Human parainfluenza virus type 2 hemagglutininneuramindase gene: sequence and phylogenetic analysis of the Saudi strain Riyadh 105/2009

Similar documents
A Novel Duplex Real-Time Reverse-Transcription PCR Assay for the Detection of Influenza A and the Novel Influenza A(H1N1) Strain

Live-attenuated virus vaccines for respiratory syncytial and parainfluenza viruses: applications of reverse genetics

Identification of New Influenza B Virus Variants by Multiplex Reverse Transcription-PCR and the Heteroduplex Mobility Assay

Recommended laboratory tests to identify influenza A/H5 virus in specimens from patients with an influenza-like illness

Influenza Virus Genotypes Circulating In Central Greece During And Vaccine Strain Match

Original Article Development and Sequence Analysis of a Cold-Adapted Strain of Influenza A/New Caledonia/20/1999(H1N1) Virus

Sequence analysis for VP4 of enterovirus 71 isolated in Beijing during 2007 to 2008

Norgen s HIV Proviral DNA PCR Kit was developed and validated to be used with the following PCR instruments: Qiagen Rotor-Gene Q BioRad T1000 Cycler

Norgen s HIV proviral DNA PCR Kit was developed and validated to be used with the following PCR instruments: Qiagen Rotor-Gene Q BioRad icycler

Flu, Avian Flu and emerging aspects (H1N1 resistance)

Validation Report: VERSA Mini PCR Workstation Reverse Transcription of Avian Flu RNA and Amplification of cdna & Detection of H5N1

A mutation in the stalk of the NDV HN protein prevents triggering of the. F protein despite allowing efficient HN-F complex formation

Neuraminidase Activities. amino acid substitutions in these variants occurred in regions

The use of nonhuman primates in biomedical research has led to the isolation of many

Evolution of influenza

Orthomyxoviridae and Paramyxoviridae. Lecture in Microbiology for medical and dental medical students

Study of Prevalence of Bird flu by using RT PCR at Central Veterinary Laboratory, Nepal, 2007

To test the possible source of the HBV infection outside the study family, we searched the Genbank

Reassortment of influenza A virus genes linked to PB1 polymerase gene

Ana Priscila Perini, MD, PhD Researcher USP - Brazil. University of Sao Paulo

Miguel Zamora and Siba K. Samal*

ph1n1 H3N2: A Novel Influenza Virus Reassortment

Molecular diagnosis of infectious bronchitis: recent developments. Richard Currie

Existence of reassortant A (H1N2) swine influenza viruses in Saitama Prefecture, Japan

Early Detection for the Swine Flu Virus in the Mecca Area using Modern Methods of Molecular Genetics

Product # Kit Components

Introduction * Shahkarami MK 1*, Taqavian M 1, Alirezaie B 1

Supplemental Materials and Methods Plasmids and viruses Quantitative Reverse Transcription PCR Generation of molecular standard for quantitative PCR

HEPATITIS C VIRUS GENOTYPING IN CHRONIC HEPATITIS C PATIENTS

Diphtheria infections caused by the different toxigenic biotypes of Corynebacterium diphtheriae

Re-growth of an incomplete discoid lateral meniscus after arthroscopic partial resection in an 11 year-old boy: a case report

Shin-Hee Kim, Yongqi Yan, and Siba K. Samal*

Fusion properties of cells constitutively expressing human parainfluenza virus type 4A haemagglutinin-neuraminidase and fusion glycoproteins

PORCINE PARAINFLUENZA VIRUS 1

Kit Components Product # EP42720 (24 preps) MDx 2X PCR Master Mix 350 µl Cryptococcus neoformans Primer Mix 70 µl Cryptococcus neoformans Positive

SUPPLEMENTARY INFORMATION. Divergent TLR7/9 signaling and type I interferon production distinguish

Phylogenesis and Clinical Aspects of Pandemic 2009 Influenza A (H1N1) Virus Infection

Molecular Characterization of a Haemagglutinating and Non Haemagglutinating Rabbit Haemorrhagic Disease Viruses From Egypt

Respiratory Syncytial Virus. Respiratory Syncytial Virus. Parainfluenza virus. Acute Respiratory Infections II. Most Important Respiratory Pathogens

