Web Extra material. Comparison of non-laboratory-based risk scores for predicting the occurrence of type 2

Similar documents
Know Your Number Aggregate Report Comparison Analysis Between Baseline & Follow-up

RESEARCH. Predicting risk of type 2 diabetes in England and Wales: prospective derivation and validation of QDScore

Know Your Number Aggregate Report Single Analysis Compared to National Averages

8/10/2012. Education level and diabetes risk: The EPIC-InterAct study AIM. Background. Case-cohort design. Int J Epidemiol 2012 (in press)

Diabetes risk scores and death: predictability and practicability in two different populations

Consuming a Varied Diet can Prevent Diabetes But Can You Afford the Added Cost? Annalijn Conklin 18 January 2017, Vancouver, Canada

Modelling Reduction of Coronary Heart Disease Risk among people with Diabetes

N Follow -up years. (cases/controls or participants, gender) Cases: 105 men and 125 women; Controls: 206 men and 246 women

A healthy Nordic food index

Physical Activity, Sedentary Behaviors and the Incidence of Type 2 Diabetes Mellitus: The Multi-

NHS Diabetes Prevention Programme (NHS DPP) Non-diabetic hyperglycaemia. Produced by: National Cardiovascular Intelligence Network (NCVIN)

AN INDEPENDENT VALIDATION OF QRISK ON THE THIN DATABASE

Correlation and regression

Guidelines on cardiovascular risk assessment and management

Supplementary Appendix

etable 3.1: DIABETES Name Objective/Purpose

Development and validation of QDiabetes-2018 risk prediction algorithm to estimate future risk of type 2 diabetes: cohort study

Analyzing diastolic and systolic blood pressure individually or jointly?

Discontinuation and restarting in patients on statin treatment: prospective open cohort study using a primary care database

Epidemiologic Measure of Association

Logistic Regression Predicting the Chances of Coronary Heart Disease. Multivariate Solutions

ESM1 for Glucose, blood pressure and cholesterol levels and their relationships to clinical outcomes in type 2 diabetes: a retrospective cohort study

High Fiber and Low Starch Intakes Are Associated with Circulating Intermediate Biomarkers of Type 2 Diabetes among Women 1 3

IAPT: Regression. Regression analyses

Depok-Indonesia STEPS Survey 2003

Unit 1 Exploring and Understanding Data

Supplementary Table 1. Association of rs with risk of obesity among participants in NHS and HPFS

Supplementary Online Content

ORIGINAL INVESTIGATION. C-Reactive Protein Concentration and Incident Hypertension in Young Adults

Lucia Cea Soriano 1, Saga Johansson 2, Bergur Stefansson 2 and Luis A García Rodríguez 1*

RESEARCH. Predicting risk of osteoporotic fracture in men and women in England and Wales: prospective derivation and validation of QFractureScores

Food, climate change and human health

Consideration of Anthropometric Measures in Cancer. S. Lani Park April 24, 2009

EFFECTIVENESS OF PHONE AND LIFE- STYLE COUNSELING FOR LONG TERM WEIGHT CONTROL AMONG OVERWEIGHT EMPLOYEES

CARDIOVASCULAR RISK ASSESSMENT ADDITION OF CHRONIC KIDNEY DISEASE AND RACE TO THE FRAMINGHAM EQUATION PAUL E. DRAWZ, MD, MHS

Finland and Sweden and UK GP-HOSP datasets

Secondary prevention and systems approaches: Lessons from EUROASPIRE and EUROACTION

Appendix This appendix was part of the submitted manuscript and has been peer reviewed. It is posted as supplied by the authors.

Supplemental table 1. Dietary sources of protein among 2441 men from the Kuopio Ischaemic Heart Disease Risk Factor Study MEAT DAIRY OTHER ANIMAL

Clinical Study Adults with Greater Weight Satisfaction Report More Positive Health Behaviors and Have Better Health Status Regardless of BMI

University of Bristol - Explore Bristol Research. Publisher's PDF, also known as Version of record

DECLARATION OF CONFLICT OF INTEREST. None

Biostatistics II

Since 1980, obesity has more than doubled worldwide, and in 2008 over 1.5 billion adults aged 20 years were overweight.

Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and

Adherence to a healthy diet in relation to cardiovascular incidence and risk markers: evidence from the Caerphilly Prospective Study

Supplementary Appendix

Is Knowing Half the Battle? Behavioral Responses to Risk Information from the National Health Screening Program in Korea

Mortality in vegetarians and comparable nonvegetarians in the United Kingdom 1 3

Insulin-like growth factor 1 (IGF1), IGF binding protein 3 (IGFBP3), and breast cancer risk: pooled individual data analysis of 17 prospective studies

Multivariate relationships. Week 6 22 February, 2016 Prof. Andrew Eggers

National Collaborative Wave 2 (Wave 9): National Diabetes Prevention and Management Wave, Month 9 Diabetes Management: Diabetes Register

A simple screening score for diabetes for the Korean population

Research. Prevalence of lower-extremity amputation among patients with diabetes mellitus: Is height a factor? Methods

QDScore 2011 Annual Update Information

Cognitive ageing and dementia: The Whitehall II Study

Fruit & Vegetable Consumption and Mental Health

Identification of subjects at high risk for cardiovascular disease

Supplementary Appendix

Prediction models in nutritional epidemiology

SGRQ Questionnaire assessing respiratory disease-specific quality of life. Questionnaire assessing general quality of life

Socioeconomic status and the 25x25 risk factors as determinants of premature mortality: a multicohort study of 1.7 million men and women

Health First. New Health Bucks Program MANATEE YOURCHOICE HEALTH PLAN

Supplementary Appendix

Validation of QRISK2 (2014) in patients with diabetes

Assessing the economics of a stratified treatment approach for Type 2 Diabetes

Graphical assessment of internal and external calibration of logistic regression models by using loess smoothers

Dietary fibre and incidence of type 2 diabetes in eight European countries: the EPIC-InterAct Study and a meta-analysis of prospective studies

Chapter 3: Describing Relationships

Statistical Analysis Plan FINAL. DexComG4 (DexCom Corporation) CGMMDI GOLD-Study

Nutrition and gastrointestinal cancer: An update of the epidemiological evidence

CRITERIA FOR USE. A GRAPHICAL EXPLANATION OF BI-VARIATE (2 VARIABLE) REGRESSION ANALYSISSys

Metabolic Syndrome and Workplace Outcome

Supplementary Appendix

APPENDIX D REFERENCE AND PREDICTIVE VALUES FOR PEAK EXPIRATORY FLOW RATE (PEFR)

No response (n 210) Declined (n 728) Lost during run-in (n 233) Lost before baseline (n 350) randomisation (n 69)

Biases in clinical research. Seungho Ryu, MD, PhD Kanguk Samsung Hospital, Sungkyunkwan University

programme. The DE-PLAN follow up.

Table S1. Characteristics associated with frequency of nut consumption (full entire sample; Nn=4,416).

Bariatric Surgery versus Intensive Medical Therapy for Diabetes 3-Year Outcomes

Health Score SM Member Guide

Retrospective Cohort Study for the Evaluation of Life- Style Risk Factors in Developing Metabolic Syndrome under the Estimated Abdominal Circumference

The Scottish Health Survey 2014 edition summary A National Statistics Publication for Scotland

Supplementary Online Content

Meta-analysis of external validation studies

Chapter 13 Estimating the Modified Odds Ratio

Sugar sweetened beverages association with hyperinsulinemia

The Mediterranean Diet: The Optimal Diet for Cardiovascular Health

The North Carolina Health Data Explorer

STATISTICS INFORMED DECISIONS USING DATA

Antioxidant vitamins and coronary heart disease risk: a pooled analysis of 9 cohorts 1 3

Overview. The Mediterranean Diet: The Optimal Diet for Cardiovascular Health. No conflicts of interest or disclosures

overweight you are part of it!... Healthier, fitter, safer... Seafarers Health Information Programme ICSW S.H.I.P.

What Are Your Odds? : An Interactive Web Application to Visualize Health Outcomes

Supplementary materials for Prospective associations of consumption of sugar-sweetened beverages,

Supplementary Online Content

Agenda CIAHD Monthly Research Meeting SPH I, Room 2610 November 14, :30 2:00pm est/11:30-12:00pm cst. I. CIAHD-Updates 10 minutes

ATTENTION-DEFICIT/HYPERACTIVITY DISORDER, PHYSICAL HEALTH, AND LIFESTYLE IN OLDER ADULTS

RESEARCH. Derivation and validation of QRISK, a new cardiovascular disease risk score for the United Kingdom: prospective open cohort study

Development and validation of a multivariable prediction model for all-cause cancer incidence based on health behaviours in the population setting

Transcription:

