Tea polyphenol decreased growth and invasion in human ovarian cancer cells

Similar documents
Annals of Oncology Advance Access published January 10, 2005

Oncolytic Adenovirus Complexes Coated with Lipids and Calcium Phosphate for Cancer Gene Therapy

Impact factor: Reporter:4A1H0019 Chen Zi Hao 4A1H0023 Huang Wan ting 4A1H0039 Sue Yi Zhu 4A1H0070 Lin Guan cheng 4A1H0077 Chen Bo xuan

Effect of Survivin-siRNA on Drug Sensitivity of Osteosarcoma Cell Line MG-63

Study on the expression of MMP-9 and NF-κB proteins in epithelial ovarian cancer tissue and their clinical value

Advances in Computer Science Research, volume 59 7th International Conference on Education, Management, Computer and Medicine (EMCM 2016)

PUMA gene transfection can enhance the sensitivity of epirubicin-induced apoptosis of MCF-7 breast cancer cells

Safranal inhibits the migration and invasion of human oral squamous cell carcinoma cells by overcoming epithelial-mesenchymal transition.

Berberine Sensitizes Human Ovarian Cancer Cells to Cisplatin Through mir-93/ PTEN/Akt Signaling Pathway

Downregulation of serum mir-17 and mir-106b levels in gastric cancer and benign gastric diseases

The effect of insulin on chemotherapeutic drug sensitivity in human esophageal and lung cancer cells

RESEARCH ARTICLE. Comparative Evaluation of Silibinin Effects on Cell Cycling and Apoptosis in Human Breast Cancer MCF-7 and T47D Cell Lines

Phosphate buffered saline (PBS) for washing the cells TE buffer (nuclease-free) ph 7.5 for use with the PrimePCR Reverse Transcription Control Assay

Introduction: 年 Fas signal-mediated apoptosis. PI3K/Akt

Supplementary Information and Figure legends

Profiles of gene expression & diagnosis/prognosis of cancer. MCs in Advanced Genetics Ainoa Planas Riverola

Supplementary Materials and Methods

p47 negatively regulates IKK activation by inducing the lysosomal degradation of polyubiquitinated NEMO

RNA extraction, RT-PCR and real-time PCR. Total RNA were extracted using

http / / cjbmb. bjmu. edu. cn Chinese Journal of Biochemistry and Molecular Biology COX-2 NTera-2 NTera-2 RT-PCR FasL caspase-8 caspase-3 PARP.

Supplementary Figures

Effect of EGCG in combination with gemcitabine on β-catenin expression in PANC-1 human pancreatic cancer cells * Research Article

8. CHAPTER IV. ANTICANCER ACTIVITY OF BIOSYNTHESIZED SILVER NANOPARTICLES

The Annexin V Apoptosis Assay

MTC-TT and TPC-1 cell lines were cultured in RPMI medium (Gibco, Breda, The Netherlands)

HEK293FT cells were transiently transfected with reporters, N3-ICD construct and

Supplementary Figure S I: Effects of D4F on body weight and serum lipids in apoe -/- mice.

MicroRNA-146b acts as a potential tumor suppressor in human prostate cancer

C-Phycocyanin (C-PC) is a n«sjfc&c- waefc-jduble phycobiliprotein. pigment isolated from Spirulina platensis. This water- soluble protein pigment is

Supplementary Figure 1. SA-β-Gal positive senescent cells in various cancer tissues. Representative frozen sections of breast, thyroid, colon and

MOLECULAR MEDICINE REPORTS 14: , 2016

Research on the inhibitory effect of metformin on human oral squamous cell carcinoma SCC-4 and CAL-27 cells and the relevant molecular mechanism.

HCC1937 is the HCC1937-pcDNA3 cell line, which was derived from a breast cancer with a mutation

Correspondence should be addressed to Yufeng Ding;

Supporting Information

Value of serum galectin-3 and midkine level determination for assessing tumor severity in patients with thyroid cancer

Supplemental information

Figure S1 Time-dependent down-modulation of HER3 by EZN No Treatment. EZN-3920, 2 μm. Time, h

Glioma cells enhance angiogenesis and inhibit endothelial cell apoptosis through the release of exosomes that contain long non-coding RNA CCAT2

Cancer cells in vitro

Nimbolide inhibits pancreatic cancer growth and metastasis through ROS-mediated

Ethanolic Extract of Moringa oleifera L. Increases Sensitivity of WiDr Colon Cancer Cell Line Towards 5-Fluorouracil

