Lack of age-dependent development of the contingent negative variation (CNV) in migraine children?

Similar documents
On the Pathophysiology of Migraine Links for Empirically Based Treatment With Neurofeedback

Interictal and Postictal Contingent Negative Variation in Migraine Without Aura

Readiness Potentials Related to Self-Initiated Movement and to Movement Preceded by Time Estimation: A Comparison

Figure 1. Source localization results for the No Go N2 component. (a) Dipole modeling

DCNV RESEARCH TOOL: INVESTIGATION OF ANTICIPATORY BRAIN POTENTIALS

Reward prediction error signals associated with a modified time estimation task

EFFECTS OF NITROUS OXIDE ON AUDITORY CORTICAL EVOKED POTENTIALS AND SUBJECTIVE THRESHOLDS

Brain self-regulation in criminal psychopaths

Posterior Cerebral Hypoperfusion in Migraine without Aura Marie Denuelle, MD Neurology Service, Rangueil Hospital Toulouse, France

MENTAL WORKLOAD AS A FUNCTION OF TRAFFIC DENSITY: COMPARISON OF PHYSIOLOGICAL, BEHAVIORAL, AND SUBJECTIVE INDICES

ERP Correlates of Identity Negative Priming

Electrophysiological Substrates of Auditory Temporal Assimilation Between Two Neighboring Time Intervals

Development of preparatory activity indexed by the Contingent Negative Variation in. Children

Transcranial Magnetic Stimulation Evokes Giant Inhibitory Potentials in Children

The Contingent Magnetic Variation in Migraine

Brainpotentialsassociatedwithoutcome expectation and outcome evaluation

Event-Related Potentials Recorded during Human-Computer Interaction

Novel single trial movement classification based on temporal dynamics of EEG

The impact of numeration on visual attention during a psychophysical task; An ERP study

Copyright Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited.

Supporting Information

Conscious control of movements: increase of temporal precision in voluntarily delayed actions

Neural Basis of Motor Control

Extraversion-Related Differences in Stimulus Analysis: Effectiveness of the Lateralized. Readiness Potential. Dianna Monteith. Saint Thomas University

Processed by HBI: Russia/Switzerland/USA

Address for correspondence: School of Psychological Sciences, Zochonis Building, University of Manchester, Oxford Road, M139PL, Manchester, UK

Do P1 and N1 evoked by the ERP task reflect primary visual processing in Parkinson s disease?

The Effects of Temporal Preparation on Reaction Time

ANALYZING EVENT-RELATED POTENTIALS

The prevalence of premonitory symptoms in migraine: a questionnaire study in 461 patients

Effect of intensity increment on P300 amplitude

Independence of Visual Awareness from the Scope of Attention: an Electrophysiological Study

Entrainment of neuronal oscillations as a mechanism of attentional selection: intracranial human recordings

ERP Feature of Vigilance. Zhendong Mu

THESIS THE TEST-RETEST RELIABILITY OF THE CONTINGENT NEGATIVE VARIATION (CNV) IN CHILDREN AND ADULTS BEFORE AND AFTER REMOVING ABERRANT CNV SEGMENTS

Activation of brain mechanisms of attention switching as a function of auditory frequency change

Human Brain Institute Russia-Switzerland-USA

DATA MANAGEMENT & TYPES OF ANALYSES OFTEN USED. Dennis L. Molfese University of Nebraska - Lincoln

ABSTRACT 1. INTRODUCTION 2. ARTIFACT REJECTION ON RAW DATA

B rain-computer interfaces (BCIs) are devices that translate

Neural Correlates of Human Cognitive Function:

BME 701 Examples of Biomedical Instrumentation. Hubert de Bruin Ph D, P Eng

Outline of Talk. Introduction to EEG and Event Related Potentials. Key points. My path to EEG

Event-related brain activity associated with auditory pattern processing

Mental representation of number in different numerical forms

Anatomy of the basal ganglia. Dana Cohen Gonda Brain Research Center, room 410


Making Things Happen 2: Motor Disorders

Migraine and hormonal contraceptives

McLaughlin, K. A., Fox, N. A., Zeanah, C. H., Sheridan, M. A., Marshall, P., & Nelson, C. A. (2010). Delayed maturation in brain electrical activity

EEG in the ICU: Part I

Reminders. What s a Neuron? Animals at Birth. How are Neurons formed? Prenatal Neural Development. Week 28. Week 3 Week 4. Week 10.