Web Extra material Comparison of non-laboratory-based risk scores for predicting the occurrence of type 2 diabetes in the general population: the EPIC-InterAct Study Outline Supplementary Figures Legend... 3 Supplementary Box 1 Derivation of the EPIC-InterAct Case-cohort sample... 4 Supplementary Box 2 Assessment of diabetes predictors at baseline in the EPIC-InterAct study... 5 Supplementary Box 3 - Derivation of proxy variables in the EPIC-InterAct study... 6 Supplementary Box 4 Full equation for incident diabetes risk prediction models as applied to the EPIC- InterAct cohort... 7 Supplementary Box 5 Implementation of the prediction model recalibration through simple intercept adjustment in the EPIC-InterAct study... 9 Supplementary Box 6 Implementation of the blow-up approach in the EPIC-InterAct study 24... 10 Supplementary Table 1 Incident diabetes risk prediction models and EPIC-InterAct countries where they were applied... 11 Supplementary Table 2 Correction factors for implementing Incident diabetes risk prediction models recalibration at 10 years of follow-up through simple intercept adjustment across EPIC-InterAct countries... 12 Supplementary Table 3 Discrimination and calibration statistics for model performance in men and women by country, for the prediction of incident type 2 diabetes at 10 years of follow-up in the EPIC-InterAct study... 13 Supplementary Table 4 C-statistic and 95% confidence interval overall and by subgroups of participants,, for the prediction of incident type 2 diabetes at 5 years of follow-up in the EPIC-InterAct study... 16 BMI, body mass index; WC, waist circumference... 16 Supplementary Table 5 Ratios expected/observed 5-year incident diabetes rates and 95% confidence interval overall and by subgroups of participants in the EPIC-InterAct study... 17 BMI, body mass index; WC, waist circumference... 17 Supplementary Table 6 Discrimination and calibration statistics for model performance in men and women by country, for the prediction of incident type 2 diabetes at 5 years of follow-up in the EPIC-InterAct study... 18 Supplementary Figure 1 - Calibration curves per model without intercept adjustment at the total cohort level, for the prediction of incident type 2 diabetes at 10 years of follow-up in the in the EPIC-InterAct study... 21 Supplementary Figure 2 Calibration curves by country for the ARIC 2005 model with intercept adjustment, for the prediction of incident type 2 diabetes at 10 years of follow-up in the in the EPIC-InterAct study... 22 Supplementary Figure 3 Calibration curves by country for the ARIC 2009 model with intercept adjustment, for the prediction of incident type 2 diabetes at 10 years of follow-up in the in the EPIC-InterAct study... 23 Supplementary Figure 4 Calibration curves by country for the AUSDRISK model with intercept adjustment, for the prediction of incident type 2 diabetes at 10 years of follow-up in the in the EPIC-InterAct study... 24 Supplementary Figure 5 Calibration curves by country for the Cambridge model with intercept adjustment, for the prediction of incident type 2 diabetes at 10 years of follow-up in the in the EPIC-InterAct study... 25 Supplementary Figure 6 Calibration curves by country for the D.E.S.I.R. model with intercept adjustment, for the prediction of incident type 2 diabetes at 10 years of follow-up in the in the EPIC-InterAct study... 26 Supplementary Figure 7 Calibration curves by country for the DPoRT model with intercept adjustment, for the prediction of incident type 2 diabetes at 10 years of follow-up in the in the EPIC-InterAct study... 27 Supplementary Figure 8 Calibration curves by country for the FINDRISK concise model with intercept adjustment, for the prediction of incident type 2 diabetes at 10 years of follow-up in the in the EPIC-InterAct study... 28 Supplementary Figure 9 Calibration curves by country for the FINDRISK full model with intercept adjustment, for the prediction of incident type 2 diabetes at 10 years of follow-up in the in the EPIC-InterAct study... 29 Supplementary Figure 10 Calibration curves by country for the Framingham personal variables model with intercept adjustment, for the prediction of incident type 2 diabetes at 10 years of follow-up in the in the EPIC- InterAct study... 30 Supplementary Figure 11 Calibration curves by country for the KORA model with intercept adjustment, for the prediction of incident type 2 diabetes at 10 years of follow-up in the in the EPIC-InterAct study... 31 1

Supplementary Figure 12 Calibration curves by country for the Potsdam model with intercept adjustment, for the prediction of incident type 2 diabetes at 10 years of follow-up in the in the EPIC-InterAct study... 32 Supplementary Figure 13 Calibration curves by country for the QDScore model with intercept adjustment, for the prediction of incident type 2 diabetes at 10 years of follow-up in the in the EPIC-InterAct study... 33 Supplementary Figure 14 - Calibration curves per model without intercept adjustment at the total cohort level, for the prediction of incident type 2 diabetes at 5 years of follow-up in the in the EPIC-InterAct study... 34 Supplementary Figure 15 - Calibration curves per model with intercept adjustment at the total cohort level, for the prediction of incident type 2 diabetes at 5 years of follow-up in the in the EPIC-InterAct study... 35 Figure 16 Discrimination of models by country and overall, for the prediction of incident type 2 diabetes at 5 years of follow-up in the in the EPIC-InterAct study... 36 References... 37 2

Supplementary Figures Legend Supplementary Figures 1 to 15: Calibration curves Calibration of a model describes the extent to which the expected probability (E) of diabetes reflects the observed probability (O) of acquiring a diagnosis of diabetes during follow-up. The ideal calibration (perfect E- O agreement) is graphically represented by the dotted diagonal line at 45 o. For each panel, the smooth superimposed non-parametric lowess-estimated calibration curves describe the agreement between predicted and observed risk across the continuum of predicted risk in the test population. The vertical lines at the bottom of graph depict the frequency distribution of the calibrated probabilities of diabetes. The triangles (grouped observations) represent the groups of participants across increasing deciles of estimated risk (n=10). The calibration curves were produced with the use of the val.prob function of the Design package of R 1. For each figure panel, the ratio Expected/Observed (E/O) event rates and the accompanying 95% confidence interval (estimated by assuming a Poisson variance 2 ), the Yates slope (which is the difference between mean predicted probability for participants with and without incident diabetes) and the Brier score (the quadratic difference between predicted probability and actual outcome [0 or 1] for each participants) 3 are also shown. The p-values in Supplementary Figure 1 are for the test of heterogeneity in the Expected/Observed event rates across countries. Supplementary Figure 16: Models discrimination by country and overall at 5-year of follow-up Discrimination refers to the ability of the model to distinguish between participants who developed diabetes and those who remained diabetes free during a five-year of follow-up. Theoretically, the C-statistic ranges from 0 5 (no predictive ability at all) to 1 (perfect predictive ability). Black boxes denote the C-statistics and the horizontal bars represent the 95% confidence intervals. For each model, the diamond is the overall C-statistic derived from a random effects model. For each model, the dotted vertical line centered on the diamond has been added to assist visual interpretation. The I-squared, tau-squared and p-values for heterogeneity across countries are also shown. 3

Supplementary Box 1 Derivation of the EPIC-InterAct Case-cohort sample A total of 455,569 EPIC participants were followed up for an average (range) of 11 7 (0-17 5) years for diabetes occurrence. Individuals without stored blood (n=109,574), with prevalent diabetes (n=10,293) or without reported- (n=5,821) or with unverified (n=3,078) status for diabetes during follow-up, were excluded. Therefore, 326,805 were eligible, in whom 14,980 verified incident cases of T2DM were recorded. Of the EPIC participants with blood stored at baseline (345,944), a center-stratified, random subcohort of 16,835 individuals was selected. After exclusion of 548 individuals with prevalent diabetes and 133 with uncertain diabetes status, the subcohort included 16,154 individuals for analysis. Due to the random selection, this subcohort also included a random set of 778 individuals who had developed incident T2DM during follow-up. Of the remaining 14,202 incident diabetes cases recorded in the non-subcohort sample, 4,485 (36 6%) were registered in Denmark centers alone. To limit the influence of Denmark on the dataset, only a random sample of non-subcohort incident diabetes cases in Denmark (1908; 42 5%) were included in the InterAct case-cohort dataset. Therefore, the final EPIC-InterAct dataset included 27,779 participants (12,403 with incident diabetes). Participants in the random subcohort were similar to all EPIC participants eligible for inclusion in EPIC-InterAct. All participants gave written informed consent, and the study was approved by the local ethics committee in the participating countries and the Internal Review Board of the International Agency for Research on Cancer. 4

Supplementary Box 2 Assessment of diabetes predictors at baseline in the EPIC-InterAct study Weight, height and waist circumference were recorded by trained health professionals during a visit to the study centre, with the exception of Oxford (U.K.) and France where self-reported waist circumference and/or height and weight were obtained from all participants, and were measured only in a restricted number. In Umea (Sweden) only weight and height were measured 4. Smoking status was self-reported as never, current or former smoking. Information on coronary heart disease and stroke at baseline was obtained from self-reported diagnosis or from hospital discharge registries. Presence of hypertension and hyperlipidemia were based on self-reported diagnosis and/or use of medication. Physical activity was assessed by questionnaire and classified into inactive, moderately inactive, moderately active, and active, according to the Cambridge Physical Activity Index 5. Diet, including alcohol intake over the 12 months before enrolment was measured by centre-specific dietary assessment instruments (mainly food frequency questionnaires [FFQ] and dietary history) designed to capture local dietary habits with high compliance 6. Most centres adopted a self-administered dietary questionnaire including 88-266 food items. 5