Supplementary Figure 1. HOPX is hypermethylated in NPC. (a) Methylation levels of HOPX in Normal (n = 24) and NPC (n = 24) tissues from the

(A) PCR primers (arrows) designed to distinguish wild type (P1+P2), targeted (P1+P2) and excised (P1+P3)14-

Type of file: PDF Size of file: 0 KB Title of file for HTML: Supplementary Information Description: Supplementary Figures

Silibinin Is an Inhibitor of mir-24-3p Gene Expression in T47D Breast Cancer Cell Line

Long noncoding RNA linc-ubc1 promotes tumor invasion and metastasis by regulating EZH2 and repressing E-cadherin in esophageal squamous cell carcinoma

Proteomic profiling of small-molecule inhibitors reveals dispensability of MTH1 for cancer cell survival

SUPPLEMENTAL EXPERIMENTAL PROCEDURES

SUPPLEMENT. Materials and methods

Silencing Dicer expression enhances cellular proliferative and invasive capacities in human tongue squamous cell carcinoma

A holistic approach to targeting breast cancer part II: Micronutrient synergy. Presented by: Dr. Neha Shanker DRRI

MicroRNA 98 suppresses cell growth and invasion of retinoblastoma via targeting the IGF1R/k Ras/Raf/MEK/ERK signaling pathway

The effect of elemene reversing the multidurg resistance of A549/DDP lung cancer cells

Clinical significance of CD44 expression in children with hepatoblastoma

Key words: apoptosis, beta-amyrin, cell cycle, liver cancer, tritepenoids

Figure S1. PMVs from THP-1 cells expose phosphatidylserine and carry actin. A) Flow

Apoptosis of human umbilical vein endothelial cells (HUVEC) induced by IgA1 isolated from Henoch- Schonlein purpura children

An epithelial-to-mesenchymal transition-inducing potential of. granulocyte macrophage colony-stimulating factor in colon. cancer

Pharmacologic inhibition of histone demethylation as a therapy for pediatric brainstem glioma

INTRODUCTION Ovarian cancer is the leading cause of mortality from gynecologic malignancies in the industrialized countries and is responsible for

Effects of COX-2 Inhibitor on the Proliferation of MCF-7 and LTED MCF-7 Cells

GLI-1 facilitates the EMT induced by TGF-β1 in gastric cancer

The splicing regulation and clinical significance of epithelial splicing regulatory protein 1 in invasion and metastasis of epithelial ovarian cancer

For the rapid, sensitive and accurate measurement of apoptosis in various samples.

Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA 2

Montri Punyatong 1, Puntipa Pongpiachan 2 *, Petai Pongpiachan 2 Dumnern Karladee 3 and Samlee Mankhetkorn 4 ABSTRACT

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY METHODS

Doctoral Degree Program in Marine Biotechnology, College of Marine Sciences, Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei,

Original Article Ginkgo biloba extract induce cell apoptosis and G0/G1 cycle arrest in gastric cancer cells

ab65311 Cytochrome c Releasing Apoptosis Assay Kit

Sodium selenite induces apoptosis in colon cancer cells via Bax-dependent mitochondrial pathway

Essential Medium, containing 10% fetal bovine serum, 100 U/ml penicillin and 100 µg/ml streptomycin. Huvec were cultured in

ORIGINAL ARTICLE. Hang Huang 1,2, Lin-Jin Li 3, Hai-Bo Zhang 4, An-Yang Wei 4. Summary. Introduction

Low levels of serum mir-99a is a predictor of poor prognosis in breast cancer

supplementary information

Cancer and Gene Alterations - 1

Catechin s anti-angiogenic effects in epithelial ovarian cancer

Supplementary Information

IMMP8-1. Different Mechanisms of Androg and IPAD on Apoptosis Induction in Cervical Cancer Cells

Part-4. Cell cycle regulatory protein 5 (Cdk5) A novel target of ERK in Carb induced cell death

Thea viridis extract inhibits growth and invasion of colorectal cancer via MAPK/ERK signaling pathway suppression.

Supplemental Data. TGF-β-mediated mir-181a expression promotes breast cancer metastasis by targeting Bim.

