Wyatt Cole, Stephanie L. Hemmingson, Audrey C. Eisenberg, Catherine A. Ulman, Joseph M. Tanski and Yutan D. Y. L. Getzler

Similar documents
b = (17) Å c = (18) Å = (4) = (4) = (4) V = (3) Å 3 Data collection Refinement

metal-organic compounds

Experimental. Crystal data. C 19 H 19 N 3 O 3 M r = Monoclinic, C2=c a = (3) Å b = (2) Å c = (3) Å = 110.

metal-organic compounds

metal-organic compounds

organic compounds (E)-Ethyl N 0 -(3-hydroxybenzylidene)- hydrazinecarboxylate dihydrate

= (3) = (3) = (4) V = (4) Å 3 Z =2. Data collection. Refinement

Experimental. Crystal data

2. Experimental Crystal data

Experimental. Crystal data. C 12 H 20 N 4 O M r = Orthorhombic, P a = (3) Å b = (4) Å c = 14.

2. Experimental Crystal data

Experimental. Crystal data

metal-organic compounds

Experimental. Crystal data

Experimental. Crystal data. C 22 H 26 N 2 O 3 M r = Triclinic, P1 a = (3) Å b = (4) Å c = (4) Å = (6) = 100.

Experimental. Crystal data. C 32 H 25 NO 5 M r = Monoclinic, C2=c a = (6) Å b = (2) Å c = (3) Å = 96.

data reports cis-cyclohexane-1,3-dicarboxylic acid N,N 0 -(pentane-1,5-diyl)bis(pyridine-4-carboxamide) water (1/1/2) Structure description

Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections 326 parameters 2 restraints

yl}-3-oxo-1,2,5-thiadiazolidin-2-ide 1,1-dioxide: a potential inhibitor of the enzyme protein tyrosine phosphatase 1B (PTP1B)

Experimental. Crystal data

2-Methyl-4-nitro-1-(4-nitrophenyl)-1H-imidazole

organic papers 4-Methylpyridinium bis(pyrocatecholato-j 2 O,O 0 )- borate catechol solvate

Experimental. Crystal data. C 20 H 23 N 4 O 6 PS M r = Monoclinic, P2 1 =n a = (2) Å b = (4) Å c = (2) Å = 117.

metal-organic compounds

Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections 385 parameters

metal-organic compounds

research communications Crystal structure of nitrido[5,10,15,20-tetrakis(4- methylphenyl)porphyrinato]manganese(v)

data reports 11b-Hydroxymedroxyprogesterone Structure description

metal-organic compounds

Experimental. Crystal data. C 26 H 30 N 2 M r = Triclinic, P1 a = (3) Å b = (4) Å c = (5) Å = (2) = 77.

research communications 6,6 0 -[(1E,1 0 E)-Oxybis(4,1-phenylene)bis(azanylylidene)bis(methanylylidene)]bis(2-methylphenol):

metal-organic compounds

Experimental. Crystal data. C 20 H 26 O 4 M r = Orthorhombic, P a = (1) Å b = (2) Å c = 13.

Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections 283 parameters

metal-organic compounds

Experimental. Crystal data. C 26 H 34 F 2 N 6 S M r = Monoclinic, P2 1 =n a = (11) Å b = (6) Å c = (14) Å = 92.

metal-organic compounds

Experimental. Crystal data. C 24 H 19 N 3 O M r = Monoclinic, C2=c a = (2) Å b = (4) Å c = (12) Å = 113.

Z =2 Mo K radiation = 0.11 mm 1. Data collection. Refinement

addenda and errata 5,17-Di-tert-butyl-25,27-dihydroxycalix[4]arene. Erratum

metal-organic compounds

Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections 359 parameters

Sigurd Øien, David Stephen Wragg, Karl Petter Lillerud and Mats Tilset

Experimental. Crystal data. C 25 H 15 ClN 2 O 6 S M r = Monoclinic, P2 1 =c a = (15) Å b = (3) Å c = (3) Å = 90.

Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections 405 parameters 12 restraints

metal-organic compounds

Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections 315 parameters

metal-organic compounds

Monoclinic, P2 1 =n a = (9) Å b = (8) Å c = (11) Å = (1) V = (2) Å 3. Data collection.

organic compounds N-Cinnamoyl-L-phenylalanine methyl ester Related literature References Experimental

Experimental. Crystal data. C 25 H 16 Cl 2 O 4 C 2 H 6 O M r = Tetragonal, I4 a = (5) Å c = (2) Å V = 4676.

This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail.

Experimental. Crystal data. C 22 H 32 O 4 M r = Triclinic, P1 a = (1) Å b = (1) Å c = (1) Å = (1) = 79.

Experimental. Crystal data. C 24 H 25 NOSi M r = Monoclinic, P2 1 =c a = (3) Å b = (19) Å c = (6) Å = 124.

metal-organic compounds

Experimental. Crystal data. C 30 H 48 ClN 3 O M r = Orthorhombic, P a = (2) Å b = (3) Å c = 26.

metal-organic compounds

Experimental. Crystal data. C 23 H 20 N 2 O 2 M r = Monoclinic, P2 1 =c a = (3) Å b = (1) Å c = (2) Å = 91.

Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections 225 parameters

2. Experimental Crystal data

Direct Synthesis of a Copper(II) N-heterocyclic Carbene Complex in Air

Manpreet Kaur, Jerry P. Jasinski, Thammarse S. Yamuna, H. S. Yathirajan and K. Byrappa

Experimental. Crystal data. C 23 H 34 O 4 M r = Orthorhombic, P a = (6) Å b = (4) Å c = 18.

data reports Bis[S-hexyl 3-(thiophen-2-ylmethylidene)dithiocarbazato-j 2 N 3,S]palladium(II) Structure description

Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections 192 parameters

organic papers Elaidic acid (trans-9-octadecenoic acid)

metal-organic compounds

Z =4 Mo K radiation = 0.10 mm 1. Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections

Crystal Structure of Ethyl 4-[(E)-(4-hydroxy-3-meth-oxy-benzyl-idene)amino]-benzoate: a p-hy-droxy Schiff Base

b = (10) Å c = (3) Å V = (3) Å 3 Z =4 Data collection Refinement

Experimental. Crystal data. C 19 H 16 BrClO 4 M r = Monoclinic, P2 1 =n a = (6) Å b = (6) Å c = (8) Å = 102.

Synthesis of the trans-hydrindane core of dictyoxetane

dimethylformamide monosolvate

Crystal structure and features of 3 0,8-dibenzylidene- 4a,5,6,7,8,8a-hexahydro-2 0 H-spiro[chromene-2,1 0 - cyclohexan]-2 0 -one

metal-organic compounds

Experimental. Crystal data. C 26 H 36 O 7 M r = Orthorhombic, P a = (2) Å b = (3) Å c = (3) Å.

Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections. Symmetry codes: (i) x; y 1 2 ; z þ 1 2 ; (ii) x; y þ 1 2 ; z þ 1 2

Limonin isolated from the seeds of Citrus limetta (Indian sweet lemon)

Supporting Information

Electronic Supplementary Information (ESI) belonging to

C-N and C-P bond formation via cross dehydrative coupling reaction: an efficient synthesis of novel 3,4-dihydroquinazolines

1,5-Electrocyclization of conjugated azomethine ylides derived from 3-formyl chromene and N-alkyl amino acids/esters

Supplementary Information

Experimental. Crystal data. C 22 H 24 IN 3 O 2 M r = Monoclinic, P2 1 =c a = (10) Å b = (14) Å c = (9) Å = 94.

Multicomponent Self-Assembly of a Pentanuclear Ir-Zn Heterometal-Organic Polyhedron for Carbon Dioxide Fixation and Sulfite Sequestration

organic compounds Polymorphism in pentacene Comment

Supporting Information

A pillar[2]arene[3]hydroquinone which can self-assemble to a molecular zipper in the solid state

metal-organic compounds

= 0.22 mm 1 T = 295 K. Data collection. T min = 0.953, T max = Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections

research communications Crystal structure and theoretical study of N,N-bis[(5-chloro-2-oxo-2,3-dihydrobenzo[d]- oxazol-3-yl)methyl]-2-phenylethanamine

Self-organization of dipyridylcalix[4]pyrrole into a supramolecular cage for dicarboxylates

Supporting Information. Palladium-Catalyzed Formylation of Aryl Iodides with HCOOH as

Copper(II) Ionic Liquid Catalyzed Cyclization-Aromatization of. Hydrazones with Dimethyl Acetylenedicarboxylate: A Green Synthesis

Nobiletin: a citrus flavonoid displaying potent physiological activity

Supporting Information

Highly efficient hydrazination of conjugated nitroalkenes via imidazole or DMAP mediated Morita-Baylis-Hillman reaction

Supporting Information

research communications Crystal structure and metabolic activity of 4-(thien- 2-yl)-2-methyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylic

Synthesis and Conformational Study of Water-Soluble, Rigid, Rod-like Oligopiperidines

Transcription:

ISSN: 2053-2296 journals.iucr.org/c Synthesis and crystal structures of some bis(3-methyl-1h-indol-2-yl)(salicyl)methanes Wyatt Cole, Stephanie L. Hemmingson, Audrey C. Eisenberg, Catherine A. Ulman, Joseph M. Tanski and Yutan D. Y. L. Getzler Acta Cryst. (2019). C75, 65 69 IUCr Journals CRYSTALLOGRAPHY JOURNALS ONLINE Copyright c International Union of Crystallography Author(s) of this paper may load this reprint on their own web site or institutional repository provided that this cover page is retained. Republication of this article or its storage in electronic databases other than as specified above is not permitted without prior permission in writing from the IUCr. For further information see http://journals.iucr.org/services/authorrights.html Acta Cryst. (2019). C75, 65 69 Cole et al. Four bis(3-methyl-1h -indol-2-yl)(salicyl)methanes

research papers Synthesis and crystal structures of some bis(3- methyl-1h-indol-2-yl)(salicyl)methanes ISSN 2053-2296 Wyatt Cole, a Stephanie L. Hemmingson, a Audrey C. Eisenberg, a Catherine A. Ulman, a Joseph M. Tanski b and Yutan D. Y. L. Getzler a * a Department of Chemistry, Kenyon College, 200 North College Road, Gambier, OH 43022-9623, USA, and b 124 Received 31 October 2018 Accepted 14 December 2018 Edited by P. Fanwick, Purdue University, USA Keywords: indole; bisindolylmethane; BIM; polyindolylmethane; hydrogen-bonding chain; salicylaldehyde; acid catalysis; crystal structure. CCDC references: 1885225; 1885224 Supporting information: this article has at journals.iucr.org/c Raymond Avenue, Box 601, Poughkeepsie, New York 12604-0748, USA. *Correspondence e-mail: getzlery@kenyon.edu Four 2,2 0 -bisindolylmethanes (BIMs), a useful class of polyindolyl species joined to a central carbon, were synthesized using salicylaldehyde derivatives and simple acid catalysis; these are 2-[bis(3-methyl-1H-indol-2-yl)methyl]-6-methylphenol, (IIa), 2-[bis(3-methyl-1H-indol-2-yl)methyl]-4,6-dichlorophenol, (IIb), 2-[bis(3-methyl-1H-indol-2-yl)methyl]-4-nitrophenol, (IIc), and 2-[bis(3-methyl- 1H-indol-2-yl)methyl]-4,6-di-tert-butylphenol, (IId). BIMs (IIa) and (IIb) were characterized crystallographically as the dimethyl sulfoxide (DMSO) disolvates, i.e. C 26 H 24 N 2 O2C 2 H 6 OS and C 25 H 20 Cl 2 N 2 O2C 2 H 6 OS, respectively. Both form strikingly similar one-dimensional hydrogen-bonding chain motifs with the DMSO solvent molecules. BIM (IIa) packs into double layers of chains whose orientations alternate every double layer, while (IIb) forms more simply packed chains along the a axis. BIM (IIa) has a remarkably long c axis. # 2019 International Union of Crystallography 1. Introduction Indole, (I) (Scheme 1), is among the oldest and most widely used frameworks of synthetic organic chemistry (Baeyer, 1868), leading to it being termed a privileged structure (Humphrey & Kuethe, 2006). Bis- and trisindolylmethanes (BIMs and TIMs, respectively) form a unique class of polyindolyl species joined to a central carbon at the indole 2- or 3-position, with the central carbon and indoles variously substituted (see Scheme 1). BIMs and TIMs have a diversity of uses, including cancer chemotherapy, cytodifferentiation, analgesis, anti-inflamation, radio-imaging contrast, colorimetric sensing, and metal analyte preconcentration (Shiri et al., 2010). The most commonly prepared and studied polyindolylmethanes are 3,3 0 -BIMs [see (a) in Scheme 1]. Among BIMs and TIMs, poly(indol-2-yl)methanes are the least studied [see (b) and (c) in Scheme 1]. Recently, 2,2 0,2 00 - TIMs [see (b) in Scheme 1] and 2,2 0 -BIMs [see (c) in Scheme 1] have attracted greater interest because of their potential as ligands (Mason, 2003; Bakthadoss et al., 2015). Structural data has been reported for poly(indol-2-yl)methanes bonded through the indole N atom to main-group elements from group 13 (B, Al, and Ga) (Fneich et al., 2018; Song et al., 2012; Kingsley et al., 2010), group 14 (Si) (Mason, 2003), and group 15 (P and Sb) (Mason, 2003; Mallov et al., 2012). Similar bonding patterns have been reported for group 4 metals (Ti and Zr) (Mason, Fneich et al., 2003; Mason, 2003; Mason et al., 2005). Motivation for this may be driven by the reduction in -donating ability of the indolyl amido compared to compounds where the lone pair is not part of a -system. The same geometric factors that support the use of poly(indol-2- yl)methanes as ligands likely contribute to their effective use Acta Cryst. (2019). C75, 65 69 https://doi.org/10.1107/s2053229618017758 65

research papers in anion binding (Wei et al., 2010, 2015). Antitumor properties for 2,2 0 -BIMs have also been reported (Song et al., 2014). Table 1 Synthesis of bis(3-methyl-1h-indol-2-yl)(salicyl)methanes (Sal-2,2 0 - DIMs). Entry Compound R 1 R 2 Yield (g) Yield (%) M.p. ( C) 1 (IIa) Me H 1.31 62 214 218 2 (IIb) Cl Cl 8.12 66 212 214 3 (IIc) H NO 2 2.31 62 232 236 4 (IId) t-bu t-bu 1.31 83 208 213 There is a significant number of polyindolylmethane crystal structures in the literature where these compounds are ligated to metal atoms or main-group elements through the N atoms (vide supra) or pendant heteroatoms (Eisenberg et al., 2009), but there are few reports of the free molecules themselves (Mason, Barnard et al., 2003; Mason, 2003), which is the focus of this report. 2. Experimental 2.1. General considerations Solvents were of reagent grade and were used as received. Also used as received were chemicals purchased from Acros Organics (3,5-di-tert-butyl-2-hydroxybenzaldehyde, 99%), Alfa- Aesar (3,5-dichloro-2-hydroxybenzaldehyde, 98%; 2-hydroxy-5- nitrobenzaldehyde, 98%; salicylaldehyde, 99%), and Sigma Aldrich (2-hydroxy-3-methylbenzaldehyde, 98%; 3-methylindole, 98%). 1 H and 13 C{ 1 H} spectra were acquired on a Bruker Unity 300 NMR, processed with SpinWorks 2.1, and referenced to solvent residual peaks (Gottlieb et al., 1997). NMR solvents were purchased from Cambridge Isotope Laboratories. Melting points were determined using a Mel- Temp II and are uncalibrated. 2.2. Synthesis and crystallization BIMs are most commonly synthesized from two equivalents of the parent indole and an aldehyde with a simple acid catalyst (Dittmann & Pindur, 1986), a protocol which we followed. 2.2.1. 2-[Bis(3-methyl-1H-indol-2-yl)methyl]-6-methylphenol, (IIa) (Table1). This compound was synthesized by dissolving 3-methylindole (1.472 g, 11.2 mmol, 2.01 equiv.) in a minimum of refluxing EtOH (15 ml). Upon dissolution, 2-hydroxy-3-methylbenzaldehyde (0.760 g, 5.58 mmol, 1.00 equiv.) was added, followed by EtOH (5 ml) and H 2 SO 4 (0.1 ml). The reaction turned deep red upon addition of the aldehyde and slightly cloudy upon addition of the acid. Significant quantities of a brown white solid began to form in the first hour and the reaction was left to proceed under reflux for 20 h. The product was isolated by vacuum filtration, rinsed with cold EtOH (2 15 ml), and dried to recover a white crystalline solid (yield: 1.855 g, 4.88 mmol, 87%). Crystals were grown by evaporation from dimethyl sulfoxide (DMSO; 92 mg in 1.75 ml) left open to the atmosphere at room temperature, producing yellow cubic crystals after two months. 2.2.2. 2-[Bis(3-methyl-1H-indol-2-yl)methyl]-4,6-dichlorophenol, (IIb) (Table 1). This compound was prepared in an analogous manner to (IIa). The isolated product (yield: 154 mg) was dissolved in toluene (0.31 ml) and DMSO (0.11 ml). After 2 d, additional (IIb) (53 mg) was added. After 5 d, light-yellow crystals of varying size had grown. 2.3. Spectroscopic and analytical data 2.3.1. (IIa). 1 H NMR (300 MHz, DMSO-d 6 ): 2.00 (6H, s), 2.19 (3H, s), 6.29 (1H, s), 6.71 (1H, t, J = 7.6 Hz), 6.88 7.01 (6H, m), 7.28 (2H, d, J = 8.4 Hz), 7.38 (2H, d, J = 7.7 Hz), 8.44 (1H, s), 10.24 (2H, s); 13 C NMR (75 MHz, DMSO-d 6 ): 8.35, 16.84, 35.18, 105.89, 111.04, 117.50, 118.04, 119.46, 120.19, 124.36, 127.12, 128.35, 128.86, 129.22, 134.85, 135.34, 125.45. 2.3.2. (IIb). 1 H NMR (300 MHz, DMSO-d 6 ): 1.99 (6H, s), 6.26 (1H, s), 6.9 7.1 (6H, m), 7.29 (2H, d, J = 8.3 Hz), 7.42 (2H, d, J = 10 Hz), 9.79 (1H, s), 10.41 (2H, s); 13 C NMR (75 MHz, DMSO-d 6 ): 8.27, 35.57, 106.49, 111.16, 117.72, 118.26, 120.56, 121.66, 123.38, 127.39, 128.07, 128.72, 132.27, 133.25, 135.46, 149.54. 2.3.3. (IIc). 1 H NMR (300 MHz, DMSO-d 6 ): 2.00 (6H, s), 6.21 (1H, s), 6.93 7.04 (6H, m), 7.29 (2H, d, J = 8.1 Hz), 7.42 (2H, d, J = 7.4 Hz), 7.90 (1H, d, J = 2.7 Hz), 8.09 (1H, dd, J = 8.9 Hz, 2.9 Hz), 10.44 (2H, s), 11.31 (1H, s); 13 C NMR (75 MHz, DMSO-d 6 ): 8.27, 34.76, 106.43, 111.13, 115.32, 117.73, 118.25, 120.53, 124.67, 125.72, 128.73, 133.24, 135.44, 139.76, 161.36. 2.3.4. (IId). 1 H NMR (300 MHz, DMSO-d 6 ): 1.23 (9H, s), 1.38 (9H, s), 1.92 (6H, s), 6.35 (1H, s), 6.89 7.00 (4H, m), 7.03 66 Cole et al. Four bis(3-methyl-1h-indol-2-yl)(salicyl)methanes Acta Cryst. (2019). C75, 65 69