Determination of the temporal pattern and importance of BALF1 expression in Epstein-Barr viral infection

Multi-clonal origin of macrolide-resistant Mycoplasma pneumoniae isolates. determined by multiple-locus variable-number tandem-repeat analysis

Keywords: PRRSV, wild boar, seroprevalence, phylogenetic analyses

Preparing for the Fall Flu Season. Jonathan Gubbay Medical Microbiologist Public Health Laboratory OAHPP

Development of Real Time RT-PCR Assays for Neuraminidase Subtyping of Avian Influenza Virus

Received 4 April 2011/Accepted 1 June 2011

Instructions for Use. RealStar Influenza S&T RT-PCR Kit /2017 EN

PARAMYXOVIRUS FAMILY properties of attachment protein

Cytomegalovirus (CMV) End-Point PCR Kit Product# EP36300

Patterns of hemagglutinin evolution and the epidemiology of influenza

New Genotypes within Respiratory Syncytial Virus Group B Genotype BA in Niigata, Japan

THE APPLICATION OF MOLECULAR METHODS IN THE IDENTIFICATION OF ISOLATED STRAINS OF PARAINFLUENZA 3 VIRUS OF CATTLE

Evolution of the haemagglutinin gene of the influenza A(H1N1)2009 virus isolated in Hong Kong,

New viruses causing respiratory tract infections. Eric C.J. Claas

Viral Vectors In The Research Laboratory: Just How Safe Are They? Dawn P. Wooley, Ph.D., SM(NRM), RBP, CBSP

Respiratory Syncytial Virus Genetic and Antigenic Diversity

Multiple genotypes of influenza B viruses co-circulated in Taiwan in ACCEPTED

Sequencing-Based Identification of a Novel Coronavirus in Ferrets with Epizootic Catarrhal Enteritis and Development of Molecular Diagnostic Tests

Instructions for Use. RealStar Influenza Screen & Type RT-PCR Kit /2017 EN

High Failure Rate of the ViroSeq HIV-1 Genotyping System for Drug Resistance Testing in Cameroon, a Country with Broad HIV-1 Genetic Diversity

Respiratory Viruses. Respiratory Syncytial Virus

Novel Coronavirus 2012

Development of highly pathogenic avian in uenza and Newcastle disease surveillance means on the basis of molecular and genetic techniques

Influenza or flu is a

Multiple sequence alignment

Coronaviruses cause acute, mild upper respiratory infection (common cold).

The validity of the diagnosis of inflammatory arthritis in a large population-based primary care database

Viral Aetiologies of Acute Respiratory Tract Infections among Children in Andaman and Nicobar Archipelago India

Viral Infections of the Respiratory System. Dr. MONA BADR Assistant Professor College of Medicine & KKUH

Likelihood that an unsubtypeable Influenza A result. in the Luminex xtag Respiratory Virus Panel. is indicative of novel A/H1N1 (swine-like) influenza

RESEARCH NOTE ANTIGENIC AND GENETIC CHARACTERIZATION OF INFLUENZA B VIRUSES IN 2012 FROM SLUMS, DHAKA, BANGLADESH

Screening (and Diagnosis) of 15 Respiratory Viruses Using NAAT

Clinical audit for occupational therapy intervention for children with autism spectrum disorder: sampling steps and sample size calculation

Negative Strand RNA Virus Downloaded from by on 05/03/18. For personal use only. Negative Strand.

Genome Sequencing and Phylogenetic Analysis of 39 Human Parainfluenza Virus Type 1 Strains Isolated from

Laboratory Diagnosis of Viral Infections affect the Lower Respiratory Tract. M Parsania, Ph.D. Tehran Medical Branch, Islamic Azad University

Supplementary Figure 1. SC35M polymerase activity in the presence of Bat or SC35M NP encoded from the phw2000 rescue plasmid.