ELECTROPHYSIOLOGY OF UNIMODAL AND AUDIOVISUAL SPEECH PERCEPTION

Nonaffected ADHD (A) Siblings (S)

EE 4BD4 Lecture 11. The Brain and EEG

Effects of nicotine on neuronal firing patterns in human subthalamic nucleus. Kim Scott Mentor: Henry Lester SURF seminar, January 15, 2009

Using Transcranial magnetic stimulation to improve our understanding of Transverse Myelitis

Stimulus-Preceding Negativity and heart rate changes in anticipation of affective pictures

Altered Dynamic of EEG Oscillations in Fibromyalgia Patients at Rest

Supplementary Motor Area exerts Proactive and Reactive Control of Arm Movements

The EEG Analysis of Auditory Emotional Stimuli Perception in TBI Patients with Different SCG Score

NeuroImage 50 (2010) Contents lists available at ScienceDirect. NeuroImage. journal homepage:

The perception of time in childhood migraine

Quick Guide - eabr with Eclipse

Visual Event-Related Potentials to Moving Stimuli: Normative Data

Brain activity relating to the contingent negative variation: an fmri investigation

TASK RELATED CHANGES IN CONTINGENT NEGATIVE VARIATION (CNV) RESPONSE OF ENDOGENOUS EVOKED POTENTIALS

D. Debatisse, E. Fornari, E. Pralong, P. Maeder, H Foroglou, M.H Tetreault, J.G Villemure. NCH-UNN and Neuroradiology Dpt. CHUV Lausanne Switzerland

Combined effects of alcohol and caffeine on the late components of the event-related potential and on reaction time. Introduction.

Gangli della Base: un network multifunzionale

Auditory Brainstem Evoked Responses In Migraine Patients

Bursting dynamics in the brain. Jaeseung Jeong, Department of Biosystems, KAIST

Neurotechnology for Special Needs Children

Journal of Neurotherapy: Investigations in Neuromodulation, Neurofeedback and Applied Neuroscience Slow Cortical Potentials Neurofeedback

Seizure onset can be difficult to asses in scalp EEG. However, some tools can be used to increase the seizure onset activity over the EEG background:

TREATMENT-SPECIFIC ABNORMAL SYNAPTIC PLASTICITY IN EARLY PARKINSON S DISEASE

The effects of stimulus intensity and age on visual-evoked potentials ~VEPs! in normal children

ERROR PROCESSING IN CLINICAL POPULATIONS IN CONTRAST TO ADHD J.J.VAN DER MEERE

Visual Evoked Potentials. Outline. Visual Pathway Anatomy

The Neurobiology of Attention

(604) ; Fax (604)244-VNHS

Reduced sensory anticipation in migraine

The AASM Manual for the Scoring of Sleep and Associated Events

Background. Electrophysical tests. HearLab Instrument. - Developed by National Acoustic Laboratories (NAL) - NAL- (Australian population)

To link to this article: PLEASE SCROLL DOWN FOR ARTICLE

Teach-SHEET Basal Ganglia

GBME graduate course. Chapter 43. The Basal Ganglia

Activation of the auditory pre-attentive change detection system by tone repetitions with fast stimulation rate

Clinical applications of real-time fmri neurofeedback in 6 steps

Biofeedback has long been employed for helping. Biofeedback in headache: An overview of approaches and evidence ABSTRACT

Simultaneous Real-Time Detection of Motor Imagery and Error-Related Potentials for Improved BCI Accuracy

Beyond Blind Averaging: Analyzing Event-Related Brain Dynamics. Scott Makeig. sccn.ucsd.edu

Correlation Dimension versus Fractal Exponent During Sleep Onset

Synchronous cortical gamma-band activity in task-relevant cognition

ERD as an index of anticipatory attention? Effects of stimulus degradation

COGNITIVE SCIENCE 107A. Sensory Physiology and the Thalamus. Jaime A. Pineda, Ph.D.