Supplementary Box 3 - Derivation of proxy variables in the EPIC-InterAct study Family history of diabetes: four models used parental history of diabetes (yes/no) as predictor, two used family history of diabetes (yes/no) as predictor and one model used a 3-level family history of diabetes (no first-degree relative with diabetes/parent or sibling with diabetes/parent and sibling with diabetes). The 3 rd level in this last case could not be computed for the InterAct participants, and was therefore ignored in the validation of the Cambridge model 8. Fruit consumption: The FINDRISK full model 9 used daily consumption of fruits, vegetables or berries as a predictor (categorical variable yes/no). Consumption of fruits, vegetables and berries in InterAct was recorded as a continuous variable (gram/day). Individual levels of those were summed and divided by 80 (the approximated portion weight) to obtain the number of portions consumed per day. Then intake of 3 or more portion sizes was used to characterize daily consumption. Sport, biking, or gardening: This was used as a continuous predictor (hours/week) in the Potsdam model 10. Sport, biking and gardening in InterAct were recorded as continuous variables in MET-hours/week. The Compendium of Physical Activities codes 11 were used to convert the MET-hours/week into hours/week. Status for hypertension: Five models used treated hypertension as a predictor and 5 other models used any hypertension as predictor. Status for treated hypertension was inconsistently reported across EPIC cohorts. Therefore any hypertension was invariably used in all models for the validation purpose. Townsend deprivation score (TDS): Education, a well-documented personal indicator of the socioeconomic position 12, was used as a proxy for this variable, a predictor in the QDScore 13. Equivalence between education (categorical variable in the InterAct dataset) and Townsend score [continuous variables ranging from -6 (most affluent) to 11 (most deprived) in the original population 13 ] was established as followed (education Townsend score): none 10, primary school 6, technical/professional school 2, secondary school -2, longer education -5. These derived values were then standardized to obtain the predictor used in the equation 13. Standardization was done by taking the ratio (Individual level of TDS minus Mean level of TSD in InterAct)/Standard deviation of TDS in InterAct. Ethnicity: The AUSDRISK model 14 had a predictor on ethnicity to indicate a higher risk of diabetes for the Aboriginal, Asian and Southern European migrant Australians. All participants from cohorts in Italy and Spain (Southern Europe) were assigned this status. 6

Supplementary Box 4 Full equation for incident diabetes risk prediction models as applied to the EPIC- InterAct cohort The ARIC Clinical variables logistic model (ARIC 2005) 15 The probability of developing diabetes was calculated as exp(x)/(1 + exp(x)); Where X= 7 3359 + 0 0271 age (years) + 0 2295 (if black race, else 0) + 0 5463 (if parental history of diabetes, else 0) + 0 0161 systolic blood pressure (mmhg) + 0 0412 waist (cm) 0 0115 height (cm) The Australian type 2 diabetes risk assessment tool (AUSDRISK) logistic regression model 14 The probability of developing diabetes was calculated as exp(x)/(1 + exp(x)); Where X=-5 384 + 0 (if aged 25-44 years) + 0 455 (if aged 35-44 years) + 0 919 (if aged 45-54 years) + 1 300 (if aged 55-64 years) + 1 645 (if age >65 years) + 0 (if BMI <25 kg/m 2 ) + 0 569 (if 25<BMI<30 kg/m 2 ) + 1 224 (if 30<BMI<35 kg/m 2 ) + 1 698 (if BMI>35 kg/m 2 ) + 0 (if waist circumference (cm) <90 in men or <80 in women + 0 884 (if 90<waist circumference (cm)<100 in men, or 80<waist circumference (cm)<90 in women) + 1 411 (if waist circumference (cm) >100 in men or > 90 in women) + 0 418 (if Southern European, Asian, Aboriginal background, else 0) + 0 624 (if parental history of diabetes, else 0) + 1 358 (if positive history of high glucose, else 0) + 0 462 (if using blood pressure medication, else 0) + 0 463 (if current smoker, else 0) + 0 428 (if physical inactivity, else 0) The Cambridge logistic regression model 16 The probability of developing diabetes was calculated as exp(x)/(1 + exp(x)); Where X=-6 322 0 879 (if female, else 0) + 1 222 (if prescribed antihypertensive medication, else 0) + 2 191 (if prescribed steroids, else 0) + 0 063 x age (years) + 0 (if BMI <25 kg/m 2 ) + 0 699 (if 25<BMI<27 5 kg/m 2 ) + 1 970 (if 27 5<BMI<30 kg/m 2 ) + 2 518 (if BMI>30 kg/m 2 ) + 0 (if no first degree relative with diabetes) + 0 728 (if parent or sibling with diabetes) + 0 753 (if parent and sibling with diabetes) + 0 (if non-smoker) 0 218 (if ex-smoker) + 0 855 (if current smoker The D.E.S.I.R. clinical logistic regression model 17 The probability of developing diabetes was calculated as exp(x)/(1 + exp(x)); Where X(men)=-10 45 + 0 72 (if current smoker, else 0) + 0 081 x waist circumference (cm) + 0 50 (if hypertension, else 0) X(women)=-11 81 + 1 09 (if family history of diabetes, else 0) + 0 095 x waist circumference (cm) + 0 64 (if hypertension, else 0) The DPoRT Weibull regression model 18 The probability of developing diabetes was calculated as 1 exp(-exp m ); Where, exp denotes the exponential function, m = [log (follow-up time) μ]/scale (0 08049) μ = 10 5971 0 2624 (if hypertension, else 0) 0 6316 (if non-white ethnicity, else 0) 0 5355 (if history of heart disease, else 0) 0 1765 (if current smoker, else 0) + 0 2344 (if post-secondary education or higher, else 0) 0 (if BMI <23 kg/m 2 and age <45 years) 1 2378 (if BMI 23-24 kg/m 2 and age <45 years) 1 5490 (if BMI 25-29 kg/m 2 and age <45 years) 2 5437 (if BMI 30-34 kg/m 2 and age <45 years) 3 4717 (if BMI >35 kg/m 2 and age <45 years) - 1 9794 (if BMI <23 kg/m 2 and age >45 years) 2 4426 (if BMI 23-24 kg/m 2 and age >45 years) 2 8488 (if BMI 25-29 kg/m 2 and age >45 years) 3 3179 (if BMI 30-34 kg/m 2 and age >45 years) 3 5857 (if BMI >35 kg/m 2 and age >45 years) The FINDRISK concise logistic regression model 9 The probability of developing diabetes was calculated as exp(x)/(1 + exp(x)); Where X=-5 514 + 0 628 (if aged 45-54 years) + 0 892 (if aged 55-64 years) + 0 165 (if 25<BMI<30 kg/m 2 ) +1 096 (if BMI>30 kg/m 2 ) + 0 857 (if 94<waist circumference (cm)<102 in men, or 80<waist circumference (cm)<88 in women) +1 350 (if waist circumference (cm) >102 in men or > 88 in women) + 0 711 (if using blood pressure medication, else 0) + 2 139 (if positive history of high glucose, else 0) The FINDRISK full logistic regression model 9 The probability of developing diabetes was calculated as exp(x)/(1 + exp(x)); Where X=-5 658 + 0 650 (if aged 45-54 years) + 0 940 (if aged 55-64 years) + 0 015 (if 25<BMI<30 kg/m 2 ) +0 938 (if BMI>30 kg/m 2 ) + 1 021 (if 94<waist circumference (cm)<102 in men, or 80<waist circumference (cm)<88 in women) +1 424 (if waist circumference (cm) >102 in men or > 88 in women) + 0 714 (if using blood pressure medication, else 0) + 2 263 (if positive history of high glucose, else 0) + 0 268 (if physical activity <4h/week, else 0) + 0 165 (if daily consumption of vegetable, fruits, or berries; else 0) The Framingham personal variables logistic regression model 19 The probability of developing diabetes was calculated as exp(x)/(1 + exp(x)); Where X = -4 499 + 0 (if aged <50 years) + log(1 54) [if aged 50-64 years] + log(1 74) [if aged >65 years] + log(1 25) [if men, else 0] + log(1 87) [if parental history of diabetes] + 0 [if BMI <25 kg/m 2 ] + log(2 35) [if BMI 25-29 8 kg/m 2 ] + log(6 41) [if BMI >30 kg/m 2 ] The KORA S4/F4 logistic regression model 20 The probability of developing diabetes was calculated as exp(x)/(1 + exp(x)); Where 7