Palindromes drive the re-assortment in Influenza A

DR. FAHAD NASSER ALMAJHDI

Research Article Comparative Analysis of the Full-Length Genome Sequence of a Clinical solate of Human arain uenza irus 4B

Original Article Identification of Different Serotypes of Infectious Bronchitis Viruses in Allantoic Fluid Samples with Single and Multiplex RT- PCR

Cover Page. The handle holds various files of this Leiden University dissertation

Bioinformation by Biomedical Informatics Publishing Group

CHAPTER 4 RESULTS. showed that all three replicates had similar growth trends (Figure 4.1) (p<0.05; p=0.0000)

Influenza viruses. Virion. Genome. Genes and proteins. Viruses and hosts. Diseases. Distinctive characteristics

Deborah Lyn, 1 Mary B. Mazanec, 2,3 John G. Nedrud 3 and Allen Portner 1. Introduction

Public health relevant virological features of Influenza A(H7N9) causing human infection in China

NEXT GENERATION SEQUENCING OPENS NEW VIEWS ON VIRUS EVOLUTION AND EPIDEMIOLOGY. 16th International WAVLD symposium, 10th OIE Seminar

Reverse Genetics of RNA Viruses

Analysis of the Genomic Sequence of a Human Metapneumovirus

E E Hepatitis E SARS 29, Lancet. E A B Enterically-Transmitted Non-A, Hepatitis E. Virus HEV nm. 1.35g/cm s ALT AST HEV HEV

Supplementary Information

Detection of equine infectious anemia nucleic acid in asymptomatic carrier horses by nested PCR

GENETIC STUDY OF VPU VARIANTS AMONG THE HIV-1 INFECTED INTRAVENOUS DRUG USERS OF MANIPUR PREDICTS HIGHLY PATHOGENIC VIRUS

HS-LS4-4 Construct an explanation based on evidence for how natural selection leads to adaptation of populations.

Medical Virology. Herpesviruses, Orthomyxoviruses, and Retro virus. - Herpesviruses Structure & Composition: Herpesviruses

Emergence and Fixing of Antiviral Resistance in Influenza A Via Recombination and Hitch Hiking. Henry L Niman

Envelope e_ :------, Envelope glycoproteins e_ ~ Single-stranded RNA ----, Nucleocapsid

Figure S1. Schematic presentation of genomic replication of idsiv after transfection and infection. After transfection of idsiv plasmid DNA into 293T

Human Parainfluenza Virus 4 Outbreak and the Role of Diagnostic Tests

NOMENCLATURE & CLASSIFICATION OF PLANT VIRUSES. P.N. Sharma Department of Plant Pathology, CSK HPKV, Palampur (H.P.)

Transcription:

Almajhdi et al. Virology Journal 2012, 9:316 SHORT REPORT Open Access Human parainfluenza virus type 2 hemagglutininneuramindase gene: sequence and phylogenetic analysis of the Saudi strain Riyadh 105/2009 Fahad N Almajhdi 1,2*, Mohamed S Alshaman 1 and Haitham M Amer 1,3 Abstract Background: Although human parainfluenza type 2 (HPIV-2) virus is an important respiratory pathogen, a little is known about strains circulating in Saudi Arabia. Findings: Among 180 nasopharyngeal aspirates collected from suspected cases in Riyadh, only one sample (0.56%) was confirmed HPIV-2 positive by nested RT-PCR. The sample that was designated Riyadh 105/2009 was used for sequencing and phylogenetic analysis of the most variable virus gene; the haemagglutinin-neuramindase (HN). Comparison of HN gene of Riyadh 105/2009 strain and the relevant sequences available in GenBank revealed a strong relationship with Oklahoma-94-2009 strain. Phylogenetic analysis indicated four different clusters of HPIV-2 strains (G1-4). Twenty-three amino acid substitutions were recorded for Riyadh 105/2009, from which four are unique. The majority of substitutions (n=18) had changed their amino acids characteristics. By analyzing the effect of the recorded substitutions on the protein function using SIFT program, only two located at positions 360 and 571 were predicted to be deleterious. Conclusions: The presented changes of Riyadh 105/2009 strain may possess potential effect on the protein structure and/or function level. This is the first report that describes partial characterization of Saudi HPIV-2 strain. Keywords: Hemagglutinin-neuramindase, HPIV-2, Phylogenetic tree, Riyadh 105/2009, Saudi Arabia, Sequence analysis Findings Human parainfluenza type 2 virus (HPIV-2) is one of the important viruses that infect the human respiratory tract causing croup and pneumonia [1]. It is an enveloped nonsegmented negative single-stranded RNA virus that belongs to genus Rubulavirus of the family Paramyxoviridae. The virus genome is approximately 15 kb long and encodes seven structural proteins. The nucleocapsid (N), phosphoprotein (P), and large polymerase (L) encapsidate the genomic RNA, while hemagglutinin-neuraminidase (HN), fusion (F), and matrix (M) are envelope-associated proteins [2]. * Correspondence: majhdi@ksu.edu.sa 1 Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box, 2455, Riyadh 11451, Kingdom of Saudi Arabia 2 Center of Excellence in Biotechnology Research, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia Full list of author information is available at the end of the article HN protein constitutes the prominent virus fringes responsible for binding to sialoconjugate receptors (hemagglutinating activity), and for enzymatic destruction of the receptors (neuramindase activity). Moreover, the stalk region of HN was proposed to contain the site which promotes cell fusion by F protein [3,4]. Extensive genetic and antigenic variations among HPIV-2 strains were attributed to HN gene diversity [5,6]. Two distinct clusters were suggested by phylogenetic analysis of HPIV-2 strains on the basis of complete HN gene sequence. However, this phylogenetic tree was inadequately informative due to the low number of analyzed sequences [5]. In this report, the complete HN sequence of first Saudi HPIV-2 strain was analyzed and compared to the corresponding sequences available in GenBank. A phylogenetic tree was constructed to determine the predictable origin of Saudi strain and the relationship between different strains circulating globally. Nasopharyngeal aspirates of 180 children, hospitalized with acute respiratory disease in King Khalid University 2012 Almajhdi et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Almajhdi et al. Virology Journal 2012, 9:316 Page 2 of 5 Hospital, Riyadh, were obtained as described before [7]. Sample collection was approved by the Ethical Committee of King Saud University. The aspirates were taken from patients, after getting an informed consent from their parents. Samples were chilled transported in Minimal Essential Medium supplemented with 500 U penicillin and 500 μg streptomycin per ml (Sigma, St. Louis, MO) to Virology Research Laboratory, King Saud University. After pulse-vortexing and centrifugation at 3000 rpm for 10 min, 140 μl aliquots of the clarified supernatants were utilized for RNA extraction using QIAamp viral RNA extraction kit (Qiagen, Hilden, Germany) according to the manufacturer`s guidelines. Detection of HPIV-2 RNA was accomplished by amplification of 508 bp fragment of HN gene using One-step RT-PCR kit (Qiagen) and the primer set HPIV2-cDNA/HPIV2-rev (Table 1). Positive reactions were confirmed by the amplification of an internal 204 bp fragment of the PCR amplicon in a nested PCR using TopTaq Master Mix Kit (Qiagen), and the primer set HPIV2-nF/HPIV2-nR (Table 1). Products of both reactions were analyzed, along with 100 bp DNA ladder (Qiagen), in 1.5% agarose gel stained with ethidium bromide. Only one sample (0.56%), collected from two-year old female child, was confirmed positive for HPIV-2. The sample, designated Riyadh 105/2009, was used for sequencing and phylogenetic analysis of the complete HN gene. Sequencing strategy involved the amplification of three overlapping fragments, that flank the entire HN gene sequence, using FideliTaq RT-PCR Master Mix (GE Healthcare, Buckinghamshire, UK) and sequencing primer sets (Table 1). Specific RT-PCR products were purified from agarose gel using Illustra GFX PCR DNA Kit (GE Healthcare), and were sequenced on both strands (GenArt, Rosensburg, Germany). Nucleotide sequences were edited and assembled using Bioedit Biological Sequence Alignment Editor (Ibis Biosciences, Carlsbad, CA). Complete nucleotide and deduced amino acid sequences of HN gene of Riyadh 105/2009 strain were deposited in GenBank under the accession number HM460888. Multiple alignments with 17 HPIV-2 complete HN sequences available in GenBank (Table 2) were performed using the Clustal W algorithm of Megalign program, Lasergene software. Divergence analysis and tree construction were conducted using the same software, with 1,000 bootstrap replicates. The effect of non-synonymous mutations on the protein function was predicted using SIFT program (http://sift.bii.a-star.edu. sg). As expected, the results of sequence analysis revealed a single ORF of 1716 nucleotides that encodes a polypeptide of 571 amino acids [8]. Multiple sequence comparisons between Riyadh 105/2009 strain and the different global strains showed that the homology ranges from 91.8% to 99.1% and from 93.9% to 99% on the levels of nucleotide and deduced amino acids, respectively. A close relationship between the Saudi strain and Oklahoma-94-2009 strain (GenBank Accession number JF912194) was observed with only 16 nucleotide (0.9%) and 4 amino acid (0.7%) variations. This relationship may propose a common ancestral origin of both viruses. Seven unique nucleotide substitutions (0.41%) were found in Riyadh 105/2009 strain (G53A, A54G, T143C, T148C, T1327C, T1383, and G1401). As a result, four amino acids (0.53%) at positions 18, 48, 50, and 443 were changed. Phylogenetic analysis of the different worldwide strains of HPIV-2 indicated four different clusters (G1-4). Clusters G1 and G4 were further subdivided into subclusters a Table 1 Oligonucleotide primers used in the study PCR reaction / Primer (Polarity) Sequence (5 0 to 3 0 ) Position a PCR product Primary 508 bp HPIV2-cDNA (+) AACAATCTGCTGCAGCATTT 7437-7456 HPIV2-rev ( ) ATGTCAGACAATGGGCAAAT 7925-7944 Nested 204 bp HPIV2-nF(+) CCATTTACCTAAGTGATGGAAT 7479-7500 HPIV2-nR( ) GCCCTGTTGTATTTGGAAGAGA 7661-7682 Sequencing HPIV2-HN-F1(+) CGAACCCTTAAGGTGTCGTAACGTC 6648-6672 886 bp HPIV2-HN-R1 ( ) GGTATAGCAGTGACTGAACAGC 7512-7533 HPIV2-HN-F2(+) GACCCATTGGTGTTACACTCACAATG 7348-7373 840 bp HPIV2-HN-R2( ) GTTGCATTGCATGGCATGACTC 8166-8187 HPIV2-HN-F3(+) GGTACCGTCCTATCAAGTTCC 8137-8157 426 bp HPIV2-HN-R3 ( ) GAATCTGGAGTCTTCATTCAATAG 8539-8562 a Nucleotide positions based on the complete genome sequence of HPIV-2 strain Greer; GenBank accession number AF533012.