Supporting Information

Using ERPs to evaluate neurofeedback for PTSD Date 03/11/18

Parkinsonism or Parkinson s Disease I. Symptoms: Main disorder of movement. Named after, an English physician who described the then known, in 1817.

Transcription:

Lack of age-dependent development of the contingent negative variation (CNV) in migraine children? S Bender 1, M Weisbrod 2, U Just 1, U Pfüller 2, P Parzer 1, F Resch 1 & R Oelkers-Ax 1 1 Department for Child and Adolescent Psychiatry, and 2 Psychiatric Department, University of Heidelberg, Heidelberg, Germany Bender S, Weisbrod M, Just U, Pfüller U, Parzer P, Resch F & Oelkers-Ax R. Lack of age-dependent development of the contingent negative variation (CNV) in migraine children? Cephalalgia 2002; 22:132 136. London. ISSN 0333-1024 Increased negativity of contingent negative variation (CNV) in adult migraineurs is thought to reflect cortical hyperexcitability. CNV amplitude changes with age in healthy adults. Recently, evidence emerged that this might not be the case for migraineurs. Our study investigates age-dependency of CNV during childhood age. Seventy-six healthy controls and 61 children with migraine without aura (IHS code 1.1) between 6 and 18 years were examined using an acoustic S1-S2-CNV-paradigm with a 3-s interstimulus interval. The amplitude of the late component of CNV, as well as total CNV at the vertex (Cz according to the international 10 20 system), were significantly higher in migraineurs without aura than in controls. Healthy controls showed increasing amplitudes of CNV with age, whereas in migraine children without aura amplitudes did not change. Thus group differences were reduced during adolescence. Increased CNV negativity might reflect a biological vulnerability to migraine, rather than being a result of chronification. Migraineurs seem to lack age-dependent development of CNV also during early age, which supports the hypothesis of migraine as a maturation disorder. u Age factors, childhood, contingent negative variation, migraine Stephan Bender, Department for Child and Adolescent Psychiatry, University of Heidelberg, Blumenstrasse 8, D-69115 Heidelberg, Germany. Tel.+49 6221 970415, fax+49 6221 970441, e-mail Stephan_Bender@med.uni-heidelberg.de Received 25 May 2001, accepted 5 December 2001 Introduction Increased negativity of contingent negative variation (CNV) amplitude in adult migraineurs without aura is well established and is thought to reflect cortical hyperexcitability. The late component (late CNV: lcnv) (1), as well as the early component (initial CNV: icnv) (2, 3), has been found to be increased. Differences in icnv amplitude found in adults might be due to a reduction of amplitude with increasing age in healthy controls (CO) but not migraineurs without aura (MO) (3). Also, evidence for an impaired maturation of sensory information processing in migraineurs is emerging (4). Therefore, understanding the age-dependent development of CNV components during childhood and adolescence in MO compared with the physiological development in CO is of great interest to migraine pathophysiology. Some pioneering research on the topic has already been carried out. One study (5) showed total CNV (tcnv) to be augmented (8 14 years) without distinguishing between CNV components. A recent study (mean age 13.6 years) using a Go-NoGo paradigm attributed augmented CNV mainly to changes in icnv (2). However, the influence of age wasn t investigated due to limited age ranges, and healthy siblings formed part of the control groups in both studies. In the only study with a larger number of subjects that investigated the influence of maturation on CNV, Kropp et al. (3), using a long inter-stimulus interval (ISI) of 6 s in a Go-NoGo paradigma (focusing on a clear separation of icnv from lcnv), described differences in icnv development between MO and CO regarding the age groups 15 19 years and 20 29 years (as mentioned above) but not between 8 14 years and 15 19 years. No differences were stated for lcnv and thus no detailed data concerning age groups were given. However, in CO an increase of CNV amplitude during childhood and adolescence has been found by various investigators (6 8). The aim of the current study was to provide more detailed data regarding age-related effects on both CNV components in children (CO and MO) down to 6 years, 132