X = -12 6453 + 0 0825 x age (years) + 0 1353 x body mass index (kg/m 2 ) + 0 5235 (if men, else 0) + 0 (for never smoker) + 0 3912 (if former smoker) + 0 9140 (if current smoker, else 0) + 0 8482 (if parental history of diabetes) + 0 7632 (if hypertension, else 0) The Potsdam Cox regression model 10 The probability of developing diabetes was calculated as 1 S 0 (5) exp(lp) ; Where, exp denotes the exponential function; S 0 (5)=0 999854 LP=0 074 x waist circumference (cm) -0 024 x Height (cm) + 0 043 x age (years) + 0 462 (if hypertension, else 0) + 0 494 x read meat intake (per 150 g/d) 0 085 x whole-grain bread intake ( per 50 g/day) -0 043 x coffee consumption (per 150 g/day) 0 198 (if moderate alcohol consumption [10 to 40 g/day], else 0] 0 016 x sports/biking or gardening (hours/week) + 0 237 (if former smoker, else 0) + 0 642 (if heavy smoker [>20 cigarettes/days], else 0) The QDScore Cox regression model 13 The probability of developing diabetes was calculated as 1 S 0 (10) exp(lp) ; Where, exp denotes the exponential function, S 0 (10)= 0 974618017673492 (for men) and 0 983291983604431 (for women) LP= LP(continuous) + LP (boolean) + LP (interaction); With LP(continuous)=age_1*4 6602861083783393 - age_2*0 0041910642479371044 + bmi_1*1 1530981937722629 - bmi_2*0 18427684138596229 + 0 037490792174783169*(town+0 116421662271023) for men, and LP(continuous)= age_1*4 4315148030665714 - age_2*0 0050056071936287576 + bmi_1*3 618808757550585 - bmi_2*0 068718317980236004 + 0 053882494150323028*(town+0 194727867841721) for women LP(boolean)= 0 405383021673173 (if history of heart disease, else 0) + 0 5372956311124768 (if hypertension, else 0) + 1 0024885672432731 (if first degree relative with diabetes, else 0) + 0 2219810439747176 (if current smoker, else 0) for men, and LP(boolean)= 0 3770777565260045 (if history of heart disease, else 0) + 0 58047687579156215 (if hypertension, else 0) + 0 85785275441360076 (if first degree relative with diabetes, else 0) + 0 23713893631728494 (if current smoker, else 0) for women LP (interaction) = age_1*bmi_1*0 6622761776879641 - age_1*bmi_2*0 1758962488748286 - age_1*1 134098610902466 (if first degree relative with diabetes, else 0) + age_1* 0 26730749759739381 (if current smoker, else 0) -age_2*bmi_1*0 0015091976327686514 + age_2*bmi_2*0 0003113315912160423 + age_2* 0 0015387250276902814 (if first degree relative with diabetes, else 0) - age_2* 0 00088273626264363933 (if current smoker, else 0) for men, and LP (interaction) = age_1*bmi_1*1 0913755651596941 - age_1*bmi_2*0 058553747169178418 - age_1* 0 7980912138325359 (if first degree relative with diabetes, else 0) + age_1*0 47724646094548923 (if current smoker, else 0) -age_2*bmi_1*0 0063395585467211609 + age_2*bmi_2*0 0002014356224656779 + age_2*0 0014901432937626897 (if first degree relative with diabetes, else 0) - age_2* 0 001034851557735701 (if current smoker, else 0) for women Where Age_1 = log(age [years] /10)-1 481503963470459 (for men) and sqrt(age [years] /10-2 115379810333252) (for women) Age_2= (age [years]/10)^3-85 158302307128906 (for men) and (age [years] 10)^3-89 604545593261719 (for women) BMI_1 = (BMI [kg/m 2 ]/10)^2-6 793983936309815 (for men) and BMI [kg/m 2 ]/10-2 544721126556397 (for women) BMI_2 = (BMI [kg/m 2 ]/10)^3-17 708702087402344 (for men) and (BMI [kg/m 2 ]/10)^3-16 478612899780273 (for women) * denotes the multiplication sign; ^ the power sign; exp, the exponential function; log, the natural logarithm function; sqrt, the square root function The beta coefficients for QDScore, not included in the original paper 13, were downloaded in January 2011 from the website of the model using a link obtained from the investigators: http://svn.clinrisk.co.uk/opensource/ Unpublished coefficients and parameters for the ARIC 2009 Weibull model 21 were obtained from the investigators and are therefore not included. ARIC, Atherosclerosis Risk in Communities; AUSDRISK, Australian Type 2 Diabetes Risk Assessment Tool; D.E.S.I.R., Epidemiological Study on the Insulin Resistance Syndrome; DPoRT, Diabetes Population Risk Tool; EPIC, European Investigation into Cancer and Nutrition; FINDRISK, Finnish Diabetes Risk Score; KORA S4/F4, Cooperative Health Research in the Region of Augsburg (KORA), Survey 4 8

Supplementary Box 5 Implementation of the prediction model recalibration through simple intercept adjustment in the EPIC-InterAct study The recalibrated incident diabetes risk estimates for logistic regression models was calculated as exp(x+corr_factor)/(1 + exp(x+corr_factor)) 22 ; where X is as estimated in Supplementary Box 5 and corr_factor (the correction factor) is estimated by the formula corr_factor=log((obs/(1-obs))/(pred/(1-pred))). Obs is the observed incident diabetes rate for each country and duration of follow-up (five or 10 years) Pred is the mean estimated incident diabetes risk from the original model (see Supplementary Box 5) at the country level and for a given duration of follow-up. log denotes the natural logarithm. The recalibrated incident diabetes risk estimates for survival regression models was calculated as 1 exp(- exp( +log(-log(1-r model (t))) 23 ; where exp denotes the exponential function and log the natural logarithmic function. R model (t) is the incident diabetes risk estimate from the original model for each individual and follow-up duration (five or ten years) as described in the Supplementary Box 5., the correction factor is estimated at the country level by the formula = log(-log(1-obs_km))-log(-log(1-r model )). Obs_KM is the incident diabetes rate at the country level, for a given follow-up duration (five or ten years), estimated from the Kaplan-Meier methods. R model is the mean estimated incident diabetes risk for each country and duration of follow-up, from the original model as described in the Supplementary Box 5. 9

Supplementary Box 6 Implementation of the blow-up approach in the EPIC-InterAct study 24 In the case-cohort design the disease incidence (diabetes in our case) is artificially inflated. To arrive at the true incidences from the original cohort (which we need to assess calibration), the EPIC cohort for each participating center within country was reconstituted by applying a blow-up approach to extrapolate the case-cohort data to a full cohort 24. This is achieved by extrapolating the non-cases of the random subcohort to the number of noncases in the full cohort. To do this, we sampled at random and with replacement non-cases from the random subcohort until we reached the size of non-cases in the full cohort. Next, we merged the extrapolated data from non-cases to those from all cases, recreating the size and composition of the full cohort. In Denmark centres, this approach was also applied to blow-up the included sample of non-subcohort cases to the full size of recorded non-subcohort cases. 10

Supplementary Table 1 Incident diabetes risk prediction models and EPIC-InterAct countries where they were applied InterAct Countries ARIC 2005 model 15 ARIC 2009 model 21 AUSDRISK 14 Cambridge model 16 D.E.S.I.R. model 17 DPoRT 18 FinRisk concise model 9 FinRisk full model 9 Framingham personal variable model 19 KORA S4/F4 model 20 EPIC- Potsdam model 10 QDScore 13 Denmark Yes No Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes France Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Germany Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Italy No No No No Yes (men) Yes Yes Yes No No Yes No The Netherlands Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Spain No No No No Yes (men) Yes Yes Yes No No Yes No Sweden Yes No Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes United Kingdom Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes ARIC, Atherosclerosis Risk in Communities; AUSDRISK, Australian Type 2 Diabetes Risk Assessment Tool; D.E.S.I.R., Epidemiological Study on the Insulin Resistance Syndrome; DPoRT, Diabetes Population Risk Tool; EPIC, European Investigation into Cancer and Nutrition; HBP, hypertension; FINDRISK, Finnish Diabetes Risk Score; KORA S4/F4, Cooperative Health Research in the Region of Augsburg (KORA), Survey 4 11

Supplementary Table 2 Correction factors for implementing Incident diabetes risk prediction models recalibration at 10 years of follow-up through simple intercept adjustment across EPIC-InterAct countries InterAct Countries ARIC 2005 model 15 ARIC 2009 model 21 AUSDRISK 14 Cambridge model 16 D.E.S.I.R. model 17 (Men) D.E.S.I.R. model 17 (Women) DPoRT 1 8 (Men) DPoRT 18 (Women ) FINDRIS K concise model 9 FINDRIS K full model 9 Framingha m personal variable model 19 KORA S4/F4 model 20 EPIC- Potsdam model 10 QDScore 13 (Men) QDScore 13 (Women) Denmark -0 8232957 NA 0 3271028-1 216576-0 3640183 0 2616583-2 620903-1 213886 0 91750588 0 85452749 0 5396823 0 5563828 1 3566144-0 1068808 0 06021138 France -1 9491905-1 745779-0 8324055-1 717058 NA -0 5590875 NA -2 223146-0 21264076-0 28551215-0 8769044-0 2668666 0 2196299 NA -0 84339276 Germany -1 3317489-1 291747-0 3303911-1 964825-0 9079843-0 7814118-3 014497-2 159244 0 07923494 0 03037318-0 2440939-0 1073806 0 6396292-0 7946398-0 82903962 Italy NA NA NA NA -0 9441393 NA -3 212294-2 200957 0 16033619 0 20526940 NA 0 3365241 NA NA The -1 5953803-1 567800-0 5004023-1 952647-1 6810034-0 6950409-3 551015-2 191195-0 09003684-0 06502657-0 6497866-0 2679578 0 4800588-1 1555795-0 86783383 Netherlands Spain NA NA NA NA -0 9052143 NA -3 028340-2 152106 0 18308837 0 25487318 0 2940087 NA NA Sweden -1 5107861 NA -0 4842314-1 893060-0 7922609-0 6717206-3 097009-2 083248 0 24651953 0 15872045-0 3229786-0 2085574 0 5688586-0 7276443-0 75522153 United Kingdom -1 6906098-1 250266-0 4070004-1 931969-0 7651198-0 3495836-3 128159-2 362235 0 15165750 0 17501924-0 4182531-0 3743056 0 2566346-0 6934492-0 86220025 ARIC, Atherosclerosis Risk in Communities; AUSDRISK, Australian Type 2 Diabetes Risk Assessment Tool; D.E.S.I.R., Epidemiological Study on the Insulin Resistance Syndrome; DPoRT, Diabetes Population Risk Tool; EPIC, European Investigation into Cancer and Nutrition; HBP, hypertension; FINDRISK, Finnish Diabetes Risk Score; KORA S4/F4, Cooperative Health Research in the Region of Augsburg (KORA), Survey 12

