 1-heptanol - - - 1-octanol 2.7903106 10.2484472 36.962174 isobutanol - - - 1-butanol 42.6273484 1.2810134 42.0911282 glycol 31.48148148 20.37037037 48.1481481 Isopropyl alcohol 43.88888889 1.83333333 40.27777778 2-butanol 43.88888889 1.83333333 40.27777778 1-hexanol 46.49122807 16.9906433 36.497076 cyclohexanol 49.7142871 11.7142871 38.714287 anisole 62.23776224 14.3366434 23.4267343 ethylene glycol monomethyl ether 38.798086 22.0096938 39.23444976 ethylene glycol monobutyl ether 47.90419162 1.26946108 36.82634731 methanol 30.38229376 24.7484909 44.8692129 ethanol 3.90909091 20 44.09090909 benzyl alcohol 47.91666667 16.4062 3.67708333 water 21.00271003 21.6802168 7.31707317 benzene 90.19607843 0 9.80392169 toluene 84.1121493 6.420607 9.34794393 ethylbenzene 89.8989899 3.03030303 7.070707071 mesitylene 96.774193 0 3.2280642 nitrobenzene 61.1620791 26.29969419 12.382263 xylene - - - p-xylene - - - o-xylene 81.2783881 4.66210046 14.12114 2-propylbenzene 88.29268293.836837.836837 1,2,4-trimethylbenzene 90 diphenyl 86.78414097 4.40286344 8.81072687 1,2,3,4-tetrahydronaphthalene 80 8.16326306 11.83673469 chlorobenzene 7.09881423 16.99604743 7.9013834 bromobenzene 68.10631229 18.272422 13.62126246 o-dichlorobenzene 66.0226 21.912191 11.4982784 chloroform 66.91729323 11.641334 21.4287143 dichloromethane 9.47712418 20.882329 19.9346402 dibromoethane - - - 1,2-dibromoethane 0.90909091 17.66233766 31.4287143 1,2-dichloroethane 62.2908197 24.2622908 13.4426229 1-bromobutane - - - carbon tetrachloride 96.73913043 0 3.2608696 1,1,2,2-tetrachloroethane 6.464646 1.313132 28.22822823 Cyclohexane 98.8232941 0 1.17647088 1-hexane 100 0 0 Methylcyclohexane 96.96969697 0 3.03030303 1-dodecane 100 0 0 1-octane 100 0 0 Teas parameters are calculated according to the equation 1(see the paper). Hansen solubility parameters of the solvents (see table s1)are taken from the references. 10,11 S10

Calculations of the solubility parameters of the gelator MPBG The Hansen parameters of MPBG are calculated according to the group-contribution method reported in refs. 12 Scheme s1. Chemical structure of the gelator MPBG Table S6. First-order group approximation for the prediction of the dispersion partial solubility parameter, δ d, the polar partial solubility parameter, δ p, and the hydrogen bonding partial solubility parameter, δ h, of MPBG First-order groups Occurrences, N i Contributions, C i (δ d ) N i C i (δ d ) Contributions, C i (δ p ) N i C i (δ p ) Contributions, C i (δ h ) N i C i (δ h ) CH 3 O 1-0.828-0.828 0.1764 0.1764 0.146 0.146 CH< 6 0.64 3.87 0.6491 3.8946-0.2018-1.2108 OH 2-0.3462-0.6924 1.1404 2.2808 7.1908 14.3816 CH 2 1-0.0269-0.0269-0.304-0.304-0.4119-0.4119 CH 2 O (cyclic) 1 0.273 0.273 0.1994 0.1994-0.1610-0.1610 CHO (ethers) 2 0.8833 1.7666 1.683 3.3706 0.447 0.894 AC 1 0.8446 0.8446 0.6187 0.6187 0.0084 0.0084 ACH 4 0.110 0.442-0.303-2.1212-0.430-1.722 ACCl 1 0.847 0.847-0.0339-0.0339-0.7840-0.7840 Constant, C 17.3231 7.348 7.9793 ΣN i C i + C 24.067 1.437 19.1196 10 Table S7. Second-order group approximation for the prediction of the dispersion partial solubility parameter, δ d, the polar partial solubility parameter, δ p, and the hydrogen bonding partial solubility parameter, δ h, of MPBG Second-order groups Occurrences, M j Contributions, D j (δ d ) M j D j (δ d ) Contributions, D j (δ p ) M j D j (δ p ) Contributions, D j (δ h ) M j D j (δ h ) >C{H or C} C= 1-0.2798-0.2798-1.1164-1.1164 C cyclic OH 2-0.0876-0.172-3.220-7.044 0.914 1.1828 W 1 1 1 WΣM j D j -0.4-7.044 0.0664 δ d = 24.067-0.4=23.612 MPa 1/2 1 δ p = 1.437-7.044=8.3917 MPa 1/2 δ h = 19.1196+0.0664=19.186 MPa 1/2 20 The Teas parameters of MPBG can be calculated as follows: f d =23.612/1.1897=0.4613 2 f p =8.3917/1.1897=0.1639 f h =19.186/1.1897=0.3748 S11

10 References 1 J. W. Liu, J. T. Ma and C. F. Chen, Tetrahedron, 2011, 67, 8-91. 2 R. Mukkamala and R. G. Weiss, Langmuir, 1996, 12, 1474-1482. 3 N. Yan, G. He, H. Zhang, L. Ding and Y. Fang, Langmuir, 2010, 26, 909-917. 4 K. Murata, M. Aoki, T. Suzuki, T. Harada, H. Kawabata, T. Komori, F. Ohseto, K. Ueda and S. Shinkai, J. Am. Chem. Soc., 1994, 116, 6664-6676. O. Gronwald and S. Shinkai, Chem. Eur. J., 2001, 7, 4329-4334. 6 N. Amanokura, K. Yoza, H. Shinmori, S. Shinkai and D. Reinhoudt, J. Chem. Soc., Perkin Trans. 2, 1998, 28-291. 7 K. Hanabusa, H. Kobayashi, M. Suzuki, M. Kimura and H. Shirai, Colloid Polym. Sci., 1998, 276, 22-29. 8 D. R. Trivedi, A. Ballabh, P. Dastidar and B. Ganguly, Chem. Eur. J., 2004, 10, 311-322. 9 R. L. Colbran, R. D. Guthrie and Margaret A. Parsons, J. Chem. Soc., 1960, 332-339. 10 A. F. M. Barton, Chemical Reviews, 197, 7, 731-73. 11 C. M. Hansen, Hansen Solubility Parameters A User's Handbook, ed. C. Hansen, Taylor & Francis Group-CRC, Boca Raton, 2nd edn., 2007. 12 Emmanuel Stefanis Costas Panayiotou, Int J Thermophys, 2008, 29, 68-8. 1 S12