Table 2 Amino acid differences among the selected HPIV-2 strains as compared to the Saudi strain Riyadh 105/2009 Strain a Country/Year 18 48 50 54 57 67 114 139 164 175 195 201 319 332 344 345 351 360 367 376 443 482 571 Riyadh 105/2009 b Saudi Arabia/2009 K A P N D V T K H S T A S T E R G Y I Q H Q P 86-391 Japan/2004 R V S D E I A E N I A S T K K Q S N V H Y R L 76-86 Japan/2004 R V S D E I A E N I A S T K K Q S N V H Y R L 4-80 Japan/2004 R V S D E I A E N I A S T K K Q S N V H Y R L TC-6482 Japan/2004 R V S D E I A E N I A S T K K Q S N V H Y R L TC-6558 Japan/2004 R V S D E I A E N I A S T K K Q S N V H Y R L 62-M786 Japan/2004 R V S D I N I Q N N V H Y Greer-J1 Japan/2007 R V S D I N I K Q S N V H Y Toshiba Japan/1990 R V S D I N I K Q S N V H Y London UK/1990 R V S D I N I K Q S N V H Y Lyon-26056-1997 France/1997 R V S D E I A E N I A S T K K Q N N V H Y R L Lyon-18620-2001 France/2001 R V S E I A E I A S T K K Q S N V H Y R L Lyon-20283-2001 France/2001 R V S E I A E I A S T K K Q S N V H Y R L Lyon-20435-2001 France/2001 R V S E I A E I A S T K K Q S N V H Y R L V9412-6 USA/1999 R V S E I A E I A S T K K Q S N V H Y R L Oklahoma-94-2009 USA/2009 R V S Y Oklahoma-283-2009 USA/2005 R V S E I A E I A S T K K Q S N V H Y R L Oklahoma-3955-2005 USA/2005 R V S D E I A E N I A S T K K Q S N V H Y R L a Accession numbers of the strains used in analysis in order are: Genbank HM460888, AB189949, AB189950, AB189951, AB189952, AB189953, AB189948, AB367954, X57559, D00865, DQ072589, DQ072586, DQ072587, DQ072588, AF213352, JF912194, JF912195, and JF912196. b Blank cell indicates an amino acid identical to that of strain Riyadh 105/2009. Almajhdi et al. Virology Journal 2012, 9:316 Page 3 of 5