Supplementary Table 3 Discrimination and calibration statistics for model performance in men and women by country, for the prediction of incident type 2 diabetes at 10 years of follow-up in the EPIC-InterAct study Models Statistic Denmark France Germany Italy Netherlands Spain Sweden UK MEN ARIC 2005 E/O (95% CI) 1 12 (1 08-1 17) NA 1 02 (0 96-1 09) NA 1 30 (1 12-1 52) NA 1 04 (0 97-1 12) 1 04 (0 95-1 13) Brier score 0 072 NA 0 044 NA 0 017 NA 0 033 0 035 Yates slope 0 050 NA 0 033 NA 0 028 NA 0 028 0 026 C-statistic (95% CI) 0 72 (0 71-0 73) NA 0 76 (0 74-0 77) NA 0 83 (0 80-0 85) NA 0 73 (0 72-0 75) 0 74 (0 72-0 76) ARIC 2009 E/O (95% CI) NA NA 0 91 (0 85-0 97) NA 1 35 (1 16-1 58) NA NA 0 86 (0 79-0 94) Brier score NA NA 0 044 NA 0 017 NA NA 0 035 Yates slope NA NA 0 028 NA 0 025 NA NA 0 020 C- statistic (95% CI) NA NA 0 76 (0 75-0 77) NA 0 84 (0 81-0 87) NA NA 0 76 (0 74-0 78) AUSDRISK E/O (95% CI) 1 09 (1 05-1 14) NA 1 04 (0 98-1 11) NA 1 59 (1 36-1 86) NA 1 07 (1 00-1 15) 1 04 (0 95-1 13) Brier score 0 072 NA 0 044 NA 0 017 NA 0 033 0 035 Yates slope 0 060 NA 0 041 NA 0 037 NA 0 029 0 031 C- statistic (95% CI) 0 70 (0 69-0 71) NA 0 74 (0 72-0 75) NA 0 81 (0 78-0 84) NA 0 71 (0 70-0 73) 0 71 (0 69-0 73) Cambridge model E/O (95% CI) 1 55 (1 49-1 61) NA 1 89 (1 78-2 02) NA 2 38 (2 04-2 78) NA 1 69 (1 58-1 81) 1 57 (1 44-1 72) Brier score 0 080 NA 0 053 NA 0 020 NA 0 037 0 037 Yates slope 0 125 NA 0 107 NA 0 103 NA 0 095 0 078 C- statistic (95% CI) 0 71 (0 70-0 72) NA 0 76 (0 74-0 77) NA 0 82 (0 79-0 85) NA 0 77 (0 76-0 79) 0 74 (0 72-0 76) D E S I R Model E/O (95% CI) 1 03 (0 99-1 08) NA 1 09 (1 02-1 16) 1 07 (0 98-1 16) 1 13 (0 97-1 32) 1 07 (1 00-1 14) 1 08 (1 01-1 60) 1 05 (0 97-1 15) Brier score 0 073 NA 0 044 0 033 0 017 0 033 0 034 0 035 Yates slope 0 074 NA 0 060 0 040 0 027 0 048 0 043 0 044 C- statistic (95% CI) 0 71 (0 70-0 72) NA 0 76 (0 75-0 77) 0 71 (0 69-0 73) 0 78 (0 75-0 81) 0 69 (0 67-0 71) 0 74 (0 72-0 75) 0 75 (0 73-0 77) DPoRT model E/O (95% CI) 1 49 (1 43-1 55) NA 1 62 (1 52-1 73) 1 58 (1 45-1 73) 1 75 (1 50-2 05) 1 50 (1 40-1 60) 1 65 (1 54-1 77) 1 60 (1 46-1 74) Brier score 0 075 NA 0 045 0 033 0 017 0 033 0 034 0 035 Yates slope 0 062 NA 0 060 0 046 0 045 0 043 0 055 0 049 C- statistic (95% CI) 0 69 (0 68-0 70) NA 0 74 (0 73-0 76) 0 72 (0 70-0 75) 0 79 (0 76-0 83) 0 68 (0 66-0 69) 0 75 (0 73-0 77) 0 76 (0 74-0 78) FINDRISK concise E/O (95% CI) 0 94 (0 90-0 97) NA 0 86 (0 81-0 92) 0 79 (0 72-0 86) 1 04 (0 89-1 04) 0 78 (0 73-0 78) 0 82 (0 76-0 82) 0 78 (0 71-0 85) Brier score 0 073 NA 0 044 0 038 0 017 0 033 0 033 0 035 Yates slope 0 064 NA 0 045 0 037 0 038 0 034 0 040 0 037 C- statistic (95% CI) 0 71 (0 70-0 72) NA 0 76 (0 75-0 77) 0 74 (0 71-0 76) 0 83 (0 80-0 85) 0 69 (0 68-0 71) 0 75 (0 74-0 77) 0 76 (0 74-0 78) FINDRISK full model E/O (95% CI) 0 95 (0 92-0 99) NA 0 90 (0 84-0 96) 0 87 (0 80-0 95) 1 16 (1 00-1 36) 0 85 (0 79-0 90) 0 86 (0 80-0 92) 0 81 (0 74-0 89) Brier score 0 073 NA 0 044 0 033 0 017 0 033 0 033 0 034 Yates slope 0 063 NA 0 045 0 040 0 040 0 036 0 041 0 039 C- statistic (95% CI) 0 70 (0 69-0 71) NA 0 76 (0 74-0 77) 0 73 (0 71-0 75) 0 82 (0 79-0 85) 0 69 (0 67-0 70) 0 74 (0 73-0 76) 0 76 (0 74-0 78) Framingham personal E/O (95% CI) 0 86 (0 83-0 89) NA 0 72 (0 68-0 77) NA 0 96 (0 82-1 12) NA 0 76 (0 71-0 81) 0 65 (0 60-0 71) Brier score 0 072 NA 0 045 NA 0 016 NA 0 034 0 035 Yates slope 0 038 NA 0 024 NA 0 018 NA 0 020 0 018 13

KORA model Potsdam model QDScore WOMEN ARIC 2005 ARIC 2009 AUSDRISK Cambridge model D E S I R Model DPoRT model FINDRISK concise C- statistic (95% CI) 0 68 (0 67-0 69) NA 0 73 (0 72-0 75) NA 0 81 90 78-0 84) NA 0 74 (0 72-0 75) 0 74 (0 72-0 76) E/O (95% CI) 1 09 (1 04-1 13) NA 1 09 (1 02-1 16) NA 1 20 (1 03-1 41) NA 1 10 (1 03-1 18) 1 09 (1 00-1 19) Brier score 0 073 NA 0 044 NA 0 017 NA 0 033 0 035 Yates slope 0 072 NA 0 052 NA 0 050 NA 0 044 0 040 C- statistic (95% CI) 0 71 (0 69-0 71) NA 0 75 (0 74-0 76) NA 0 85 (0 83-0 87) NA 0 74 (0 72-0 76) 0 72 (0 70-0 74) E/O (95% CI) 1 10 (1 06-1 15) NA 1 04 (0 97-1 11) 1 05 (0 96-1 14) 1 31 (1 12-1 53) 1 01 (0 95-1 08) 0 97 (0 91-1 04) 1 10 (1 00-1 20) Brier score 0 076 NA 0 043 0 033 0 017 0 033 0 034 0 036 Yates slope 0 087 NA 0 069 0 044 0 046 0 056 0 045 0 052 C- statistic (95% CI) 0 70 (0 69-0 71) NA 0 77 (0 76-0 78) 0 73 (0 71-0 75) 0 82 (0 79-0 85) 0 70 (0 69-0 72) 0 74 (0 72-0 75) 0 75 (0 73-0 77) E/O (95% CI) 1 08 (1 04-1 12) NA 1 09 (1 02-1 16) NA 1 05 (0 90-1 23) NA 1 06 (0 99-1 14) 1 07 (0 98-1 17) Brier score 0 071 NA 0 043 NA 0 016 NA 0 033 0 034 Yates slope 0 081 NA 0 060 NA 0 048 NA 0 053 0 044 C- statistic (95% CI) 0 73 (0 72-0 74) NA 0 77 (0 76-0 78) NA 0 86 (0 84-0 88) NA 0 78 (0 77-0 80) 0 77 (0 75-0 78) E/O (95% CI) 0 92 (0 88-0 97) 1 05 (0 94-1 18) 1 13 (1 04-1 22) NA 1 00 (0 93-1 09) NA 1 12 (1 04-1 21) 1 14 (1 03-1 25) Brier score 0 059 0 013 0 022 NA 0 022 NA 0 023 0 018 Yates slope 0 046 0 018 0 038 NA 0 031 NA 0 030 0 030 C- statistic (95% CI) 0 73 (0 72-0 74) 0 83 (0 81-0 86) 0 84 (0 82-0 85) NA 0 83 (0 81-0 84) NA 0 79 (0 78-0 81) 0 81 (0 79-0 83) E/O (95% CI) NA 1 05 (0 93-1 18) 1 26 (1 17-1 36) NA 0 95 (0 87-1 02) NA NA 1 26 (1 14-1 38) Brier score NA 0 013 0 022 NA 0 023 NA NA 0 018 Yates slope NA 0 012 0 029 NA 0 018 NA NA 0 018 C- statistic (95% CI) NA 0 81 (0 78-0 84) 0 81 (0 79-0 83) NA 0 80 (0 79-0 82) NA NA 0 79 (0 77-0 82) E/O (95% CI) 0 82 (0 79-0 86) 1 01 (0 90-1 14) 0 97 (0 90-1 05) NA 0 87 (0 80-0 94) NA 0 95 (0 89-1 03) 0 98 (0 89-1 08) Brier score 0 059 0 013 0 022 NA 0 022 NA 0 023 0 018 Yates slope 0 042 0 018 0 034 NA 0 028 NA 0 022 0 023 C- statistic (95% CI) 0 72 (0 70-0 73) 0 80 (0 77-0 83) 0 82 (0 80-0 84) NA 0 81 (0 80-0 83) NA 0 75 (0 73-0 77) 0 77 (0 74-0 79) E/O (95% CI) 0 87 (0 83-0 92) 1 22 (1 09-1 37) 1 20 (1 11-1 30) NA 1 15 (1 06-1 25) NA 1 22 (1 13-1 31) 1 19 (1 08-1 31) Brier score 0 059 0 013 0 022 NA 0 023 NA 0 024 0 019 Yates slope 0 085 0 055 0 082 NA 0 068 NA 0 064 0 056 C- statistic (95% CI) 0 72 (0 71-0 74) 0 82 (0 80-0 84) 0 83 (0 82-0 85) NA 0 81 (0 80-0 83) NA 0 78 (0 77-0 80) 0 80 (0 78-0 82) E/O (95% CI) 0 95 (0 91-1 01) 1 05 (0 93-1 18) 1 13 (1 04-1 22) NA 1 09 (1 01-1 18) NA 1 11 (1 03-1 20) 1 04 (0 94-1 14) Brier score 0 062 0 013 0 022 NA 0 023 NA 0 024 0 018 Yates slope 0 099 0 057 0 092 NA 0 068 NA 0 067 0 064 C- statistic (95% CI) 0 74 (0 73-0 75) 0 85 (0 83-0 87) 0 84 (0 83-0 86) NA 0 83 (0 82-0 85) NA 0 79 (0 77-0 80) 0 82 (0 80-0 84) E/O (95% CI) 1 13 (1 08-1 19) 1 15 (1 02-1 29) 1 17 (1 08-1 26) 1 14 (1 07-1 23) 1 14 (1 05-1 23) 1 14 (1 07-1 22) 1 13 (1 05-1 21) 1 13 (1 03-1 24) Brier score 0 059 0 013 0 022 0 023 0 022 0 035 0 023 0 018 Yates slope 0 070 0 034 0 047 0 038 0 036 0 041 0 035 0 028 C- statistic (95% CI) 0 71 (0 70-0 72) 0 81 (0 78-0 84) 0 82 (0 81-0 84) 0 78 (0 76-0 80) 0 80 (0 78-0 81) 0 76 (0 75-0 78) 0 77 (0 76-0 79) 0 78 (0 76-0 80) 14