CNV in migraine children 133 using a 3-s ISI long enough to distinguish between CNV components and not too long to be applied to children in a simple CNV paradigm (without response selection). We intended to examine whether MO differ from CO in CNV amplitude during the headache-free interval and, if so, to which component these differences can be attributed. Special emphasis was put on the contribution of age-dependent development to possible differences. Methods Sixty-one children suffering from migraine without aura (MO, IHS classification code 1.1, mean age 10.3 2.89 (standard deviation) years, 35 male, 26 female) and 76 healthy controls (CO, 11.1 3.32 years, 43 male, 33 female) aged from 6 to 18 years were included following these criteria: MO disease duration >1 years and at least three attacks within the last 3 months; CO were not permitted to have any first-degree relatives suffering from migraine or any neurological disorder. One subject was not included because of hearing impairment. Newspaper announcements were used to recruit 50.8% of MO subjects, and 49.2% of the subjects were patients presenting at the neuropaediatric clinic with headache as their primary complaint. Controls were also recruited by newspaper announcements, as well as by messages on the hospital intranet. The clinical characteristics of the MO sample were (values standard deviation): migraine intensity (numerical rating scale from 1 to 10) 7.3 1.7, migraine duration 7.7 11.6 h, duration of disease 4.5 2.8 years, migraine frequency: once a month 47.5%, twice a month 8.2%, weekly 34.4%, more often 9.8%. In agreement with other studies (e.g. 9), about one-third of MO subjects suffered from clinically relevant (T>64) behavioural and emotional problems (mainly internalizing disorders) (10), as dimensionally assessed by CBCL (child behaviour checklist, Achenbach) (11). Patients continued to take acute medication but did not use any pharmacological prophylactic treatment except for magnesium (one subject) and Petadolex (one subject). Five patients received acupuncture and four received psychological treatment (bioresonance, psychotherapy, headache group, eurhythmia). EEG-recordings were taken in the headache-free interval with at least 72 h distance to the last and the next attack. Five children had to be excluded from analysis because of headache attacks after the recording (a headache diary was kept). We recorded 20 CNV trials using a warning stimulus S1, 1000 Hz, duration 50 ms, 90 db, and an imperative stimulus S2, 2000 Hz, 50 ms, 90 db. Subjects were instructed to press a button as rapidly as possible when S2 ocurred. The ISI was 3 s, the inter-trial interval varied randomly from 10 s to 15 s. Neuroscan Synamp amplifiers were used to record continuous DC EEG from Cz (Fz and Pz electrode locations according to the international 10 20 system served to distinguish CNV from artifacts considering known topography of CNV) at an AD-rate of 250 Hz. Electrode impedance was kept below 5 kv. Vertical and horizontal electro oculargram were also recorded. Linked mastoids served as reference channels and recordings 1 s before S1 as baseline. Only trials with correct responses within 1 s were included in further analysis (response window, Neuroscan Stim). Reaction time was recorded using a trigger from the mouse. The EEG signal was segmented into epochs of 7.5 s (1 s before S1 until 3.5 s past S2), digitally filtered (30 Hz high cut-off), and corrected for DC-drifts (linear function, Brain Vision Analyser) and also for eye movements and blinks (algorithm described by Gratton and Coles, 12). Artifacts were rejected automatically if the signal amplitude exceeded 150 mv. This procedure was confirmed by visual inspection; remaining artifacts were removed. Six subjects of 132 had to be excluded because they did not respond properly or produced unremovable artifacts. The amplitude of icnv was calculated as the mean amplitude 200 ms around the peak within a latency range from 550 to 750 ms after S1. The mean amplitude of the last 200 ms preceding S2 served to measure lcnv. tcnv was the mean amplitude between S1 and S2 (1 3). Statistical analysis was carried out using Stata 7 (Stata Corporation College Station, TX, USA). In a first step the effect of diagnosis was examined by t-tests for icnv, lcnv and tcnv. In a second step multivariate regression analysis procedures were calculated to evaluate the influence of diagnosis, age, sex and the interaction between diagnosis and age, in order to detect group differences in age-dependent development. The formation of age groups was avoided to show continuous development. The a-level was set to 0.05. Results Group differences in amplitude MO showed significantly higher amplitudes of lcnv and tcnv than CO (P=0.053 and 0.021, t-test, Table 1). These differences were mainly found due to differences at early age (see Fig. 1 and age dependency below). The early component (icnv) showed more variability due to latency differences and a tendency to increase already at a younger age in controls; no significant differences were found between groups (P=0.389).