Effects of AFP gene silencing on Survivin mrna expression inhibition in HepG2 cells

Summary & conclusion

ONCOLOGY LETTERS 7: , 2014

Low Cell Binding Property of LIPIDURE -COAT

Supplementary Figure 1. H-PGDS deficiency does not affect GI tract functions and anaphylactic reaction. (a) Representative pictures of H&E-stained

Anti-cancer activity of Aya Thambira Chendooram (ATC) in in-vitro cell line against Breast Carcinoma

William Weidong Du 1,3, Ling Fang 1,2, Weining Yang 1,3, Wang Sheng 1,2, Yaou Zhang 1,2, Arun Seth 1,2, Burton B Yang 1,2 and Albert J Yee 1,3,4*

Targeted mass spectrometry (LC/MS/MS) for Olaparib pharmacokinetics. For LC/MS/MS of Olaparib pharmacokinetics metabolites were extracted from

Linderalactone inhibits human lung cancer growth b

Influence of RNA Interference Targeting Rab5a on Proliferation and Invasion of Breast Cancer Cell Line MCF-7

Characterization and significance of MUC1 and c-myc expression in elderly patients with papillary thyroid carcinoma

Kaempferol inhibits gastric cancer tumor growth: An in vitro and in vivo study

Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan; 2

Data Sheet TIGIT / NFAT Reporter - Jurkat Cell Line Catalog #60538

IN VITRO ANTICANCER ACTIVITY OF FLOWER EXTRACTS OF COUROUPITA GUIANENSIS

ab Adipogenesis Assay Kit (Cell-Based)

Transcription:

674480EJI0010.1177/1721727X16674480European Journal of InflammationHuang et al. research-article2016 Letter to the editor Tea polyphenol decreased growth and invasion in human ovarian cancer cells European Journal of Inflammation 2016, Vol. 14(3) 206 211 The Author(s) 2016 Reprints and permissions: sagepub.co.uk/journalspermissions.nav DOI: 10.1177/1721727X16674480 eji.sagepub.com Qin Huang, 1,* Ting Du 1,* and Qiu-Xia Qu 2 Abstract Tea polyphenols (TP) are functional substances present in tea, which is one of the most promising preventive agents for cancer. This study was carried out to analyze the effects of TP on the ovarian cancer cells and possible mechanisms involved. TP led to inhibition of cell growth in a time- and dose-dependent manner, and promoted entry into the apoptosis-phase of the cell cycle. TP also decreased the invasion of ovarian cancer cells in vitro. In addition, TP treatment upregulated the mrna expressions rate of Bax/Bcl-2 and downregulated Cyclin D and MMP2 mrna expressions. Taken together, our data highlight that TP could be a potential therapeutic strategy for ovarian cancer. These findings also suggested that oncogens are involved in the anti-cancer effects of TP. Keywords growth, human ovarian cancer cells, invasion, tea polyphenols Date received: 14 April 2016; accepted: 5 September 2016 Introduction Ovarian cancer, with the highest incidence of gynecological malignancies, is the leading cause of death of women worldwide. Despite considerable progress in recent decades in surgical oncology and the application of new radiation treatments and chemotherapy, mortality due to ovarian cancer remains high due to metastasis. Tea is consumed as a popular beverage worldwide. It is largely consumed in some Asian countries such as Japan, China, Korea, and parts of India, and a few countries in North Africa and the Middle East. 1 The consumption of green tea is also increasing in Western countries including the United States because of increasingly new investigations on its health benefits and anti-carcinogenic activities in various organs. Most of the medical activities of tea seem to be attributed to tea polyphenols (TPs). It is known to possess strong antioxidant and anticarcinogenic activities. 2 4 Numerous experimental studies demonstrate that the preventive mechanism of the TP during carcinogenesis has been suggested to be associated with inhibition of cellular proliferation and induction of apoptosis. 5,6 In this study, we will investigate whether TP have the ability to regulate biological behavior of human ovarian cancer cells and whether these effects are associated with their effects on cell proliferation genes, tumor metastatic genes, and apoptosis regulation genes. Our studies will provide evidence that TP have the ability to inhibit the growth and invasion of ovarian cancer cells by targeting regulators. Materials and methods Materials TP extract with a purity of 98% was obtained from Yuan Ye Bio-Technology (Shanghai, PR China). 1 Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, PR China 2 Clinical Immunology Institute, The First Affiliated Hospital of Soochow University, Suzhou, PR China *Equal contributors. Corresponding author: Qiu-Xia Qu, Clinical Immunology Institute, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, PR China. Email: quqiuxia81@163.com