FINDRISK full model Framingham personal KORA model Potsdam model E/O (95% CI) 0 95 (0 91-1 00) 1 01 (0 89-1 13) 1 19 (1 10-1 29) 1 12 (1 04-1 20) 1 00 (0 92-1 08) 1 20 (1 13-1 29) 1 18 (1 10-1 27) 1 24 (1 13-1 37) Brier score 0 059 0 013 0 022 0 023 0 022 0 035 0 023 0 018 Yates slope 0 077 0 036 0 068 0 055 0 045 0 060 0 048 0 049 C- statistic (95% CI) 0 73 (0 71-0 74) 0 80 (0 78-0 83) 0 83 (0 82-0 85) 0 79 (0 78-0 81) 0 80 (0 78-0 81) 0 78 (0 76-0 79) 0 77 (0 75-0 79) 0 80 (0 78-0 82) E/O (95% CI) 0 93 (0 89-0 98) 1 01 (0 90-1 14) 1 15 (1 06-1 24) 1 06 (0 99-1 14) 0 96 (0 89-1 04) 1 13 (1 06-1 21) 1 14 (1 06-1 23) 1 20 (1 09-1 32) Brier score 0 059 0 013 0 022 0 023 0 022 0 035 0 023 0 018 Yates slope 0 075 0 034 0 064 0 052 0 043 0 056 0 045 0 047 C- statistic (95% CI) 0 73 (0 71-0 74) 0 80 (0 77-0 83) 0 83 (0 81-0 84) 0 79 (0 77-0 80) 0 80 (0 78-0 81) 0 77 (0 76-0 79) 0 76 (0 75-0 78) 0 79 (0 77-0 81) E/O (95% CI) 1 16 (1 11-1 22) 1 02 (0 90-1 14) 1 44 (1 33-1 55) NA 1 03 (0 95-1 12) NA 1 29 (1 20-1 39) 1 42 (1 30-1 57) Brier score 0 060 0 013 0 022 NA 0 023 NA 0 023 0 018 Yates slope 0 053 0 021 0 045 NA 0 028 NA 0 028 0 031 C- statistic (95% CI) 0 70 (0 68-0 71) 0 82 (0 80-0 85) 0 81 (0 80-0 83) NA 0 80 (0 79-0 81) NA 0 75 (0 73-0 77) 0 79 (0 76-0 81) E/O (95% CI) 0 79 (0 75-0 82) 1 01 (0 90-1 14) 0 88 (0 82-0 96) NA 0 97 (0 89-1 05) NA 0 92 (0 85-0 99) 0 95 (0 86-1 04) Brier score 0 059 0 013 0 022 NA 0 022 NA 0 023 0 018 Yates slope 0 056 0 026 0 054 NA 0 043 NA 0 035 0 039 C- statistic (95% CI) 0 72 (0 71-0 74) 0 82 (0 80-0 84) 0 83 (0 81-0 84) NA 0 81 (0 80-0 83) NA 0 76 (0 74-0 78) 0 79 (0 77-0 81) E/O (95% CI) 0 74 (0 71-0 78) 1 03 (0 92-1 16) 0 93 (0 86-1 01 0 97 (0 90-1 04) 0 91 (0 84-0 99) 0 96 (0 90-1 03) 1 00 (0 93-1 07) 0 93 (0 85-1 03) Brier score 0 060 0 013 0 022 0 024 0 023 0 035 0 024 0 018 Yates slope 0 073 0 035 0 063 0 049 0 044 0 061 0 048 0 049 C- statistic (95% CI) 0 75 (0 73-0 76) 0 84 (0 81-0 86) 0 84 (0 83-0 86) 0 81 (0 79-0 82) 0 83 (0 81-0 84) 0 79 (0 78-0 81) 0 79 (0 77-0 80) 0 81 (0 79-0 83) QDScore E/O (95% CI) 1 03 (0 98-1 08) 1 06 (0 94-1 19) 1 05 (0 97-1 14) NA 1 04 (0 96-1 13) NA 1 03 (0 96-1 11) 1 04 (0 94-1 14) Brier score 0 059 0 013 0 022 NA 0 022 NA 0 023 0 018 Yates slope 0 075 0 034 0 062 NA 0 048 NA 0 048 0 037 C-statistic (95% CI) 0 73 (0 72-0 75) 0 85 (0 82-0 87) 0 85 (0 83-0 86) NA 0 84 (0 82-0 85) NA 0 80 (0 79-0 82) 0 82 (0 80-0 84) C-statistic, area under the receiver-operating characteristic curves; 95% CI, 95% confidence interval; E/O, ratio expected/observed event rate; Brier scores and Yates slopes are scaled from 0 to 1. Higher Yates slope, as well as lower Brier Scores or higher C-statistic indicates higher discrimination. ARIC, Atherosclerosis Risk in Communities; AUSDRISK, Australian Type 2 Diabetes Risk Assessment Tool; D.E.S.I.R., Epidemiological Study on the Insulin Resistance Syndrome; DPoRT, Diabetes Population Risk Tool; EPIC, European Investigation into Cancer and Nutrition; KORA S4/F4, Cooperative Health Research in the Region of Augsburg (KORA), Survey 4 15