research papers Table 2 Experimental details. (IIa) (IIb) Crystal data Chemical formula C 26 H 24 N 2 O2C 2 H 6 OS C 25 H 20 Cl 2 N 2 O2C 2 H 6 OS M r 536.73 591.58 Crystal system, space group Tetragonal, P4 3 2 1 2 Triclinic, P1 Temperature (K) 125 125 a, b, c (Å) 9.0917 (3), 9.0917 (3), 68.392 (3) 8.9836 (9), 10.9082 (11), 15.7820 (16),, ( ) 90, 90, 90 72.406 (2), 83.232 (2), 83.086 (2) V (Å 3 ) 5653.2 (4) 1458.1 (3) Z 8 2 Radiation type Cu K Mo K (mm 1 ) 1.97 0.40 Crystal size (mm) 0.25 0.25 0.16 0.38 0.08 0.04 Data collection Diffractometer Bruker APEXII CCD Bruker APEXII CCD Absorption correction Multi-scan (SADABS; Bruker, 2013) Multi-scan (SADABS; Bruker, 2013) T min, T max 0.62, 0.74 0.88, 0.99 No. of measured, independent and observed 78707, 5288, 5266 37620, 8941, 5592 [I >2(I)] reflections R int 0.045 0.069 (sin /) max (Å 1 ) 0.610 0.716 Refinement R[F 2 >2(F 2 )], wr(f 2 ), S 0.025, 0.066, 1.09 0.049, 0.120, 1.02 No. of reflections 5288 8941 No. of parameters 351 358 No. of restraints 3 3 H-atom treatment H atoms treated by a mixture of independent and constrained refinement max, min (e Å 3 ) 0.17, 0.27 0.44, 0.56 Absolute structure Refined as an inversion twin Absolute structure parameter 0.036 (13) H atoms treated by a mixture of independent and constrained refinement Computer programs: APEX2 (Bruker, 2013), SAINT (Bruker, 2013), SHELXT2014 (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b), SHELXTL2014 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008). (1H, d, J = 2.4 Hz), 7.13 (1H, d, J = 2.4 Hz), 7.29 (1H, d, J = 7.8 Hz), 7.38 (1H, d, J = 7.6 Hz), 7.90 (1H, s), 10.21 (2H, s); 13 C NMR (75 MHz, DMSO-d 6 ): 8.28, 30.00, 31.40, 33.88, 34.77, 35.92, 106.37, 111.02, 117.51, 117.94, 120.21, 121.46, 124.49, 128.67, 128.95, 134.78, 135.41, 136.95, 141.24, 150.61. 2.4. Refinement Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms on C atoms were included in calculated positions and refined using a riding model, with C H = 0.95, 0.98, and 1.00 Å, and U iso (H) = 1.2, 1.5, and 1.2 times U eq (C) for the aryl, methyl, and methine C atoms, respectively. The positions of the hydroxy and indole H atoms were found in difference maps and were refined semifreely using distance restraints of O H = 0.84 Å, with U iso (H) = 1.2U eq (O), and N H = 0.88 Å, withu iso (H) = 1.2U eq (N). Sal-2,2 0 -DIM (IIa) was refined as a two-component inversion twin. 3. Results and discussion Salicylaldehyde and its derivatives are inexpensive, readily available, and widely used as starting materials in ligand syntheses. The reaction of salicylaldehydes with two equivalents of 3-methylindole in the presence of an acid catalyst yielded bis(indol-2-yl)(salicyl)methanes (IIa) (IId) (Table 1, Sal-2,2 0 -DIMs). This single-step synthesis proceeds under mild conditions, resulting in the selective formation of products that are easily isolated by vacuum filtration in high purities and moderate yields (Table 1). Reactions were monitored by thinlayer chromatography (TLC), as extended reaction times occasionally dramatically reduced the yield. Salicylaldehydes with a range of steric and electronic properties were used. The Sal-2,2 0 -DIMs synthesized are highly soluble in common organic solvents, such as CH 3 CN, tetrahydrofuran, EtOAc, and Et 2 O. The sparing solubility of some derivatives in CHCl 3 led to the use of DMSO-d 6 as a solvent for NMR studies. The miscibility of DMSO with water confirmed the exchange of protons with D 2 O. The formation of (II) can be identified by the unique methine resonance, which appears as a singlet between 6.0 and 7.0 ppm in the 1 H NMR (DMSO-d 6 ) spectrum. Indole N H and phenol O H protons exchange with water, as was confirmed by the addition of D 2 O to the NMR sample tube. Other integrations and shifts were appropriate for the target molecules, and 13 C NMR spectra are unremarkable. Solvatochromism was observed for these compounds. Sal-2,2 0 -DIM (IIa) and (IIb) most easily yielded X-rayquality crystals. In both cases, a careful mixture of toluene and DMSO with the appropriate amount of Sal-2,2 0 -DIM, left to sit, proved most effective. Acta Cryst. (2019). C75, 65 69 Cole et al. Four bis(3-methyl-1h-indol-2-yl)(salicyl)methanes 67

research papers Figure 1 A view of (IIa), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Figure 2 A view of (IIb), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The molecules of (IIa) and (IIb) both feature two indolyl groups and a phenol moiety derived from the salicylaldehydes arranged about the methine C atom into a three-bladed propeller-type structure with no intramolecular hydrogen bonding (Figs. 1 and 2). Rather, hydrogen bonding occurs with the DMSO solvent molecules to form one-dimensional chains. The molecules of (IIa) (Fig. 1) pack together in the solid state with DMSO solvent molecules via hydrogen bonding, forming one-dimensional chains (Fig. 3). One of the two unique DMSO molecules engages in hydrogen bonding to bridge the hydroxy group (O1 H3BO3) and one of the indole groups [N2 H2BO3 i ; symmetry code: (i) x 1, y, z] on the neighboring molecule in the chain, while the second unbridging DMSO molecule is simply hydrogen bonded to the second indole group (N1 H1BO2). The hydrogenbonding chains pack into double layers running parallel to (110), with the direction of the hydrogen-bonding chains alternating every double layer. Given the double layers and the space-group symmetry, the packing of the chains in (IIa) results in a remarkably long c axis. The molecules of (IIb) (Fig. 2) pack together in the solid state with DMSO solvent molecules via hydrogen bonding in a very similar fashion to (IIa), forming one-dimensional chains running parallel to the crystallographic a axis (Fig. 4). One of the two unique DMSO molecules engages in hydrogen bonding to bridge the hydroxy group (O1 H1O3) and one of the indole groups (N2 H2O3 i ) on the neighboring molecule in the chain, while the second DMSO molecule also bridges the same two molecules via hydrogen bonding to the other indole group (N1 H3O2) and a ClO contact (O2Cl1 i ), with a distance of 3.050 (2) Å, which is shorter than the sum of the van der Waals radii of chlorine and oxygen (3.27 Å; Bondi, 1964). The ClO contact in (IIb), which is absent in (IIa), results in a different orientation of the second DMSO molecule in (IIb), perhaps resulting in the lowering of the space-group symmetry given that the molecular shape and Figure 3 A view of the molecular packing of (IIa), showing the hydrogen bonding (dashed lines) between the (IIa) and DMSO solvent molecules, forming onedimensional chains running parallel to the crystallographic a axis. [Symmetry code: (i) x 1, y, z.] 68 Cole et al. Four bis(3-methyl-1h-indol-2-yl)(salicyl)methanes Acta Cryst. (2019). C75, 65 69

research papers Figure 4 A view of the molecular packing of (IIb), showing the hydrogen bonding (dashed lines) between the (IIb) and DMSO solvent molecules, forming onedimensional chains running parallel to the crystallographic a axis. [Symmetry code: (i) x 1, y, z.] Figure 5 An overlay of (IIa) and (IIb), showing the similarities and differences in the hydrogen bonding (dashed lines) and packing. hydrogen-bonding chain motifs in (IIa) and (IIb) are otherwise very similar (Fig. 5). In conclusion, we have synthesized and characterized four previously unreported Sal-2,2 0 -BIMs, obtaining X-ray structures for two of them. Among the extensively studied diversity of polyindolylmethanes, 2,2 0 -BIMs and 2,2 0,2 00 -TIMs stand out for the paucity of reports. Funding information Funding for this research was provided by: American Chemical Society Petroleum Research Fund (grant No. 42880- GB 7 to YDYLG); National Science Foundation, Division of Chemistry (grant No. 0521237 to JMT); Kenyon College (award No. KSSSP to SLH and ACE). References Baeyer, A. (1868). Ber. Dtsch Chem. Ges. 1, 17 18. Bakthadoss, M., Devaraj, A. & Srinivasan, J. (2015). J. Heterocycl. Chem. 52, 418 424. Bondi, A. (1964). J. Phys. Chem. 68, 441 451. Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Dittmann, K. & Pindur, U. (1986). Heterocycles, 24, 1079 1093. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339 341. Eisenberg, A. C., Tanski, J. M. & Getzler, Y. D. Y. L. (2009). Acta Cryst. E65, m1353. Fneich, B. N., Das, A., Kirschbaum, K. & Mason, M. R. (2018). J. Organomet. Chem. 872, 12 23. Gottlieb, H. E., Kotlyar, V. & Nudelman, A. (1997). J. Org. Chem. 62, 7512 7515. Humphrey, G. R. & Kuethe, J. T. (2006). Chem. Rev. 106, 2875 2911. Kingsley, N. B., Kirschbaum, K. & Mason, M. R. (2010). Organometallics, 29, 5927 5935. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466 470. Mallov, I., Spinney, H., Jurca, T., Gorelsky, S., Burchell, T. & Richeson, D. (2012). Inorg. Chim. Acta, 392, 5 9. Mason, M. R. (2003). Chemtracts Inorg. Chem. 16, 272 289. Mason, M. R., Barnard, T. S., Segla, M. F., Xie, B. H. & Kirschbaum, K. (2003). J. Chem. Crystallogr. 33, 531 540. Mason, M. R., Fneich, B. N. & Kirschbaum, K. (2003). Inorg. Chem. 42, 6592 6594. Mason, M. R., Ogrin, D., Fneich, B., Barnard, T. S. & Kirschbaum, K. (2005). J. Organomet. Chem. 690, 157 162. Sheldrick, G. M. (2008). Acta Cryst. A64, 112 122. Sheldrick, G. M. (2015). Acta Cryst. C71, 3 8. Shiri, M., Zolfigol, M. A., Kruger, H. G. & Tanbakouchian, Z. (2010). Chem. Rev. 110, 2250 2293. Song, B., Kirschbaum, K. & Mason, M. R. (2012). Organometallics, 31, 191 196. Song, B., Qu, X., Zhang, L., Han, K., Wu, D., Xiang, C., Wu, H., Wang, T., Teng, Y. & Yu, P. (2014). J. Chem. Pharm. Res. 6, 239 243. Wei, W., Guo, Y., Xu, J. & Shao, S. (2010). Spectrochim. Acta Part A, 77, 620 624. Wei, W., Shao, S. J. & Guo, Y. (2015). Spectrochim. Acta Part A, 149, 531 535. Acta Cryst. (2019). C75, 65 69 Cole et al. Four bis(3-methyl-1h-indol-2-yl)(salicyl)methanes 69