Huang et al. 207 Cell Counting Kit-8 and Annexin V, FITC Apoptosis Detection Kit (Dojindo, Japan), Transwell chamber (Costar, USA), Matrigel (BD Biosciences, USA), RNA PCR Kit (AMV) Ver.3.0 and Trizol (Taraka Clontech, Japan), Thermo Scientific Maxima SYBR Green qpcr Master Mixes (Thermo Fisher Scientific, USA) were used for experiments. Cell line Ovarian cell lines (HO8910, SKOV3) were obtained from the Chinese Academy of Sciences, Shanghai Institutes for Biological Sciences. HO8910 and SKOV3 were cultured in RPMI-1640 supplemented with 10% fetal calf serum (FCS), 2 mm l-glutamine, 100 U/mL penicillin, 100 mg/ml streptomycin, and 50 mm 2-ME. The cell line was incubated at 37 C with 5% CO2. All mediums and supplements were obtained from Gibco BRL Life Technologies. CCK-8 assay for cell growth inhibition HO8910/SKOV3 cells were seeded at a density of 5 10 3 cells in each well of the 96-well plates and treated with TP of different concentrations: HO8910 (10 μg/ml, 20 μg/ml, 40 μg/ml, 60 μg/ ml, 80 μg/ml, 100 μg/ml), SKOV3 (100 μg/ml, 150 μg/ml, 200 μg/ml, 250 μg/ml, 300μg/mL). After 24 h and 48 h, CCK-8 (10 μl/well) was added to each well and incubated at 37 C for 4 h. Absorbance values at 450 nm were detected by the microplate reader. Flow cytometric analysis HO8910/SKOV3 cells were harvested directly or 24 h after TP treatment and washed with ice-cold phosphate-buffered saline (PBS). Annexin V, FITC Apoptosis Detection Kit was used to detect cell apoptosis in a FACScan instrument. Migration assay The migration assay was performed using Transwell chamber (pore size, 8 μm) in 24-well dishes. Approximately 2 10 4 HO8910/SKOV3 cells in 100 μl of serum-free RPMI-1640 medium were placed in the upper chamber, and 500 μl of the same medium containing TP (SKOV3: 40 μg/ml, HO8910: 200 μg/ml) was placed in the lower chamber. The plates were incubated for 12 h at 37 C in 5% CO2, and then cells were fixed in methanol for 15 min and stained with 0.05% crystal violet in PBS for 15 min. Cells on the upper side of the filters were removed with cotton-tipped swabs and the filters were washed with PBS. Cells on the underside of the filters were examined under a microscope. Each clone was plated in triplicate in each experiment and each experiment was repeated at least three times. mrna expression measurement Total RNA from HO8910/SKOV3 cells with TP (SKOV3 40 μg/ml, HO8910 200 μg/ml) was isolated using Trizol reagent according to the manufacturer s recommendations. RNA PCR Kit (AMV) Ver.3.0 was used to synthesize cdna as routine methods. Sequences of primers used to specifically amplify the genes of interest are as follows: Cyclin D: 5 -GCTGCGAAGTGGAAACCATC-3 and 5 -CCTCCTTCTGCACACATTTGAA-3, MMP2: 5 -TACAGGATCATTGG CTACACA CC-3 and 5 -GGTCACATCGCTCCAGACT-3, Bax: 5 -CCCGAGVAG GTCTTTTTCCGAG-3 and 5 -CCAGCCCATGATGGTTCTG AT-3, Bcl- 2: 5 -GGTGGGGTCATGTGTGTGG-3 and 5 -CG GTTCAGGTA CTCAGTCATCC-3. Amplification was performed in a thermal cycler. Statistical analysis All statistical analyses were performed using a statistical software package (SPSS, Inc., Version 10.0, Chicago, IL, USA). Statistical significance was defined as values of P <0.05. All P values were two-sided. Results Growth inhibitory effects of different concentrations of TP against ovarian cancer cells First, we determined the in vitro growth of cancer cells upon treating with TP using CCK-8 assay. As shown in Figure 1, after 24 h, TP began to reduce the growth of HO8910 and SKOV3 cells at concentrations of 200 μg/ml and 40 μg/ml, respectively. After 48 h, an in vitro determination of the effective concentration needed for inhibition of HO8910 and SKOV3 cells was decreased. The data showed that TP inhibited growth of ovarian cancer cells in a concentration- and time-dependent manner. We found that the inhibition of 200 μg/ml TP-treated HO8910 and 40 μg/ml TP-treated SKOV3 cells