Supplementary Table 4 C-statistic and 95% confidence interval overall and by subgroups of participants,, for the prediction of incident type 2 diabetes at 5 years of follow-up in the EPIC-InterAct study Models Overall Men Women Age<60 years Age>=60 years BMI<25 kg/m 2 BMI>=25 kg/m 2 WC<102 (88) cm WC>=102 (88) cm ARIC 2005 0 81 (0 79-0 84)*** 0 78 (0 76-0 80)** 0 83 (0 81-0 85)*** 0 83 (0 81-0 85)*** 0 75 (0 72-0 79)*** 0 74 (0 68-0 81)*** 0 74 (0 73-0 75) 0 76 (0 72-0 80) 0 68 (0 67-0 69) ARIC 2009 0 81 (0 81-0 82) 0 80 (0 75-0 84)** 0 82 (0 80-0 84) 0 82 (0 82-0 84) 0 76 (0 72-0 79)** 0 74 (0 70-0 78) 0 74 (0 73-0 75) 0 75 (0 72-0 78)* 0 67 (0 65-0 70)* AUSDRISK 0 79 (0 77-0 81)*** 0 76 (0 74-0 78)** 0 81 (0 78-0 83) *** 0 80 (0 78-0 82)*** 0 72 (0 71-0 74) 0 70 (0 65-0 74)* 0 74 (0 72-0 75) 0 70 (0 66-0 74) 0 66 (0 65-0 68) Cambridge model 0 81 (0 79-0 83)*** 0 78 (0 76-0 81)*** 0 82 (0 79-0 84) *** 0 82 (0 80-0 84)*** 0 74 (0 72-0 76) 0 71 (0 66-0 76)*** 0 73 (0 72-0 74) 0 75 (0 71-0 79) 0 68 (0 65-0 71) D E S I R model 0 81 (0 78-0 84)*** 0 76 (0 74-0 77) 0 83 (0 81-0 86) *** 0 83 (0 80-0 86)*** 0 77 (0 73-0 80)*** 0 71 (0 65-0 76)*** 0 74 (0 73-0 76)*** 0 73 (0 69-0 77) 0 67 (0 65-0 69)* DPoRT model 0 75 (0 72-0 77)*** 0 76 (0 74-0 77)** 0 80 (0 78-0 82) *** 0 79 (0 76-0 82)*** 0 72 (0 70-0 75)*** 0 64 (0 58-0 70)*** 0 70 (0 67-0 73)*** 0 73 (0 70-0 76) 0 65 (0 64-0 67)** FINDRISK concise 0 80 (0 78-0 82)*** 0 78 (0 75-0 80) *** 0 81 (0 79-0 83) *** 0 81 (0 79-0 83)*** 0 73 (0 71-0 75)** 0 70 (0 64-0 75)*** 0 73 (0 73-0 74) 0 74 (0 70-0 77) 0 65 (0 63-0 67) FINDRISK full model 0 80 (0 78-0 81)*** 0 77 (0 75-0 79) *** 0 81 (0 79-0 83) *** 0 81 (0 79-0 83)*** 0 72 (0 70-0 74) 0 69 (0 64-0 75)*** 0 73 (0 73-0 74) 0 72 (0 69-0 76) 0 65 (0 63-0 67)*** Framingham personal 0 78 (0 7500 81) 0 76 (0 73-0 78) 0 80 (0 77-0 83) 0 80 (0 77-0 82) 0 72 (0 69-0 75)*** 0 64 (0 56-0 72) 0 68 (0 65-0 71) 0 71 (0 66-0 76) 0 62 (0 60-0 65)** KORA model 0 81 (0 78-0 83)*** 0 78 (0 75-0 81) *** 0 82 (0 79-0 84) *** 0 82 (0 80-0 84)*** 0 74 (0 72-0 77)* 0 74 (0 70-0 78)** 0 74 (0 72-0 76)*** 0 73 (0 76-0 80) 0 69 (0 67-0 72)*** Potsdam model 0 81 (0 79-0 83)*** 0 77 (0 76-0 78) *** 0 83 (0 82-0 85)** 0 82 (0 80-0 84)*** 0 75 (0 72-0 77)** 0 76 (0 70-0 81)*** 0 75 (0 74-0 76) 0 76 (0 73-0 79) 0 68 (0 67-0 70) QDScore 0 83 (0 80-0 85)*** 0 80 (0 77-0 83) *** 0 84 (0 81-0 86) *** 0 84 (0 81-0 86)*** 0 77 (0 73-0 80)*** 0 75 (0 69-0 80)*** 0 75 (0 73-0 77)*** 0 78 (0 74-0 82) 0 70 (0 68-0 73) BMI, body mass index; WC, waist circumference p-value for heterogeneity across countries: *<0 05; **<0 01; ***<0 001; <0 0001 16

Supplementary Table 5 Ratios expected/observed 5-year incident diabetes rates and 95% confidence interval overall and by subgroups of participants in the EPIC-InterAct study Models Overall Men Women Age>=60 years Age<60 years BMI>=25 kg/m 2 BMI<25 kg/m 2 WC<102 (88) cm WC>=102 (88) cm ARIC 2005 1 08 (1 05-1 12) 1 09 (1 00-1 19)** 1 09 (1 01-1 17) 1 06 (1 00-1 13) 1-9 (1 04-1 13) 0 83 (0 74-0 93) 2 47 (2 15-1 80) 1 71 (1 58-1 83) 0 69 (0 62-0 76) ARIC 2009 1 01 (0 96-1 05) 1 02 (0 78-1 26)*** 1 08 (0 89-1 27) 0 71 (0 61-0 80)* 1 23 (1 11-1 35) 0 66 (0 53-0 79) 2 90 (2 44-3 37) 1 82 (1 60-2 03) 0 51 (0 41-0 61) AUSDRISK 1 03 (1 00-1 06) 1 13 (1 01-1 25)*** 0 95 (0 89-1 02) 0 90 (0 82-0 97)* 1 10 (1 06-1 15) 0 76 (0 67-0 84) 2 55 (2 20-2 94)* 1 47 (1 38-1 57) 0 73 (0 65-0 81) Cambridge model 1 56 (1 43-1 68) 1 99 (1 77-2 22)*** 1 23 (1 12-1 34)** 1 61 (1 36-1 86) 1 51 (1 39-1 63)** 1 56 (1 42-1 70) 1 41 (1 22-1 59) 1 87 (1 73-2 01) 1 37 (1 23-1 51) D E S I R model 1 15 (1 12-1 19) 1 13 (1 09-1 18) 1 18 (1 12-1 23) 0 90 (0 86-0 95) 1 34 (1 25-1 43) 1 10 (1 05-1 15) 1 53 (1 31-1 74)* 1 14 (1 06-1 23) 1 16 (1 08-1 24)* DPoRT model 1 26 (1 22-1 30) 1 23 (1 18-1 27) 1 05 (1 01-1 09) 0 88 (0 80-0 95)** 1 27 (1 21-1 33) 1 09 (1 06-1 13) 1 44 (1 30-1 58) 1 72 (1 62-1 82) 0 80 (0 76-0 83) FINDRISK concise 1 02 (1 00-1 05) 0 89 (0 82-0 95)** 1 15 (1 07-1 24)** 0 91 (0 86-0 96) 1 08 (1 04-1 13) 0 96 (0 91-1 00)* 1 37 (1 18-1 57)** 0 97 (0 92-1 02) 1 04 (0 99-1 10) FINDRISK full model 1 02 (1 00-1 05) 0 94 (0 87-1 00)** 1 11 (1 03-1 19)** 0 91 (0 85-0 96) 1 08 (10 4-1 12) 0 95 (0 90-0 99)* 1 48 (1 28-1 69)** 1 01 (0 96-1 06) 1 02 (0 98-1 07) Framingham personal 1 02 (0 99-1 05 0 86 (0 69-0 86)*** 1 27 (1 09-1 46) 0 77 (0 72-0 81) 1 19 (1 12-1 26) 0 88 (0 82-0 97)** 1 85 (1 56-2 14)** 1 55 (1 46-1 65) 0 69 (0 64-0 74)* KORA model 1 05 (1 01-1 08) 1 14 (1 07-1 21) 0 96 (0 91-1 00) 1 25 (1 17-1 32) 0 90 (0 84-0 96) 0 91 (0 86-0 96)* 1 87 (1 71-2 02) 1 54 (1 46-1 62) 0 76 (0 72-0 79) Potsdam model 1 01 (0 98-1 03) 1 09 (1 02-1 17)* 0 93 (0 88-0 99) 1 10 (1 05-1 15) 0 95 (0 92-0 98) 0 93 (0 88-0 98)** 1 45 (1 26-1 65)** 1 15 (1 07-1 23)* 0 91 (0 85-0 97)** QDScore 1 02 (0 99-1 05) 1 03 (0 98-1 07) 1 01 (0 96-1 05) 0 96 (0 92-1 01) 1 05 (1 01-1 09) 0 94 (0 90-0 99) 1 43 (1 30-1 55) 1 41 (1 34-1 48) 0 78 (0 74-0 82) BMI, body mass index; WC, waist circumference p-value for heterogeneity across countries: *<0 05; **<0 01; ***<0 001; <0 0001 17