[https://doi.org/10.1107/s2053229618017758] Synthesis and crystal structures of some bis(3-methyl-1h-indol-2-yl) (salicyl)methanes Wyatt Cole, Stephanie L. Hemmingson, Audrey C. Eisenberg, Catherine A. Ulman, Joseph M. Tanski and Yutan D. Y. L. Getzler Computing details For both structures, data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: SHELXTL2014 (Sheldrick, 2008); software used to prepare material for publication: SHELXTL2014 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008). 2-[Bis(3-methyl-1H-indol-2-yl)methyl]-6-methylphenol dimethyl sulfoxide disolvate (IIa) Crystal data C 26 H 24 N 2 O 2C 2 H 6 OS M r = 536.73 Tetragonal, P4 3 2 1 2 a = 9.0917 (3) Å c = 68.392 (3) Å V = 5653.2 (4) Å 3 Z = 8 F(000) = 2288 Data collection Bruker APEXII CCD diffractometer Radiation source: Cu IuS micro-focus source Detector resolution: 8.3333 pixels mm -1 φ and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2013) T min = 0.62, T max = 0.74 Refinement Refinement on F 2 Least-squares matrix: full R[F 2 > 2σ(F 2 )] = 0.025 wr(f 2 ) = 0.066 S = 1.09 5288 reflections 351 parameters D x = 1.261 Mg m 3 Cu Kα radiation, λ = 1.54178 Å Cell parameters from 9904 reflections θ = 2.6 71.7 µ = 1.97 mm 1 T = 125 K Block, colourless 0.25 0.25 0.16 mm 78707 measured reflections 5288 independent reflections 5266 reflections with I > 2σ(I) R int = 0.045 θ max = 70.1, θ min = 2.6 h = 10 10 k = 10 10 l = 81 82 3 restraints Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement w = 1/[σ 2 (F o2 ) + (0.0328P) 2 + 1.6253P] where P = (F o 2 + 2F c2 )/3 (Δ/σ) max = 0.001 sup-1

Δρ max = 0.17 e Å 3 Δρ min = 0.27 e Å 3 Absolute structure: Refined as an inversion twin Absolute structure parameter: 0.036 (13) Special details Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. Refinement. Refined as a 2-component inversion twin. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å 2 ) x y z U iso */U eq S1 0.11157 (5) 0.42851 (5) 0.37892 (2) 0.01942 (11) S2 0.75475 (5) 0.98248 (6) 0.45876 (2) 0.02676 (12) O1 0.48565 (15) 0.74002 (15) 0.43926 (2) 0.0233 (3) H3B 0.575 (2) 0.759 (3) 0.4396 (3) 0.028* O2 0.01047 (14) 0.49413 (15) 0.39090 (2) 0.0236 (3) O3 0.75343 (15) 0.84075 (15) 0.44736 (2) 0.0266 (3) N1 0.04375 (16) 0.73618 (17) 0.41700 (2) 0.0159 (3) H1B 0.034 (2) 0.651 (2) 0.4120 (3) 0.019* N2 0.05442 (17) 0.61492 (19) 0.46000 (2) 0.0198 (3) H2B 0.094 (3) 0.688 (2) 0.4542 (3) 0.024* C1 0.19775 (19) 0.66872 (19) 0.44636 (2) 0.0152 (3) H1C 0.2626 0.7252 0.4555 0.018* C2 0.12071 (19) 0.78012 (19) 0.43352 (2) 0.0154 (3) C3 0.11159 (19) 0.9296 (2) 0.43552 (2) 0.0175 (4) C4 0.1776 (2) 1.0242 (2) 0.45126 (3) 0.0243 (4) H4A 0.2438 1.0966 0.4453 0.036* H4B 0.233 0.9623 0.4604 0.036* H4C 0.0989 1.0753 0.4583 0.036* C5 0.02391 (19) 0.9826 (2) 0.41953 (2) 0.0169 (4) C6 0.0269 (2) 1.1213 (2) 0.41366 (3) 0.0217 (4) H6A 0.0013 1.2067 0.4209 0.026* C7 0.1147 (2) 1.1326 (2) 0.39720 (3) 0.0247 (4) H7A 0.1496 1.2264 0.3932 0.03* C8 0.1529 (2) 1.0078 (2) 0.38630 (3) 0.0243 (4) H8A 0.2134 1.0185 0.3751 0.029* C9 0.1042 (2) 0.8694 (2) 0.39159 (3) 0.0209 (4) H9A 0.1298 0.7849 0.3842 0.025* C10 0.0161 (2) 0.8579 (2) 0.40826 (2) 0.0170 (4) C11 0.0926 (2) 0.5805 (2) 0.45893 (2) 0.0168 (3) C12 0.1222 (2) 0.4616 (2) 0.47071 (2) 0.0201 (4) C13 0.2679 (2) 0.3896 (2) 0.47407 (3) 0.0267 (4) H13A 0.2703 0.3471 0.4872 0.04* H13B 0.3464 0.463 0.4728 0.04* H13C 0.2827 0.3117 0.4644 0.04* C14 0.0149 (2) 0.4184 (2) 0.47928 (2) 0.0220 (4) sup-2

C15 0.0572 (3) 0.3065 (2) 0.49230 (3) 0.0282 (4) H15A 0.0133 0.2387 0.4972 0.034* C16 0.2031 (3) 0.2968 (3) 0.49783 (3) 0.0347 (5) H16A 0.2327 0.2218 0.5067 0.042* C17 0.3083 (3) 0.3959 (3) 0.49061 (3) 0.0370 (5) H17A 0.4077 0.3865 0.4947 0.044* C18 0.2709 (2) 0.5066 (3) 0.47775 (3) 0.0316 (5) H18A 0.3427 0.5729 0.4728 0.038* C19 0.1235 (2) 0.5172 (2) 0.47228 (3) 0.0230 (4) C20 0.29747 (19) 0.5679 (2) 0.43447 (2) 0.0152 (3) C21 0.44449 (19) 0.6081 (2) 0.43159 (2) 0.0165 (4) C22 0.5419 (2) 0.5154 (2) 0.42152 (2) 0.0194 (4) C23 0.7013 (2) 0.5564 (3) 0.41918 (3) 0.0277 (4) H23A 0.7085 0.657 0.4142 0.042* H23B 0.7485 0.4885 0.41 0.042* H23C 0.7507 0.5503 0.4319 0.042* C24 0.4876 (2) 0.3832 (2) 0.41422 (2) 0.0216 (4) H24A 0.5521 0.3195 0.4073 0.026* C25 0.3423 (2) 0.3420 (2) 0.41675 (3) 0.0218 (4) H25A 0.3076 0.2512 0.4116 0.026* C26 0.2477 (2) 0.4351 (2) 0.42686 (2) 0.0185 (4) H26A 0.1478 0.4076 0.4286 0.022* C27 0.0487 (3) 0.4290 (3) 0.35415 (3) 0.0360 (5) H27A 0.1302 0.4027 0.3454 0.054* H27B 0.0125 0.5273 0.3508 0.054* H27C 0.031 0.3573 0.3527 0.054* C28 0.2473 (2) 0.5694 (2) 0.37660 (3) 0.0270 (4) H28A 0.3224 0.5384 0.3672 0.04* H28B 0.2935 0.5869 0.3893 0.04* H28C 0.2006 0.6602 0.372 0.04* C29 0.6256 (4) 0.9572 (3) 0.47815 (4) 0.0525 (7) H29A 0.6045 1.0522 0.4843 0.079* H29B 0.667 0.8899 0.4879 0.079* H29C 0.5344 0.9155 0.4729 0.079* C30 0.6488 (3) 1.1100 (3) 0.44490 (4) 0.0533 (7) H30A 0.6438 1.204 0.4519 0.08* H30B 0.5491 1.0712 0.4431 0.08* H30C 0.695 1.125 0.4321 0.08* Atomic displacement parameters (Å 2 ) U 11 U 22 U 33 U 12 U 13 U 23 S1 0.0211 (2) 0.0164 (2) 0.0207 (2) 0.00015 (16) 0.00330 (17) 0.00267 (16) S2 0.0231 (2) 0.0254 (3) 0.0318 (2) 0.00597 (19) 0.00193 (19) 0.00126 (19) O1 0.0154 (6) 0.0232 (7) 0.0313 (7) 0.0050 (5) 0.0026 (5) 0.0076 (5) O2 0.0191 (6) 0.0264 (7) 0.0251 (6) 0.0025 (6) 0.0045 (5) 0.0088 (5) O3 0.0176 (7) 0.0255 (7) 0.0366 (7) 0.0016 (6) 0.0002 (6) 0.0035 (6) N1 0.0170 (7) 0.0138 (7) 0.0167 (7) 0.0005 (6) 0.0016 (6) 0.0026 (6) sup-3