208 European Journal of Inflammation 14(3) in the context of TP, HO8910 and SKOV3 showed a lower migratory ability at 24 h. TP regulated the gene expressions of cell proliferation, apoptosis, and invasion of ovarian cancer cells To investigate the mechanism by which TP induces apoptosis and migration inhibition in HO8910 and SKOV3 cells, we detected expression levels of several molecules by semi-quantitative RT-PCR. As shown in Figure 4, analysis showed that TP resulted in a reduction in Cyclin D, MMP2 gene expression, and the ratio of Bax/Bcl-2 gene expression in HO8910 and SKOV3 cells. Figure 1. The inhibitory effect of TP on proliferation of HO8910 and SKOV3 cells. Cells were cultured in 96- well plates with TP. The CCK-8 test for cell proliferation was done at different concentrations and times of culture. The bar represents the median in each group. Results are representative of three independent experiments, P <0.05. were 22.36 ± 0.03% and 28.58 ± 0.03% (Figure 1). Then, the concentrations of 200 μg/ml and 40 μg/ml were chosen for following the assays of HO8910 and SKOV3 cells, respectively. Induction of apoptosis by TP We used flow cytometry to determine whether the inhibitory effect of TP on ovarian cancer cell proliferation was mediated, at least in part, through affecting cell apoptosis. We found that the apoptosis of TP-treated HO8910 and SKOV3 cells were up to 18.50 ± 1.40% and 32.00 ± 2.94%, respectively (Figure 2). TP affected the invasive ability of ovarian cancer cells Then, we measured the migratory ability of TP-treated HO8910 and SKOV3 cells using the transwell assay with matrix. As shown in Figure 3, Discussion Cancer constitutes one of the greatest challenges in terms of developing preventive, therapeutic, and diagnosis methods. Cancer cells have the characteristics of unlimited proliferation, immortality, and invasion, and they normally display several differences in metabolism, gene expression, and survival mechanisms. Tea is one of the most widely consumed beverages in the world. It contains biochemically active components that have been hypothesized to prevent cancer risk. Song et al. have shown that those women who drank at least one cup of green tea a day may reduce the risk of ovarian cancer. 7 As expected, tea and its components can inhibit carcinogenesis through a wide variety of mechanisms. These compounds may induce apoptosis, deregulate cell cycle, inhibit growth, proliferation, angiogenesis, enzyme activities, and gene transcription, among many other mechanisms. 8 10 In this study, we investigated the function and mechanism of TP on the biological behavior of ovarian cancer cells HO8910 and SKOV3. TP inhibited proliferation and promoted the apoptosis of HO8910 and SKOV3 cells in a significant dosedependent manner and decreased the invasion in both two cell lines. Cyclin D is a cell cycle regulator gene and it plays an important role in the proliferation of cancer cells. TP could downregulate the Cyclin D mrna expression. Our findings showed that TP prevents ovarian cancer cells from entering the S phase, thus inhibiting obvious proliferation. MMP2 is a member of the family of matrix metalloproteinases (MMPs) and the main enzyme of degradation of extracellular matrix and basement membrane. It plays a key role in the invasion and

Huang et al. 209 Figure 2. TP induced apoptosis of HO8910 and SKOV3 cells. Cells were recovered after 24 h of culture with TP and analyzed on FCM using Annexin V-PI assay. Scatter plots of the percentage of apoptotic cells were in the fourth quadrant. The bar represents the median in each group. Results are representative of three independent experiments, P <0.05. Figure 3. The effect of TP on the invasion of HO8910 and SKOV3 cells (100 ). The cells treated with TP were in the upper chamber and the medium plus 10% FBS was added to the lower chamber. The cells on the underside of the filter were fixed. metastasis of cancer cells. 11 Recent studies show that overexpression of MMP2 in malignant tumor tissue is correlated with prognosis. 12,13 Our findings showed that the numbers of ovarian cancer cells treated with TP penetrating the matrix are significantly decreased. Real-time PCR results also showed decreased expression of MMP2. The results suggested that TP inhibit the invasion of ovarian cancer cells by downregulating MMP2 expression. Bcl-2 family genes are important apoptosisrelated genes. Bcl-2 is an inhibitor of apoptosis proteins. However, Bax is a pro-apoptotic protein and the main apoptosis molecule in the Bcl-2 family. When Bax is combined with Bcl-2, it inactivates Bcl-2. Once Bcl-2 is neutralized and weakened, active Bax will transpose to mitochondria and stimulate mitochondrial outer membrane