134 S Bender et al. Table 1 Mean amplitudes and age slopes. Mean amplitude ( standard error of the mean) and age slope (coefficient and significancy level of the regression) of icnv, lcnv and tcnv are presented for healthy controls (CO) and children with migraine without aura (MO). Significancy levels of the differences in amplitude (P t-test, third column) and age slope (diff., linear regression, last column) between the two groups are also given Amplitude [mv] Age Slope [mv/y] CO MO CO MO Diff. N=71 N=55 P coef P coef P P icnv x3.83 1.04 x5.12 1.04 0.389 x0.63 0.040 x0.13 0.746 0.305 lcnv x6.74 0.73 x8.89 0.83 0.053 x0.90 0.000 0.07 0.787 0.006 tcnv x4.55 0.50 x6.32 0.58 0.021 x0.45 0.004 0.04 0.828 0.049 LCNV (μv) 30 20 10 0 10 4 8 12 16 20 4 8 12 16 20 Healthy controls Migraine without aura Age (years) Figure 1 Age development of lcnv. Scatter plots showing age-dependent development and variability of lcnv in CO (healthy controls, left) and MO (children with migraine without aura, right). CO show a significant increase of lcnv amplitude with age, whereas MO do not (for values of regression analysis see Table 1). The result for total CNV is similar. Reaction time In both groups reaction time (RT) decreased significantly with age (CO coef=x0.02, P<0.001 and MO coef= x0.02, P<0.001, with coef being the age slope [s/year]). There were no significant differences between CO and MO children (P=0.988). Age dependency Linear regression showed significant age dependency (Table 1) of tcnv (age slope coef [mv/year]=x0.45, P=0.004), lcnv (coef=x0.90, P<0.001) and icnv (coef=x0.63, P=0.040) for CO at Cz. MO children did not show this development: tcnv coef=0.04 (P=0.83), lcnv coef=0.07 (P=0.79) and icnv coef=x0.13 (P=0.75). The age slopes of CO and MO differed significantly between groups for tcnv (P=0.049) and lcnv (P=0.006) but not for icnv (P=0.305). Discussion Like adults, young MO children also show increased late and total CNV amplitudes with respect to CO. Thus differences are not likely to result from long-term chronification. Instead, increased lcnv amplitude in MO during the headache-free interval might reflect a disposition to suffer from migraine. Using sufficiently large groups important insights into migraine pathophysiology can be provided. However, for clinical assessment of individual diagnoses lcnv does not seem appropriate because its retest-reliability is not higher than approximately 0.6 (13). The differences we found during the headache-free interval were not the result of changes in the early component icnv but of the late component lcnv. Our findings, however, do not contradict the hypothesis that icnv is increased right before the attack; a periodicity of icnv amplitude has recently been shown in migraineurs (14). Methodological differences could play an important role concerning which CNV component (if any) is found to be increased. A Go-NoGo-paradigm (requiring response selection) might relatively enhance icnv (2, 3), a simple CNV-paradigm (motor preparation) lcnv amplitude (1). A long ISI of 6 s (3) could activate different processes than shorter ones (15). The exact age of the population under investigation is a third important factor. Finally, we have to state that the differences in lcnv in the present study were not produced by the subjects under psychological treatment or receiving acupuncture; these subjects fitted into the general pattern. The main finding of our study is the missing agedependent development of lcnv in MO, including an elevation at an early state of development. Altered maturation of preparation in the sensory-motor system could be an explanation. Müller et al. (16) have found a negative Bereitschaftspotential (BP, preparation to selfpaced movements), which is closely related to lcnv (preparation to externally triggered movements), in