N2 0.0168 (8) 0.0236 (8) 0.0189 (7) 0.0005 (6) 0.0028 (6) 0.0028 (6) C1 0.0137 (8) 0.0157 (9) 0.0160 (8) 0.0022 (6) 0.0004 (7) 0.0019 (7) C2 0.0116 (8) 0.0204 (9) 0.0140 (7) 0.0018 (6) 0.0012 (6) 0.0015 (6) C3 0.0159 (9) 0.0184 (9) 0.0183 (8) 0.0042 (7) 0.0024 (7) 0.0028 (7) C4 0.0273 (10) 0.0200 (10) 0.0255 (9) 0.0036 (8) 0.0042 (8) 0.0054 (7) C5 0.0133 (8) 0.0171 (9) 0.0204 (8) 0.0025 (7) 0.0034 (6) 0.0007 (7) C6 0.0185 (9) 0.0166 (9) 0.0300 (9) 0.0030 (7) 0.0032 (7) 0.0004 (7) C7 0.0190 (9) 0.0215 (10) 0.0337 (10) 0.0012 (7) 0.0031 (8) 0.0089 (8) C8 0.0192 (9) 0.0306 (10) 0.0231 (9) 0.0009 (8) 0.0008 (7) 0.0060 (8) C9 0.0202 (9) 0.0228 (10) 0.0197 (8) 0.0020 (7) 0.0014 (7) 0.0001 (7) C10 0.0148 (8) 0.0186 (9) 0.0174 (8) 0.0021 (7) 0.0038 (7) 0.0002 (7) C11 0.0174 (9) 0.0192 (9) 0.0138 (8) 0.0018 (7) 0.0004 (7) 0.0026 (6) C12 0.0238 (10) 0.0231 (10) 0.0133 (8) 0.0010 (7) 0.0014 (7) 0.0013 (7) C13 0.0295 (11) 0.0296 (11) 0.0211 (9) 0.0017 (9) 0.0076 (8) 0.0040 (8) C14 0.0293 (10) 0.0238 (10) 0.0129 (8) 0.0058 (8) 0.0007 (7) 0.0020 (7) C15 0.0397 (12) 0.0278 (11) 0.0169 (8) 0.0075 (9) 0.0015 (8) 0.0014 (8) C16 0.0452 (14) 0.0388 (13) 0.0200 (9) 0.0183 (10) 0.0069 (9) 0.0030 (8) C17 0.0323 (12) 0.0489 (14) 0.0299 (10) 0.0152 (11) 0.0124 (9) 0.0009 (10) C18 0.0246 (11) 0.0415 (13) 0.0287 (10) 0.0047 (9) 0.0077 (8) 0.0005 (9) C19 0.0243 (10) 0.0272 (10) 0.0174 (8) 0.0053 (8) 0.0039 (7) 0.0005 (7) C20 0.0156 (8) 0.0170 (9) 0.0130 (7) 0.0010 (7) 0.0017 (6) 0.0020 (6) C21 0.0167 (8) 0.0186 (9) 0.0143 (7) 0.0008 (7) 0.0017 (6) 0.0011 (7) C22 0.0174 (9) 0.0261 (10) 0.0146 (8) 0.0017 (8) 0.0003 (7) 0.0008 (7) C23 0.0172 (10) 0.0381 (12) 0.0279 (10) 0.0014 (8) 0.0035 (8) 0.0072 (8) C24 0.0242 (10) 0.0243 (10) 0.0164 (8) 0.0065 (8) 0.0000 (7) 0.0013 (7) C25 0.0279 (10) 0.0185 (9) 0.0189 (8) 0.0005 (7) 0.0028 (7) 0.0020 (7) C26 0.0184 (9) 0.0209 (9) 0.0160 (8) 0.0020 (7) 0.0011 (7) 0.0011 (7) C27 0.0368 (12) 0.0470 (14) 0.0243 (10) 0.0047 (10) 0.0004 (9) 0.0102 (9) C28 0.0228 (10) 0.0313 (11) 0.0268 (9) 0.0073 (8) 0.0024 (8) 0.0041 (8) C29 0.073 (2) 0.0495 (16) 0.0346 (12) 0.0184 (14) 0.0218 (13) 0.0052 (11) C30 0.0603 (18) 0.0428 (15) 0.0568 (15) 0.0215 (13) 0.0169 (14) 0.0133 (13) Geometric parameters (Å, º) S1 O2 1.5025 (13) C13 H13B 0.98 S1 C28 1.786 (2) C13 H13C 0.98 S1 C27 1.788 (2) C14 C15 1.406 (3) S2 O3 1.5062 (14) C14 C19 1.418 (3) S2 C30 1.781 (3) C15 C16 1.382 (3) S2 C29 1.786 (3) C15 H15A 0.95 O1 C21 1.361 (2) C16 C17 1.403 (4) O1 H3B 0.826 (19) C16 H16A 0.95 N1 C10 1.370 (2) C17 C18 1.379 (3) N1 C2 1.388 (2) C17 H17A 0.95 N1 H1B 0.852 (18) C18 C19 1.396 (3) N2 C19 1.374 (2) C18 H18A 0.95 N2 C11 1.374 (2) C20 C26 1.390 (3) N2 H2B 0.852 (18) C20 C21 1.400 (3) sup-4

C1 C2 1.512 (2) C21 C22 1.404 (3) C1 C11 1.515 (2) C22 C24 1.392 (3) C1 C20 1.524 (2) C22 C23 1.505 (3) C1 H1C 1.0 C23 H23A 0.98 C2 C3 1.368 (3) C23 H23B 0.98 C3 C5 1.437 (2) C23 H23C 0.98 C3 C4 1.503 (2) C24 C25 1.384 (3) C4 H4A 0.98 C24 H24A 0.95 C4 H4B 0.98 C25 C26 1.391 (3) C4 H4C 0.98 C25 H25A 0.95 C5 C6 1.402 (3) C26 H26A 0.95 C5 C10 1.418 (2) C27 H27A 0.98 C6 C7 1.384 (3) C27 H27B 0.98 C6 H6A 0.95 C27 H27C 0.98 C7 C8 1.402 (3) C28 H28A 0.98 C7 H7A 0.95 C28 H28B 0.98 C8 C9 1.382 (3) C28 H28C 0.98 C8 H8A 0.95 C29 H29A 0.98 C9 C10 1.397 (3) C29 H29B 0.98 C9 H9A 0.95 C29 H29C 0.98 C11 C12 1.375 (3) C30 H30A 0.98 C12 C14 1.432 (3) C30 H30B 0.98 C12 C13 1.496 (3) C30 H30C 0.98 C13 H13A 0.98 O2 S1 C28 105.91 (9) C16 C15 C14 118.8 (2) O2 S1 C27 106.22 (10) C16 C15 H15A 120.6 C28 S1 C27 97.75 (11) C14 C15 H15A 120.6 O3 S2 C30 106.08 (12) C15 C16 C17 121.2 (2) O3 S2 C29 105.60 (11) C15 C16 H16A 119.4 C30 S2 C29 97.09 (15) C17 C16 H16A 119.4 C21 O1 H3B 117.4 (17) C18 C17 C16 121.7 (2) C10 N1 C2 108.84 (15) C18 C17 H17A 119.2 C10 N1 H1B 121.4 (15) C16 C17 H17A 119.2 C2 N1 H1B 129.7 (15) C17 C18 C19 117.3 (2) C19 N2 C11 109.26 (16) C17 C18 H18A 121.4 C19 N2 H2B 126.6 (16) C19 C18 H18A 121.4 C11 N2 H2B 124.1 (16) N2 C19 C18 130.3 (2) C2 C1 C11 113.04 (15) N2 C19 C14 107.33 (17) C2 C1 C20 111.66 (13) C18 C19 C14 122.32 (19) C11 C1 C20 111.07 (14) C26 C20 C21 119.01 (16) C2 C1 H1C 106.9 C26 C20 C1 121.91 (16) C11 C1 H1C 106.9 C21 C20 C1 119.06 (15) C20 C1 H1C 106.9 O1 C21 C20 116.01 (15) C3 C2 N1 109.66 (16) O1 C21 C22 123.02 (16) C3 C2 C1 129.45 (16) C20 C21 C22 120.97 (17) N1 C2 C1 120.88 (15) C24 C22 C21 118.09 (17) C2 C3 C5 106.92 (15) C24 C22 C23 121.17 (17) sup-5