210 European Journal of Inflammation 14(3) All in all, this study demonstrated that TP can induce apoptosis and inhibit proliferation and invasion of ovarian cancer cells through regulating the expression of Cyclin D, MMP2, Bax, and Bcl-2. Thus, we can conclude that TP with general consumption, low toxicity, and anti-tumor effect will be a potentially promising therapeutic agent. Declaration of conflicting interests The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article. Funding This research was supported by the Suzhou social development project (SYS201605 and SYS201338). Figure 4. Expression of Cyclin D (a), MMP2 (b), and Bax/Bcl- 2 mrna (c) in HO8910 and SKOV3 cells after TP treatment detected by real-time PCR. Data analysis was done using the 2 CT method for relative quantification and all samples were normalized to β-actin. Results are representative of three independent experiments, P <0.05. permeabilization (MOMP) to release pro-apoptotic molecules into proteins, thus inducing apoptosis of cancer cells. 14,15 Our findings showed that TP is able to increase the rate of Bax/ Bcl-2 mrna expression, thus inducing apoptosis. References 1. Katiyar SK and Elmets CA (2001) Green tea polyphenolic antioxidants and skin photoprotection. International Journal of Oncology 18: 1307 1313. 2. Baliga MS, Meleth S and Katiyar SK (2005) Growth inhibitory and antimetastatic effect of green tea polyphenols on metastasis-specific mouse mammary carcinoma 4T1 cells in vitro and in vivo systems. Clinical Cancer Research 11: 1918 1927. 3. Gupta S, Hastak K, Ahmad N et al. (2001) Inhibition of prostate carcinogenesis in TRAMP mice by oral infusion of green tea polyphenols. Proceedings of the National Academy of Sciences of the United States of America 98: 10350 10355. 4. Huh SW, Bae SM, Kim YW et al. (2004) Anticancer effects of (-)-epigallocatechin-3-gallate on ovarian carcinoma cell lines. Gynecologic Oncology 94: 760 768. 5. Hofmann CS and Sonenshein GE (2003) Green tea polyphenol epigallocatechin-3 gallate induces apoptosis of proliferating vascular smooth muscle cells via activation of p53. FASEB Journal 17: 702 704. 6. Gupta K, Thakur VS, Bhaskaran N et al. (2012) Green tea polyphenols induce p53-dependent and p53-independent apoptosis in prostate cancer cells through two distinct mechanisms. PLoS One 7: e52572. 7. Song YJ, Kristal AR, Wicklund KG et al. (2008) Coffee, tea, colas, and risk of epithelial ovarian cancer. Cancer Epidemiology, Biomarkers & Prevention 17: 712 716. 8. Chen X, Li Y, Lin Q et al. (2014) Tea polyphenols induced apoptosis of breast cancer cells by suppressing the expression of Survivin. Scientific Reports 4: 4416. 9. Monobe M, Ema K, Tokuda Y et al (2010) Enhancement of phagocytic activity of macrophagelike cells by pyrogallol-type green tea polyphenols

Huang et al. 211 through caspase signaling pathways. Cytotechnology 62: 201 203. 10. Lin JK (2002) Cancer chemoprevention by tea polyphenols through modulating signal transduction pathways. Archives of Pharmacal Research 25: 561 571. 11. Kadoglou NP and Liapis CD (2004) Matrix metalloproteinases: Contribution to pathogenesis, diagnosis, surveillance and treatment of abdominal aortic aneurysms. Current Medical Research and Opinion 20: 419 432. 12. Yoshizaki T, Maruyama Y, Sato H et al. (2001) Expression of tissue inhibitor of matrix metalloproteinase-2 correlates with activation of matrix metalloproteinase-2 and predicts poor prognosis in tongue squamous cell carcinoma. International Journal of Cancer 95: 44 50. 13. Zeng ZS, Cohen AM, Guillem JG et al. (1999) Loss of basement membrane type IV collagen is associated with increased expression of metalloproteinases-2 and-9(mmp2andmmp9) during human colorectal tumorigenesis. Carcinogenesis 20: 749 755. 14. Adams JM and Cory S (1998) The Bcl-2 protein family: Arbiters of cell survival. Science 281: 1322 1326. 15. Youle RJ and Strasser A (2008) The BCL-2 protein family: Opposing activities that mediate cell death. Nature Reviews. Molecular Cell Biology 9: 47 59.