CNV in migraine children 135 migraine children, whereas young CO showed positive waveforms. The positive BP (or CNV) (17) in young CO has been attributed to structural immaturity of the cerebral cortex (17) inhibition by axodendritic synapses instead of axosomatic ones or to inhibition of spontaneous motor activity before the movement (18). MO might also fail to show the development in BP or lcnv because of a cortical hyperexcitability producing a ceiling effect: MO could differ from CO in these respects. A widely accepted model for the generation of CNV (for a review see 19) states that prefrontal cortex and reticular formation (FR) control a thalamic gating system that regulates cortical activation. An important feedback loop projects back from the cortex to the thalamus via basal ganglia (BG). BG execute GABAergic inhibitory control that can itself be inhibited by dopaminergic neurones. Segawa et al. (20) described that symptoms involving the ascendent efferents of the BG to the thalamocortical pathways are not observed during the first decade but appear later in life, providing evidence that the development of this cortical activation regulation system is going on during childhood. MO might not show lcnv development due to a ceiling effect because of a hyperactivity in FR (locus coeruleus, noradrenergic) (21, 22) or a hyperdisinhibition in BG (dopaminergic) (23) or both (24). Further research is urgently needed to reveal the mechanism responsible for our results, as depending on their nature therapeutic consequences will be quite different. In CO lcnv amplitude might increase until puberty and decline again afterwards (25). This would parallel the development of the dopaminergic system in the striatum revealed by pre-synaptic dopamine transporter density (26). Age is an important factor that future studies of CNV should not ignore, either in childhood or in adult headache. Acknowledgements This work was supported by the Pain Research Programme of the Medical Faculty, University of Heidelberg (F207040, E1). The authors would like to thank Kerstin Herwig for helping to acquire the data. We would like to thank the reviewers for their remarks. References 1 Böcker KB, Timsit-Berthier M, Schoenen J, Brunia CH. Contingent negative variation in migraine. Headache 1990; 30:604 9. 2 Kropp P, Kirbach U, Detlefsen JO, Siniatchkin M, Gerber WD, Stephani U. Slow cortical potentials in migraine: a comparison of adults and children. Cephalalgia 1999; 19 (Suppl. 25): 60 4. 3 Kropp P, Siniatchkin M, Stephani U, Gerber WD. Migraine evidence for a disturbance of cerebral maturation in man? Neurosci Lett 1999; 276:181 4. 4 Siniatchkin M, Kropp P, Stephani U, Gerber WD. Maturation of sensory information processing: evidence from the intensity dependence of AEP. J Psychophysiol 2000; 14:S59 60. 5 Besken E, Pothmann R, Sartory G. Contingent negative variation in childhood migraine. Cephalalgia 1993; 13:42 3. 6 Cohen J, Offner F, Palmer CW. Development of the contingent negative variation in children. Electroencephalogr Clin Neurophysiol 1967; 23:77 8. 7 Timsit-Berthier M, Hausman J. Etude de la VCN et du phénomène de préparation motrice chez des enfants de 5 à 15 ans. (Study of the CNV and of the phenomenon of motor preparation in 5 15-year-old children.) Rev Electroencephalogr Neurophysiol Clin 1972; 2:141 6. 8 Klorman R. Contingent negative variation and cardiac deceleration in a long preparatory interval: a developmental study. Psychophysiology 1975; 12:609 17. 9 Guidetti V, Galli F, Fabrizi P, Giannantoni AS, Napoli L, Bruni O, Trillo S. Headache and psychiatric comorbidity: clinical aspects and outcome in an 8-year follow-up study. Cephalalgia 1998; 18:455 62. 10 Just U, Oelkers R, Bender S, Parzer P, Ebinger F, Weisbrod M, Resch F. Emotional and behavioural problems in children and adolescents with primary headache. Cephalalgia, in press. 11 Achenbach TM. Manual for the Child Behavior Checklist: 4 18 and Profile. Burlington, Vermont: Department of Psychiatry, University of Vermont, 1991. 12 Gratton G, Coles MG, Donchin E. A new method for off-line removal of ocular artifact. Electroencephalogr Clin Neurophysiol 1983; 55:468 84. 13 Kropp P, Kiewitt A, Gobel H, Vetter P, Gerber WD. Reliability and stability of contingent negative variation. Appl Psychophysiol Biofeedback 2000; 25:33 41. 14 Siniatchkin M, Kropp P, Gerber WD, Stephani U. Migraine in childhood are periodically occurring migraine attacks related to dynamic changes of cortical information processing? Neurosci Lett 2000; 279:1 4. 15 Elbert T, Ulrich R, Rockstroh B, Lutzenberger W. The processing of temporal intervals reflected by CNV-like brain potentials. Psychophysiology 1991; 28:648 55. 16 Müller BW, Sartory G, Tackenberg A. The movement-related potential in with migraine and tension type headache children. Cephalalgia 2002; 22:125 31. 17 Otto D, Reiter L. Developmental changes in slow cortical potentials of young children with elevated body lead burden. Neurophysiological considerations. Ann N Y Acad Sci 1984; 425:377 83. 18 Warren C, Karrer R. Movement-related potentials in children. A replication of waveforms, and their relationships to age, performance and cognitive development. Ann N Y Acad Sci 1984; 425:489 95. 19 Rockstroh B, Elbert T, Canavan A, Lutzenberger W, Birbaumer N. Slow Cortical Potentials and Behavior. Baltimore: Urban & Schwarzenberg, 1989. 20 Segawa M. Development of the nigrostriatal dopamine neuron and the pathways in the basal ganglia. Brain Dev 2000; 22:S1 S4.