C2 C3 C4 128.01 (17) C21 C22 C23 120.72 (18) C5 C3 C4 125.07 (17) C22 C23 H23A 109.5 C3 C4 H4A 109.5 C22 C23 H23B 109.5 C3 C4 H4B 109.5 H23A C23 H23B 109.5 H4A C4 H4B 109.5 C22 C23 H23C 109.5 C3 C4 H4C 109.5 H23A C23 H23C 109.5 H4A C4 H4C 109.5 H23B C23 H23C 109.5 H4B C4 H4C 109.5 C25 C24 C22 121.83 (17) C6 C5 C10 118.64 (16) C25 C24 H24A 119.1 C6 C5 C3 134.63 (17) C22 C24 H24A 119.1 C10 C5 C3 106.72 (15) C24 C25 C26 119.20 (18) C7 C6 C5 119.32 (18) C24 C25 H25A 120.4 C7 C6 H6A 120.3 C26 C25 H25A 120.4 C5 C6 H6A 120.3 C20 C26 C25 120.90 (17) C6 C7 C8 121.04 (18) C20 C26 H26A 119.6 C6 C7 H7A 119.5 C25 C26 H26A 119.6 C8 C7 H7A 119.5 S1 C27 H27A 109.5 C9 C8 C7 121.21 (17) S1 C27 H27B 109.5 C9 C8 H8A 119.4 H27A C27 H27B 109.5 C7 C8 H8A 119.4 S1 C27 H27C 109.5 C8 C9 C10 117.75 (18) H27A C27 H27C 109.5 C8 C9 H9A 121.1 H27B C27 H27C 109.5 C10 C9 H9A 121.1 S1 C28 H28A 109.5 N1 C10 C9 130.08 (17) S1 C28 H28B 109.5 N1 C10 C5 107.86 (15) H28A C28 H28B 109.5 C9 C10 C5 122.04 (17) S1 C28 H28C 109.5 N2 C11 C12 109.74 (16) H28A C28 H28C 109.5 N2 C11 C1 121.58 (16) H28B C28 H28C 109.5 C12 C11 C1 128.68 (17) S2 C29 H29A 109.5 C11 C12 C14 106.59 (17) S2 C29 H29B 109.5 C11 C12 C13 127.42 (17) H29A C29 H29B 109.5 C14 C12 C13 125.99 (17) S2 C29 H29C 109.5 C12 C13 H13A 109.5 H29A C29 H29C 109.5 C12 C13 H13B 109.5 H29B C29 H29C 109.5 H13A C13 H13B 109.5 S2 C30 H30A 109.5 C12 C13 H13C 109.5 S2 C30 H30B 109.5 H13A C13 H13C 109.5 H30A C30 H30B 109.5 H13B C13 H13C 109.5 S2 C30 H30C 109.5 C15 C14 C19 118.82 (19) H30A C30 H30C 109.5 C15 C14 C12 134.1 (2) H30B C30 H30C 109.5 C19 C14 C12 107.08 (16) C10 N1 C2 C3 0.2 (2) C1 C11 C12 C13 0.2 (3) C10 N1 C2 C1 179.37 (15) C13 C12 C14 C15 0.2 (3) C11 C1 C2 C3 104.8 (2) C11 C12 C14 C19 0.8 (2) C20 C1 C2 C3 129.06 (19) C13 C12 C14 C19 179.36 (17) C11 C1 C2 N1 74.6 (2) C19 C14 C15 C16 0.1 (3) C20 C1 C2 N1 51.5 (2) C12 C14 C15 C16 179.4 (2) sup-6

N1 C2 C3 C5 0.3 (2) C14 C15 C16 C17 0.3 (3) C1 C2 C3 C5 179.21 (16) C15 C16 C17 C18 0.0 (3) N1 C2 C3 C4 179.79 (17) C16 C17 C18 C19 0.6 (3) C1 C2 C3 C4 0.3 (3) C11 N2 C19 C18 179.2 (2) C2 C3 C5 C6 178.6 (2) C11 N2 C19 C14 0.5 (2) C4 C3 C5 C6 0.9 (3) C17 C18 C19 N2 179.6 (2) C2 C3 C5 C10 0.3 (2) C17 C18 C19 C14 0.8 (3) C4 C3 C5 C10 179.81 (17) C15 C14 C19 N2 179.82 (16) C10 C5 C6 C7 0.3 (3) C12 C14 C19 N2 0.2 (2) C3 C5 C6 C7 178.47 (19) C15 C14 C19 C18 0.5 (3) C5 C6 C7 C8 0.3 (3) C12 C14 C19 C18 179.91 (18) C6 C7 C8 C9 0.1 (3) C2 C1 C20 C26 91.34 (19) C7 C8 C9 C10 0.3 (3) C11 C1 C20 C26 35.8 (2) C2 N1 C10 C9 178.73 (18) C2 C1 C20 C21 90.43 (18) C2 N1 C10 C5 0.00 (19) C11 C1 C20 C21 142.40 (16) C8 C9 C10 N1 178.30 (18) C26 C20 C21 O1 179.42 (15) C8 C9 C10 C5 0.3 (3) C1 C20 C21 O1 2.3 (2) C6 C5 C10 N1 178.89 (16) C26 C20 C21 C22 1.2 (2) C3 C5 C10 N1 0.19 (19) C1 C20 C21 C22 177.04 (15) C6 C5 C10 C9 0.0 (3) O1 C21 C22 C24 179.75 (16) C3 C5 C10 C9 179.04 (17) C20 C21 C22 C24 1.0 (2) C19 N2 C11 C12 1.0 (2) O1 C21 C22 C23 1.8 (3) C19 N2 C11 C1 179.67 (16) C20 C21 C22 C23 177.47 (17) C2 C1 C11 N2 7.9 (2) C21 C22 C24 C25 0.3 (3) C20 C1 C11 N2 134.34 (16) C23 C22 C24 C25 178.07 (17) C2 C1 C11 C12 172.89 (17) C22 C24 C25 C26 0.0 (3) C20 C1 C11 C12 46.5 (2) C21 C20 C26 C25 0.9 (2) N2 C11 C12 C14 1.1 (2) C1 C20 C26 C25 177.33 (16) C1 C11 C12 C14 179.65 (16) C24 C25 C26 C20 0.3 (3) N2 C11 C12 C13 179.05 (17) Hydrogen-bond geometry (Å, º) D H A D H H A D A D H A O1 H3B S2 0.83 (2) 2.92 (2) 3.5529 (14) 135 (2) O1 H3B O3 0.83 (2) 1.87 (2) 2.6594 (19) 161 (2) N1 H1B O2 0.85 (2) 2.07 (2) 2.876 (2) 158 (2) N2 H2B S2 i 0.85 (2) 3.03 (2) 3.7663 (18) 147 (2) N2 H2B O3 i 0.85 (2) 2.02 (2) 2.831 (2) 159 (2) C28 H28C S1 ii 0.98 2.98 3.528 (2) 117 Symmetry codes: (i) x 1, y, z; (ii) x+1/2, y+1/2, z+3/4. 2-[Bis(3-methyl-1H-indol-2-yl)methyl]-4,6-dichlorophenol dimethyl sulfoxide disolvate (IIb) Crystal data C 25 H 20 Cl 2 N 2 O 2C 2 H 6 OS M r = 591.58 Triclinic, P1 a = 8.9836 (9) Å b = 10.9082 (11) Å c = 15.7820 (16) Å sup-7

α = 72.406 (2) β = 83.232 (2) γ = 83.086 (2) V = 1458.1 (3) Å 3 Z = 2 F(000) = 620 D x = 1.347 Mg m 3 Data collection Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 8.3333 pixels mm -1 φ and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2013) T min = 0.88, T max = 0.99 Refinement Refinement on F 2 Least-squares matrix: full R[F 2 > 2σ(F 2 )] = 0.049 wr(f 2 ) = 0.120 S = 1.01 8941 reflections 358 parameters 3 restraints Mo Kα radiation, λ = 0.71073 Å Cell parameters from 9925 reflections θ = 2.3 30.1 µ = 0.40 mm 1 T = 125 K Needle, colourless 0.38 0.08 0.04 mm 37620 measured reflections 8941 independent reflections 5592 reflections with I > 2σ(I) R int = 0.069 θ max = 30.6, θ min = 2.0 h = 12 12 k = 15 15 l = 22 22 Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement w = 1/[σ 2 (F o2 ) + (0.0502P) 2 + 0.3396P] where P = (F o 2 + 2F c2 )/3 (Δ/σ) max < 0.001 Δρ max = 0.44 e Å 3 Δρ min = 0.56 e Å 3 Special details Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å 2 ) x y z U iso */U eq Cl1 0.95276 (5) 0.29177 (5) 0.17012 (4) 0.02720 (13) Cl2 0.52146 (7) 0.02334 (5) 0.19381 (4) 0.03354 (14) O1 0.71320 (16) 0.41999 (14) 0.27576 (10) 0.0247 (3) H1 0.8040 (18) 0.426 (2) 0.2713 (16) 0.03* N1 0.28744 (19) 0.47505 (17) 0.19624 (11) 0.0204 (4) H3 0.289 (2) 0.4058 (17) 0.1797 (14) 0.024* N2 0.16606 (18) 0.28860 (16) 0.39389 (11) 0.0194 (4) H2 0.119 (2) 0.3477 (18) 0.3540 (13) 0.023* C1 0.6752 (2) 0.31782 (19) 0.25444 (13) 0.0185 (4) C2 0.7712 (2) 0.24821 (19) 0.20551 (13) 0.0191 (4) C3 0.7245 (2) 0.14478 (19) 0.18501 (13) 0.0212 (4) H3B 0.7902 0.0985 0.1513 0.025* C4 0.5803 (2) 0.11067 (19) 0.21476 (13) 0.0215 (4) C5 0.4821 (2) 0.17820 (18) 0.26277 (13) 0.0184 (4) sup-8