Almajhdi et al. Virology Journal 2012, 9:316 Page 4 of 5 Figure 1 Phylogenetic analysis based on the complete HN gene nucleotide sequence of the different HPIV-2 strains circulating globally. Tree was constructed using Megalign program of Lasergene software (DNASTAR) with 1000 bootstraps. HPIV-2 strains included in the analysis were grouped in four clusters (G1-4). Each of clusters G1 and G4 were split into two subclusters (a and b). Riyadh 105/2009 strain was indicated by a red frame, and was grouped with Oklahoma-94-2009 strain in cluster G3. Scale bar indicates number of nucleotide substitution per site. and b (Figure 1). Both Riyadh 105/2009 and Oklahoma- 94-2009 strains were grouped together in cluster G3. The nucleotide and deduced amino acid sequence comparisons, between Riyadh 105/2009 strain and the different strains of each group, further established this classification. For instance, the homology between Riyadh 105/2009 and G1 viruses ranged from 91.8-92.7% (nucleotides), and 93.9-94.8% (amino acids), while for G2 and G4 viruses, the homology was 93 93.2%, and 96.2-96.4% on the nucleotide level, and 95.1-95.3%, and 96 96.2% on the amino acid level, respectively. This Phylogenetic differentiation correlates well with the tree constructed by Terrier et al. [5], in which two clusters were defined. The first cluster included G1 and G2 strains of the conducted phylogram, while the second contained strains of G4 cluster. G3 cluster strains were not included in that study due to their recent identification. It may be concluded that new variant strains are continuing to emerge, and therefore, further updating of this phylogram may be required upon identification of more strains on spatial and temporal basis. Analysis of the deduced amino acid sequence alignment identified 23 positions of potential variation between Riyadh 105/2009 and other international strains (Table 2). Nineteen of these positions were shared with the other G3 virus (Oklahoma-94-2009), while 9 10, and 0 2 positions were only common with G4, and G1-2 viruses, respectively. The majority of the recorded substitutions (n=18) changed the amino acid characteristics on the level of charge, polarity, and/or hydropathy. However, the effect of these substitutions on the antigenic properties of the mature HN protein could not be concluded, since positions of the antigenic sites are not yet determined for HPIV-2. Aligning the positions of amino acid substitution of Riyadh 105/2009 strain with their counterparts in HPIV-3 HN protein identified a single residue (Q345R) that may be located in a distinct antigenic site [9]. Studying the effect of amino acid change on the protein function using SIFT program [10], outlined that all of the substitutions are well tolerated; except the change of asparagine (N) to tyrosine (Y) at position 360, and leucine (L) to proline (P) at position 571 that were predicted to affect the protein function with a score of 0.02 and 0.00, respectively. These two residues locate in the globular head region that carries both haemagglutinating and neutamindase activities [11]. However, the extent of their effect on the protein function would be correctly concluded when the three-dimensional structure of HN protein becomes available, and the amino acids crucial for both activities are determined. In conclusion, the complete HN gene sequence of the first HPIV-2 Saudi strain (Riyadh 105/2009) was analyzed and compared to the corresponding sequences/ strains at GenBank. Phylogenetic analysis of these strains allowed allocation of four separate clusters G1-G4. Saudi strain was more relevant to Oklahoma-94-2009 strain, which may propose a common ancestral origin. The majority of the amino acid substitutions observed in Riyadh 105/2009 strain changed the properties of their respective amino acids. However, the effect of these substitutions on the protein structure and function requires more detailed studies. Competing interest The authors declare that they have no conflicts of interest. Authors contributions FNA and HMA developed the concept, designed experiments and interpreted the results. MSS and HMA carried most of the experiments. FNA supervised the process of sample collection by trained nurses and helped with the experiments. All of the authors read and approved the manuscript. Acknowledgement This study was partially supported by Center of Excellence in Biotechnology Research, King Saud University through the research group project number CEBR NRL 2011/02. Author details 1 Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box, 2455, Riyadh 11451, Kingdom of Saudi Arabia. 2 Center of Excellence in Biotechnology Research, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia. 3 Department of Virology, Faculty of Veterinary Medicine, Cairo University, 12211, Giza, Egypt. Received: 18 June 2012 Accepted: 12 December 2012 Published: 22 December 2012 References 1. Hall CB: Respiratory syncytial virus and parainfluenza virus. N Engl J Med 2001, 344:1917 1928. 2. Karron RA, Collins PL: Parainfluenza viruses.infields Virology.EditedbyKnipe DM, Howley PM. Philadelphia: Lippincott Williams and Wilkins; 2006:1497 1526. 3. Tsurudome M, Ito M, Nishio M, Kawano M, Okamoto K, Kusagawa S, Komada H, Ito Y: Identification of regions on the fusion protein of human parainfluenza