136 S Bender et al. 21 Bahra A, Matharu MS, Buchel C, Frackowiak RSJ, Goadsby PJ. Brainstem activation specific to migraine headache. Lancet 2001; 357:1016 7. 22 Gerber WD, Schoenen J. Biobehavioral correlates in migraine: the role of hypersensitivity and information-processing dysfunction. Cephalalgia 1998; 18 (Suppl. 21):5 11. 23 Fanciullacci M, Alessandri M, Del Rosso A. Dopamine involvement in the migraine attack. Funct Neurol 2000; 15 (Suppl. 3):171 81. 24 Lea RA, Dohy A, Jordan K, Quinlan S, Brimage PJ, Griffiths LR. Evidence for allelic association of the dopamine beta-hydroxylase gene (DBH) with susceptibility to typical migraine. Neurogenetics 2000; 3:35 40. 25 Botzel K, Mayer M, Oertel WH, Paulus W. Frontal and parietal premovement slow brain potentials in Parkinson s disease and aging. Mov Disord 1995; 10:85 91. 26 Moll GH, Mehnert C, Wicker M, Bock N, Rothenberger A, Ruther E, Huether G. Age-associated changes in the densities of presynaptic monoamine transporters in different regions of the rat brain from early juvenile life to late adulthood. Brain Res Dev Brain Res 2000; 119:251 7.