H5A 0.3831 0.1532 0.2822 0.022* C6 0.5287 (2) 0.28215 (19) 0.28224 (13) 0.0174 (4) C7 0.4251 (2) 0.36153 (19) 0.33353 (13) 0.0177 (4) H7A 0.4917 0.3936 0.3672 0.021* C8 0.3493 (2) 0.48047 (19) 0.27113 (13) 0.0190 (4) C9 0.3287 (2) 0.60401 (19) 0.27694 (14) 0.0204 (4) C10 0.3744 (2) 0.6526 (2) 0.34847 (15) 0.0280 (5) H10A 0.4421 0.7208 0.3217 0.042* H10B 0.4263 0.5813 0.3921 0.042* H10C 0.2847 0.6873 0.3783 0.042* C11 0.2503 (2) 0.68005 (19) 0.20210 (14) 0.0226 (4) C12 0.1960 (3) 0.8106 (2) 0.17240 (16) 0.0307 (5) H12A 0.2114 0.8689 0.2041 0.037* C13 0.1200 (3) 0.8528 (2) 0.09637 (16) 0.0375 (6) H13A 0.084 0.9412 0.0753 0.045* C14 0.0951 (3) 0.7675 (2) 0.04972 (16) 0.0382 (6) H14A 0.0414 0.7993 0.0021 0.046* C15 0.1465 (3) 0.6381 (2) 0.07707 (14) 0.0305 (5) H15A 0.1289 0.5805 0.0454 0.037* C16 0.2253 (2) 0.5960 (2) 0.15320 (14) 0.0231 (4) C17 0.3184 (2) 0.28031 (19) 0.40270 (13) 0.0171 (4) C18 0.3523 (2) 0.19046 (19) 0.48134 (13) 0.0184 (4) C19 0.5050 (2) 0.1550 (2) 0.51574 (14) 0.0259 (5) H19A 0.4949 0.1044 0.5787 0.039* H19B 0.5527 0.2337 0.5097 0.039* H19C 0.5673 0.1036 0.4813 0.039* C20 0.2131 (2) 0.14161 (18) 0.52471 (13) 0.0180 (4) C21 0.1738 (2) 0.0502 (2) 0.60616 (14) 0.0228 (4) H21A 0.2488 0.0041 0.6445 0.027* C22 0.0238 (2) 0.0284 (2) 0.62954 (14) 0.0258 (5) H22A 0.004 0.0328 0.6847 0.031* C23 0.0874 (2) 0.0947 (2) 0.57346 (14) 0.0252 (5) H23A 0.1895 0.0782 0.5915 0.03* C24 0.0524 (2) 0.1836 (2) 0.49259 (14) 0.0219 (4) H24A 0.1282 0.2277 0.4543 0.026* C25 0.0985 (2) 0.20628 (18) 0.46908 (13) 0.0176 (4) S1 0.40865 (7) 0.30804 (6) 0.02242 (4) 0.03426 (15) O2 0.27909 (17) 0.30604 (15) 0.09106 (10) 0.0307 (4) C26 0.3947 (6) 0.1809 (3) 0.0229 (2) 0.0918 (15) H26A 0.4711 0.1854 0.0733 0.138* H26B 0.2944 0.1887 0.0436 0.138* H26C 0.411 0.098 0.0229 0.138* C27 0.3618 (3) 0.4344 (3) 0.07351 (17) 0.0472 (7) H27A 0.4357 0.4299 0.1236 0.071* H27B 0.3625 0.5177 0.0619 0.071* H27C 0.2614 0.4259 0.0883 0.071* S2 0.93875 (6) 0.59594 (5) 0.34200 (4) 0.02281 (12) O3 0.96828 (15) 0.48795 (14) 0.29857 (9) 0.0225 (3) sup-9

C28 0.8072 (3) 0.5408 (2) 0.43589 (15) 0.0289 (5) H28A 0.7754 0.6105 0.4631 0.043* H28B 0.8546 0.4667 0.4797 0.043* H28C 0.7193 0.5149 0.4165 0.043* C29 0.8165 (3) 0.7148 (2) 0.27206 (16) 0.0330 (5) H29A 0.781 0.7828 0.3003 0.049* H29B 0.7302 0.6744 0.2632 0.049* H29C 0.8712 0.7525 0.2142 0.049* Atomic displacement parameters (Å 2 ) U 11 U 22 U 33 U 12 U 13 U 23 Cl1 0.0175 (2) 0.0322 (3) 0.0304 (3) 0.0030 (2) 0.0056 (2) 0.0094 (2) Cl2 0.0365 (3) 0.0279 (3) 0.0444 (3) 0.0034 (2) 0.0054 (3) 0.0218 (3) O1 0.0150 (7) 0.0272 (8) 0.0373 (9) 0.0054 (6) 0.0021 (6) 0.0179 (7) N1 0.0212 (9) 0.0207 (9) 0.0199 (9) 0.0007 (7) 0.0002 (7) 0.0088 (7) N2 0.0154 (8) 0.0213 (9) 0.0188 (9) 0.0009 (7) 0.0040 (7) 0.0018 (7) C1 0.0183 (9) 0.0181 (10) 0.0189 (10) 0.0015 (7) 0.0021 (8) 0.0048 (8) C2 0.0164 (9) 0.0216 (10) 0.0169 (9) 0.0019 (8) 0.0008 (7) 0.0027 (8) C3 0.0237 (10) 0.0219 (11) 0.0169 (10) 0.0027 (8) 0.0001 (8) 0.0066 (8) C4 0.0272 (11) 0.0180 (10) 0.0208 (10) 0.0000 (8) 0.0056 (8) 0.0074 (8) C5 0.0170 (9) 0.0191 (10) 0.0194 (10) 0.0008 (7) 0.0033 (8) 0.0059 (8) C6 0.0161 (9) 0.0193 (10) 0.0171 (10) 0.0005 (7) 0.0028 (7) 0.0059 (8) C7 0.0158 (9) 0.0202 (10) 0.0193 (10) 0.0028 (7) 0.0004 (7) 0.0092 (8) C8 0.0139 (9) 0.0213 (10) 0.0222 (10) 0.0029 (7) 0.0025 (8) 0.0079 (8) C9 0.0155 (9) 0.0208 (10) 0.0249 (11) 0.0038 (8) 0.0037 (8) 0.0079 (8) C10 0.0274 (11) 0.0252 (12) 0.0350 (13) 0.0035 (9) 0.0024 (10) 0.0138 (10) C11 0.0202 (10) 0.0208 (11) 0.0243 (11) 0.0023 (8) 0.0048 (8) 0.0051 (9) C12 0.0297 (12) 0.0220 (11) 0.0375 (13) 0.0020 (9) 0.0042 (10) 0.0071 (10) C13 0.0397 (14) 0.0246 (12) 0.0358 (14) 0.0072 (10) 0.0040 (11) 0.0030 (11) C14 0.0420 (14) 0.0408 (15) 0.0223 (12) 0.0086 (11) 0.0003 (10) 0.0009 (11) C15 0.0342 (12) 0.0335 (13) 0.0207 (11) 0.0043 (10) 0.0001 (9) 0.0071 (10) C16 0.0223 (10) 0.0241 (11) 0.0192 (10) 0.0020 (8) 0.0044 (8) 0.0046 (9) C17 0.0135 (9) 0.0206 (10) 0.0198 (10) 0.0012 (7) 0.0012 (7) 0.0100 (8) C18 0.0159 (9) 0.0204 (10) 0.0215 (10) 0.0003 (7) 0.0037 (8) 0.0101 (8) C19 0.0228 (11) 0.0286 (12) 0.0268 (11) 0.0004 (9) 0.0086 (9) 0.0071 (9) C20 0.0198 (9) 0.0180 (10) 0.0180 (9) 0.0006 (7) 0.0015 (8) 0.0089 (8) C21 0.0249 (10) 0.0218 (11) 0.0208 (10) 0.0012 (8) 0.0042 (8) 0.0052 (8) C22 0.0293 (11) 0.0234 (11) 0.0223 (11) 0.0045 (9) 0.0039 (9) 0.0049 (9) C23 0.0198 (10) 0.0237 (11) 0.0308 (12) 0.0042 (8) 0.0042 (9) 0.0076 (9) C24 0.0168 (9) 0.0228 (11) 0.0255 (11) 0.0014 (8) 0.0031 (8) 0.0069 (9) C25 0.0171 (9) 0.0175 (10) 0.0183 (10) 0.0001 (7) 0.0021 (7) 0.0060 (8) S1 0.0322 (3) 0.0445 (4) 0.0241 (3) 0.0083 (3) 0.0031 (2) 0.0112 (3) O2 0.0337 (9) 0.0352 (9) 0.0244 (8) 0.0039 (7) 0.0028 (7) 0.0123 (7) C26 0.188 (5) 0.0422 (19) 0.0413 (18) 0.023 (2) 0.001 (2) 0.0234 (16) C27 0.0441 (16) 0.0484 (17) 0.0351 (15) 0.0010 (13) 0.0051 (12) 0.0033 (12) S2 0.0190 (2) 0.0255 (3) 0.0262 (3) 0.0027 (2) 0.0035 (2) 0.0102 (2) O3 0.0176 (7) 0.0257 (8) 0.0257 (8) 0.0016 (6) 0.0029 (6) 0.0108 (6) sup-10

C28 0.0323 (12) 0.0315 (13) 0.0264 (12) 0.0040 (10) 0.0023 (9) 0.0151 (10) C29 0.0389 (13) 0.0239 (12) 0.0337 (13) 0.0038 (10) 0.0080 (10) 0.0054 (10) Geometric parameters (Å, º) Cl1 C2 1.735 (2) C15 C16 1.394 (3) Cl2 C4 1.745 (2) C15 H15A 0.95 O1 C1 1.348 (2) C17 C18 1.369 (3) O1 H1 0.819 (16) C18 C20 1.433 (3) N1 C16 1.372 (3) C18 C19 1.499 (3) N1 C8 1.384 (3) C19 H19A 0.98 N1 H3 0.868 (15) C19 H19B 0.98 N2 C25 1.378 (3) C19 H19C 0.98 N2 C17 1.382 (2) C20 C21 1.405 (3) N2 H2 0.860 (15) C20 C25 1.412 (3) C1 C2 1.399 (3) C21 C22 1.384 (3) C1 C6 1.400 (3) C21 H21A 0.95 C2 C3 1.386 (3) C22 C23 1.398 (3) C3 C4 1.381 (3) C22 H22A 0.95 C3 H3B 0.95 C23 C24 1.378 (3) C4 C5 1.385 (3) C23 H23A 0.95 C5 C6 1.382 (3) C24 C25 1.394 (3) C5 H5A 0.95 C24 H24A 0.95 C6 C7 1.524 (3) S1 O2 1.4910 (16) C7 C17 1.506 (3) S1 C26 1.765 (3) C7 C8 1.513 (3) S1 C27 1.766 (3) C7 H7A 1.0 C26 H26A 0.98 C8 C9 1.367 (3) C26 H26B 0.98 C9 C11 1.429 (3) C26 H26C 0.98 C9 C10 1.499 (3) C27 H27A 0.98 C10 H10A 0.98 C27 H27B 0.98 C10 H10B 0.98 C27 H27C 0.98 C10 H10C 0.98 S2 O3 1.5159 (15) C11 C12 1.403 (3) S2 C28 1.781 (2) C11 C16 1.416 (3) S2 C29 1.784 (2) C12 C13 1.379 (3) C28 H28A 0.98 C12 H12A 0.95 C28 H28B 0.98 C13 C14 1.401 (4) C28 H28C 0.98 C13 H13A 0.95 C29 H29A 0.98 C14 C15 1.383 (3) C29 H29B 0.98 C14 H14A 0.95 C29 H29C 0.98 C1 O1 H1 114.1 (17) C18 C17 N2 109.88 (17) C16 N1 C8 108.85 (17) C18 C17 C7 127.48 (17) C16 N1 H3 126.5 (15) N2 C17 C7 122.63 (17) C8 N1 H3 124.7 (15) C17 C18 C20 106.51 (16) C25 N2 C17 108.83 (16) C17 C18 C19 126.09 (18) C25 N2 H2 125.3 (15) C20 C18 C19 127.37 (18) sup-11