Supplementary Table 6 Discrimination and calibration statistics for model performance in men and women by country, for the prediction of incident type 2 diabetes at 5 years of follow-up in the EPIC-InterAct study Models Statistic Denmark France Germany Italy Netherlands Spain Sweden UK MEN ARIC 2005 E/O (95% CI) 1 10 (1 03-1 17) NA 1 01 (0 93-1 09) NA 1 56 (1 23-1 97) NA 1 03 (0 91-1 17) 1 11 (0 95-1 30) Brier score 0 029 NA 0 027 NA 0 007 NA 0 010 0 012 Yates slope 0 026 NA 0 023 NA 0 019 NA 0 012 0 011 C-statistic (95% CI) 0 76 (0 75-0 78) NA 0 77 (0 75-0 79) NA 0 84 (0 81-0 88) NA 0 78 (0 75-0 81) 0 76 (0 73-0 80) ARIC 2009 E/O (95% CI) NA NA 0 85 (0 78-0 92) NA 1 57 (1 25-1 98) NA NA 0 86 (0 73-1 00) Brier score NA NA 0 028 NA 0 007 NA NA 0 012 Yates slope NA NA 0 017 NA 0 015 NA NA 0 007 C- statistic (95% CI) NA NA 0 77 (0 75-0 78) NA 0 86 (0 81-0 90) NA NA 0 78 (0 75-0 81) AUSDRISK E/O (95% CI) 1 08 (1 01-1 15) NA 1 03 (0 95-1 12) NA 1 93 (1 53-2 43) NA 1 06 (0 93-1 21) 1 11 (0 95-1 30) Brier score 0 029 NA 0 027 NA 0 008 NA 0 010 0 011 Yates slope 0 034 NA 0 027 NA 0 022 NA 0 013 0 015 C- statistic (95% CI) 0 75 (0 74-0 77) NA 0 75 (0 73-0 77) NA 0 83 (0 79-0 87) NA 0 75 (0 72-0 78) 0 74 (0 70-0 78) Cambridge model E/O (95% CI) 1 75 (1 64-1 87) NA 2 04 (1 88-2 22) NA 3 07 (2 43-3 87) NA 1 93 (1 70-2 20) 1 84 (1 58-2 15) Brier score 0 031 NA 0 032 NA 0 009 NA 0 011 0 012 Yates slope 0 085 NA 0 075 NA 0 078 NA 0 046 0 041 C- statistic (95% CI) 0 76 (0 75-0 78) NA 0 76 (0 74-0 78) NA 0 84 (0 80-0 88) NA 0 81 (0 78-0 83) 0 77 (0 73-0 80) D E S I R Model E/O (95% CI) 1 12 (1 05-1 20) NA 1 13 (1 04-1 23) 1 11 (0 96-1 29) 1 16 (0 92-1 46) 1 15 (1 00-1 33) 1 20 (1 06-1 37) 1 11 (0 95-1 30) Brier score 0 029 NA 0 028 0 013 0 008 0 013 0 010 0 011 Yates slope 0 043 NA 0 043 0 021 0 017 0 019 0 023 0 022 C- statistic (95% CI) 0 75 (0 73-0 77) NA 0 77 (0 75-0 78) 0 70 (0 67-0 74) 0 78 (0 73-0 83) 0 76 (0 72-0 79) 0 78 (0 75-0 81) 0 77 (0 73-0 80) DPoRT model E/O (95% CI) 1 20 (1 15-1 36) NA 1 25 (1 15-1 36) 1 23 (1 07-1 42) 1 33 (1 06-1 68) 1 20 (1 04-1 38) 1 29 (1 13-1 47) 1 21 (1 03-1 41) Brier score 0 029 NA 0 027 0 013 0 008 0 013 0 204 0 011 Yates slope 0 024 NA 0 029 0 015 0 018 0 010 0 016 0 013 C- statistic (95% CI) 0 74 (0 72-0 75) NA 0 74 (0 72-0 76) 0 74 (0 70-0 77) 0 80 (0 75-0 86) 0 73 (0 69-0 77) 0 79 (0 76-0 82) 0 77 (0 74-0 80) FINDRISK concise E/O (95% CI) 0 94 (0 88-1 00) NA 0 86 (0 79-0 94) 0 80 (0 69-0 93) 1 25 (0 99-1 58) 0 93 (0 80-1 07) 0 82 (0 72-0 93) 0 84 (0 72-0 98) Brier score 0 029 NA 0 028 0 013 0 007 0 013 0 010 0 011 Yates slope 0 034 NA 0 029 0 014 0 026 0 012 0 017 0 014 C- statistic (95% CI) 0 76 (0 74-0 77) NA 0 77 (0 75-0 79) 0 73 (0 70-0 77) 0 84 (0 81-0 88) 0 75 (0 72-0 78) 0 80 (0 78-0 83) 0 78 (0 75-0 81) FINDRISK full model E/O (95% CI) 0 95 (0 89-1 02) NA 0 90 (0 83-0 97) 0 89 (0 77-1 03) 1 41 (1 12-1 78) 1 01 (0 88-1 17) 0 86 (0 75-0 97) 0 88 (0 75-1 02) Brier score 0 029 NA 0 028 0 013 0 008 0 013 0 010 0 011 Yates slope 0 033 NA 0 029 0 014 0 026 0 012 0 017 0 014 C- statistic (95% CI) 0 75 (0 74-0 77) NA 0 76 (0 75-0 78) 0 72 (0 69-0 76) 0 84 (0 80-0 88) 0 75 (0 72-0 78) 0 79 (0 77-0 82) 0 77 (0 74-0 81) Framingham personal E/O (95% CI) 0 82 (0 77-0 88) NA 0 71 (0 77-0 65) NA 1 14 (0 91-1 44) NA 0 74 (0 65-0 84) 0 69 (0 80-0 59) Brier score 0 029 NA 0 028 NA 0 008 NA 0 010 0 012 18

KORA model Potsdam model QDScore WOMEN ARIC 2005 ARIC 2009 AUSDRISK Cambridge model D E S I R Model DPoRT model Yates slope 0 019 NA 0 014 NA 0 011 NA 0 008 0 006 C- statistic (95% CI) 0 72 (0 70-0 73) NA 0 73 (0 71-0 75) NA 0 82 (0 77-0 86) NA 0 77 (0 74-0 80) 0 77 (0 74-0 80) E/O (95% CI) 1 09 (1 02-1 16) NA 1 10 (1 02-1 20) NA 1 46 (1 16-1 84) NA 1 15 (1 01-1 30) 1 20 (1 03-1 40) Brier score 0 029 NA 0 028 NA 0 007 NA 0 010 0 011 Yates slope 0 041 NA 0 036 NA 0 033 NA 0 020 0 023 C- statistic (95% CI) 0 75 (0 73-0 77) NA 0 76 (0 74-0 78) NA 0 87 (0 83-0 90) NA 0 78 (0 75-0 81) 0 77 (0 73-0 80) E/O (95% CI) 1 08 (1 01-1 16) NA 1 01 (0 93-1 09) 1 03 (0 89-1 19) 1 56 (1 24-1 97) 1 19 (1 03-1 38) 1 01 (0 89-1 15) 1 15 (0 98-1 34) Brier score 0 030 NA 0 027 0 013 0 008 0 013 0 010 0 011 Yates slope 0 047 NA 0 047 0 021 0 032 0 024 0 021 0 027 C- statistic (95% CI) 0 75 (0 73-0 76) NA 0 78 (0 76-0 80) 0 72 (0 68-0 76) 0 83 (0 79-0 87) 0 77 (0 74-0 80) 0 78 (0 76-0 81) 0 78 (0 75-0 82) E/O (95% CI) 1 03 (0 96-1 10) NA 1 02 (0 94-1 11) NA 1 02 (0 81-1 29) NA 1 04 (0 92-1 18) 1 01 (0 86-1 17) Brier score 0 028 NA 0 027 NA 0 007 NA 0 010 0 011 Yates slope 0 040 NA 0 036 NA 0 024 NA 0 021 0 017 C- statistic (95% CI) 0 77 (0 76-0 79) NA 0 77 (0 76-0 79) NA 0 87 (0 84-0 91) NA 0 82 (0 79-0 84) 0 79 (0 76-0 82) E/O (95% CI) 1 04 (0 96-1 13) 1 06 (0 89-1 26) 1 20 (1 08-1 33) NA 0 98 (0 88-1 09) NA 1 21 (1 05-1 40) 1 10 (0 93-1 29) Brier score 0 020 0 006 0 012) NA 0 012 NA 0 006 0 006 Yates slope 0 027 0 010 0 027 NA 0 017 NA 0 012 0 012 C- statistic (95% CI) 0 80 (0 78-0 81) 0 84 (0 81-0 88) 0 86 (0 85-0 88) NA 0 83 (0 81-0 85) NA 0 83 (0 80-0 86) 0 82 (0 78-0 85) E/O (95% CI) NA 1 01 (0 85-1 20) 1 27 (1 15-1 41) NA 0 89 (0 80-0 99) NA NA 1 15 (0 98-1 35) Brier score NA 0 006 0 013 NA 0 012 NA NA 0 006 Yates slope NA 0 007 0 018 NA 0 010 NA NA 0 006 C- statistic (95% CI) NA 0 83 (0 79-0 86) 0 84 (0 82-0 86) NA 0 81 (0 79-0 84) NA NA 0 79 (0 75-0 83) E/O (95% CI) 0 93 (0 85-1 01) 1 02 (0 86-1 21) 1 02 (0 92-1 14) NA 0 84 (0 76-0 94) NA 1 02 (0 88-1 18) 0 94 (0 80-1 12) Brier score 0 020 0 006 0 012 NA 0 012 NA 0 006 0 006 Yates slope 0 023 0 011 0 024 NA 0 016 NA 0 008 0 009 C- statistic (95% CI) 0 77 (0 75-0 80) 0 83 (0 78-0 86) 0 84 (0 82-0 86) NA 0 82 (0 80-0 84) NA 0 80 (0 77-0 83) 0 78 (0 74-0 82) E/O (95% CI) 1 07 (0 98-1 17) 1 28 (1 08-1 51) 1 31 (1 18-1 46) NA 1 17 (1 05-1 30) NA 1 42 (1 23-1 65) 1 21 (1 03-1 43) Brier score 0 020 0 006 0 012 NA 0 012 NA 0 006 0 007 Yates slope 0 051 0 033 0 061 NA 0 044 NA 0 028 0 023 C- statistic (95% CI) 0 78 (0 76-0 80) 0 83 (0 79-0 87) 0 86 (0 84-0 87) NA 0 82 (0 80-0 84) NA 0 83 (0 80-0 86) 0 79 (0 76-0 83) E/O (95% CI) 1 16 (1 06-1 26) 1 10 (0 93-1 30) 1 23 (1 10-1 36) NA 1 16 (1 05-1 29) NA 1 29 (1 12-1 49) 1 14 (0 97-1 33) Brier score 0 020 0 006 0 013 NA 0 013 NA 0 006 0 007 Yates slope 0 076 0 038 0 068 NA 0 044 NA 0 033 0 034 C- statistic (95% CI) 0 80 (0 78-0 82) 0 86 (0 83-0 90) 0 86 (0 85-0 88) NA 0 85 (0 83-0 87) NA 0 82 (0 79-0 85) 0 81 (0 77-0 85) E/O (95% CI) 1 04 (0 96-1 14) 1 05 (0 89-1 25) 1 05 (0 95-1 05) 1 03 (0 92-1 03) 1 05 (0 95-1 05) 1 04 (0 91-1 18) 1 05 (0 92-1 06) 1 05 (0 89-1 05) Brier score 0 020 0 006 0 012 0 009 0 012 0 010 0 006 0 006 Yates slope 0 030 0 016 0 027 0 013 0 019 0 011 0 011 0 009 C- statistic (95% CI) 0 78 (0 76-0 80) 0 81 (0 77-0 86) 0 85 (0 83-0 87) 0 79 (0 76-0 82) 0 80 (0 78-0 82) 0 79 (0 76-0 81) 0 81 (0 78-0 84) 0 76 (0 72-0 81) 19