Almajhdi et al. Virology Journal 2012, 9:316 Page 5 of 5 virus type 2 which are required for haemagglutinin-neuraminidase proteins to promote cell fusion. JGenVirol1998, 79:279 289. 4. TsurudomeM,NishioM,ItoM,TanahashiS,KawanoM,KomadaH,ItoY:Effects of hemagglutinin-neuraminidase protein mutations on cell-cell fusion mediated by human parainfluenza type 2 virus. JVirol2008, 82:8283 8295. 5. Terrier O, Cartet G, Ferraris O, Morfin F, Thouvenot D, Hong SS, Lina B: Characterization of naturally occurring parainfluenza virus type 2 (hpiv-2) variants. J Clin Virol 2008, 43:86 92. 6. Tsurudome M, Nishio M, Komada H, Bando H, Ito Y: Extensive antigenic diversity among human parainfluenza type 2 virus isolates and immunological relationships among paramyxoviruses revealed by monoclonal antibodies. Virology 1989, 171:38 48. 7. Heikkinen T, Marttila J, Salmi AA, Ruuskanen O: Nasal swab versus nasopharyngeal aspirate for isolation of respiratory viruses. J Clin Microbiol 2002, 40:4337 4339. 8. Precious B, Southern JA, Randall RE: Sequence analysis of the HN gene of parainfluenza virus type 2. J Gen Virol 1990, 71:1163 1168. 9. van Wyke Coelingh KL, Winter CC, Jorgensen ED, Murphy BR: Antigenic and structural properties of the hemagglutinin-neuraminidase glycoprotein of human parainfluenza virus type 3: sequence analysis of variants selected with monoclonal antibodies which inhibit infectivity, hemagglutination, and neuraminidase activities. JVirol1987, 61:1473 1477. 10. Ng PC, Henikoff S: SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res 2003, 31:3812 3814. 11. Tanabayashi K, Compans RW: Functional interaction of paramyxovirus glycoproteins: identification of a domain in Sendai virus HN which promotes cell fusion. J Virol 1996, 70:6112 6118. doi:10.1186/1743-422x-9-316 Cite this article as: Almajhdi et al.: Human parainfluenza virus type 2 hemagglutinin-neuramindase gene: sequence and phylogenetic analysis of the Saudi strain Riyadh 105/2009. Virology Journal 2012 9:316. Submit your next manuscript to BioMed Central and take full advantage of: Convenient online submission Thorough peer review No space constraints or color figure charges Immediate publication on acceptance Inclusion in PubMed, CAS, Scopus and Google Scholar Research which is freely available for redistribution Submit your manuscript at www.biomedcentral.com/submit