C17 N2 H2 124.5 (15) C18 C19 H19A 109.5 O1 C1 C2 124.28 (18) C18 C19 H19B 109.5 O1 C1 C6 116.89 (17) H19A C19 H19B 109.5 C2 C1 C6 118.82 (18) C18 C19 H19C 109.5 C3 C2 C1 121.37 (18) H19A C19 H19C 109.5 C3 C2 Cl1 119.28 (15) H19B C19 H19C 109.5 C1 C2 Cl1 119.35 (15) C21 C20 C25 118.78 (18) C4 C3 C2 118.36 (18) C21 C20 C18 133.83 (18) C4 C3 H3B 120.8 C25 C20 C18 107.39 (17) C2 C3 H3B 120.8 C22 C21 C20 118.79 (19) C3 C4 C5 121.68 (19) C22 C21 H21A 120.6 C3 C4 Cl2 119.23 (16) C20 C21 H21A 120.6 C5 C4 Cl2 119.07 (16) C21 C22 C23 121.15 (19) C6 C5 C4 119.72 (18) C21 C22 H22A 119.4 C6 C5 H5A 120.1 C23 C22 H22A 119.4 C4 C5 H5A 120.1 C24 C23 C22 121.52 (19) C5 C6 C1 120.03 (18) C24 C23 H23A 119.2 C5 C6 C7 122.17 (17) C22 C23 H23A 119.2 C1 C6 C7 117.81 (17) C23 C24 C25 117.45 (19) C17 C7 C8 114.17 (15) C23 C24 H24A 121.3 C17 C7 C6 112.15 (16) C25 C24 H24A 121.3 C8 C7 C6 111.54 (16) N2 C25 C24 130.35 (18) C17 C7 H7A 106.1 N2 C25 C20 107.35 (16) C8 C7 H7A 106.1 C24 C25 C20 122.30 (18) C6 C7 H7A 106.1 O2 S1 C26 107.07 (16) C9 C8 N1 109.68 (18) O2 S1 C27 106.71 (11) C9 C8 C7 128.71 (18) C26 S1 C27 96.12 (15) N1 C8 C7 121.60 (17) S1 C26 H26A 109.5 C8 C9 C11 106.87 (18) S1 C26 H26B 109.5 C8 C9 C10 127.59 (19) H26A C26 H26B 109.5 C11 C9 C10 125.52 (19) S1 C26 H26C 109.5 C9 C10 H10A 109.5 H26A C26 H26C 109.5 C9 C10 H10B 109.5 H26B C26 H26C 109.5 H10A C10 H10B 109.5 S1 C27 H27A 109.5 C9 C10 H10C 109.5 S1 C27 H27B 109.5 H10A C10 H10C 109.5 H27A C27 H27B 109.5 H10B C10 H10C 109.5 S1 C27 H27C 109.5 C12 C11 C16 119.1 (2) H27A C27 H27C 109.5 C12 C11 C9 133.9 (2) H27B C27 H27C 109.5 C16 C11 C9 107.05 (18) O3 S2 C28 105.76 (9) C13 C12 C11 118.7 (2) O3 S2 C29 104.70 (10) C13 C12 H12A 120.6 C28 S2 C29 98.67 (11) C11 C12 H12A 120.6 S2 C28 H28A 109.5 C12 C13 C14 121.1 (2) S2 C28 H28B 109.5 C12 C13 H13A 119.4 H28A C28 H28B 109.5 C14 C13 H13A 119.4 S2 C28 H28C 109.5 C15 C14 C13 121.8 (2) H28A C28 H28C 109.5 C15 C14 H14A 119.1 H28B C28 H28C 109.5 sup-12

C13 C14 H14A 119.1 S2 C29 H29A 109.5 C14 C15 C16 117.1 (2) S2 C29 H29B 109.5 C14 C15 H15A 121.5 H29A C29 H29B 109.5 C16 C15 H15A 121.5 S2 C29 H29C 109.5 N1 C16 C15 130.2 (2) H29A C29 H29C 109.5 N1 C16 C11 107.54 (18) H29B C29 H29C 109.5 C15 C16 C11 122.2 (2) O1 C1 C2 C3 179.29 (18) C12 C13 C14 C15 0.7 (4) C6 C1 C2 C3 0.6 (3) C13 C14 C15 C16 0.3 (3) O1 C1 C2 Cl1 1.0 (3) C8 N1 C16 C15 177.7 (2) C6 C1 C2 Cl1 179.67 (15) C8 N1 C16 C11 0.6 (2) C1 C2 C3 C4 0.5 (3) C14 C15 C16 N1 179.2 (2) Cl1 C2 C3 C4 179.20 (15) C14 C15 C16 C11 1.1 (3) C2 C3 C4 C5 1.0 (3) C12 C11 C16 N1 179.42 (18) C2 C3 C4 Cl2 177.35 (15) C9 C11 C16 N1 0.6 (2) C3 C4 C5 C6 0.4 (3) C12 C11 C16 C15 1.0 (3) Cl2 C4 C5 C6 178.02 (15) C9 C11 C16 C15 177.81 (19) C4 C5 C6 C1 0.8 (3) C25 N2 C17 C18 2.0 (2) C4 C5 C6 C7 179.01 (17) C25 N2 C17 C7 177.75 (17) O1 C1 C6 C5 179.94 (17) C8 C7 C17 C18 160.40 (19) C2 C1 C6 C5 1.3 (3) C6 C7 C17 C18 71.5 (2) O1 C1 C6 C7 0.2 (3) C8 C7 C17 N2 19.3 (3) C2 C1 C6 C7 178.56 (17) C6 C7 C17 N2 108.8 (2) C5 C6 C7 C17 34.0 (2) N2 C17 C18 C20 1.0 (2) C1 C6 C7 C17 146.14 (17) C7 C17 C18 C20 178.72 (18) C5 C6 C7 C8 95.5 (2) N2 C17 C18 C19 179.02 (18) C1 C6 C7 C8 84.4 (2) C7 C17 C18 C19 0.7 (3) C16 N1 C8 C9 0.3 (2) C17 C18 C20 C21 179.3 (2) C16 N1 C8 C7 179.29 (17) C19 C18 C20 C21 1.3 (4) C17 C7 C8 C9 95.4 (2) C17 C18 C20 C25 0.3 (2) C6 C7 C8 C9 136.1 (2) C19 C18 C20 C25 177.66 (19) C17 C7 C8 N1 84.1 (2) C25 C20 C21 C22 1.0 (3) C6 C7 C8 N1 44.3 (2) C18 C20 C21 C22 177.9 (2) N1 C8 C9 C11 0.1 (2) C20 C21 C22 C23 0.5 (3) C7 C8 C9 C11 179.64 (18) C21 C22 C23 C24 0.5 (3) N1 C8 C9 C10 178.40 (19) C22 C23 C24 C25 0.8 (3) C7 C8 C9 C10 1.2 (3) C17 N2 C25 C24 177.8 (2) C8 C9 C11 C12 179.0 (2) C17 N2 C25 C20 2.1 (2) C10 C9 C11 C12 0.5 (4) C23 C24 C25 N2 179.8 (2) C8 C9 C11 C16 0.4 (2) C23 C24 C25 C20 0.2 (3) C10 C9 C11 C16 178.10 (19) C21 C20 C25 N2 179.32 (17) C16 C11 C12 C13 0.0 (3) C18 C20 C25 N2 1.5 (2) C9 C11 C12 C13 178.4 (2) C21 C20 C25 C24 0.7 (3) C11 C12 C13 C14 0.8 (3) C18 C20 C25 C24 178.47 (18) sup-13

Hydrogen-bond geometry (Å, º) D H A D H H A D A D H A O1 H1 Cl1 0.82 (2) 2.63 (2) 3.0343 (15) 112 (2) O1 H1 S2 0.82 (2) 2.87 (2) 3.3957 (15) 124 (2) O1 H1 O3 0.82 (2) 1.84 (2) 2.5875 (19) 151 (2) N1 H3 S1 0.87 (2) 3.02 (2) 3.7242 (18) 139 (2) N1 H3 O2 0.87 (2) 2.03 (2) 2.841 (2) 155 (2) N2 H2 S2 i 0.86 (2) 2.95 (2) 3.6286 (18) 137 (2) N2 H2 O3 i 0.86 (2) 1.98 (2) 2.805 (2) 161 (2) Symmetry code: (i) x 1, y, z. sup-14