Clinical Study Cardioembolic but Not Other Stroke Subtypes Predict Mortality Independent of Stroke Severity at Presentation

Similar documents
Redgrave JN, Coutts SB, Schulz UG et al. Systematic review of associations between the presence of acute ischemic lesions on

[(PHY-3a) Initials of MD reviewing films] [(PHY-3b) Initials of 2 nd opinion MD]

The Impact of Smoking on Acute Ischemic Stroke

Clinical Study Circle of Willis Variants: Fetal PCA

Clinical Features and Subtypes of Ischemic Stroke Associated with Peripheral Arterial Disease

Research Article Abdominal Aortic Aneurysms and Coronary Artery Disease in a Small Country with High Cardiovascular Burden

Correspondence should be addressed to Alicia McMaster;

Case Report Asymptomatic Pulmonary Vein Stenosis: Hemodynamic Adaptation and Successful Ablation

Supplementary webappendix

Critical Review Form Therapy

Speakers. 2015, American Heart Association 1

Ischemic Stroke in Critically Ill Patients with Malignancy

Non-commercial use only

Clinical Study Age Differences in Long Term Outcomes of Coronary Patients Treated with Drug Eluting Stents at a Tertiary Medical Center

Conference Paper Antithrombotic Therapy in Patients with Acute Coronary Syndromes: Biological Markers and Personalized Medicine

Session : Why do stroke patients need a cardiologist? PREVALENCE OF CORONARY ATHEROSCLEROSIS IN PATIENTS WITH CEREBRAL INFARCTION

EAE RECOMMENDATIONS FOR TRANSESOPHAGEAL ECHO. Cardiac Sources of Embolism. Luigi P. Badano, MD, FESC

ACUTE CENTRAL PERIFERALEMBOLISM

/ / / / / / Hospital Abstraction: Stroke/TIA. Participant ID: Hospital Code: Multi-Ethnic Study of Atherosclerosis

The Epidemiology of Stroke and Vascular Risk Factors in Cognitive Aging

Emergency Department Stroke Registry Process of Care Indicator Specifications (July 1, 2011 June 30, 2012 Dates of Service)

WHI Form Report of Cardiovascular Outcome Ver (For items 1-11, each question specifies mark one or mark all that apply.

Clinical Study Experiences of Thrombolytic Therapy for Ischemic Stroke in Tuzla Canton, Bosnia and Herzegovina

CEREBRO VASCULAR ACCIDENTS

Antithrombotic therapy in patients with transient ischemic attack / stroke (acute phase <48h)

What the general cardiologist should know about arrhythmia Stroke prevention in AF" Peter Ammann Kantonsspital St. Gallen

How Can We Properly Manage Patients With Stroke of Undetermined Origin?

HEART AND SOUL STUDY OUTCOME EVENT - MORBIDITY REVIEW FORM

Direct oral anticoagulants for Embolic Strokes of Undetermined Source? George Ntaios University of Thessaly, Larissa/Greece

JUSTUS WARREN TASK FORCE MEETING DECEMBER 05, 2012

Research Article Predictive Factors for Medical Consultation for Sore Throat in Adults with Recurrent Pharyngotonsillitis

Research Article Opioid Use Is Not Associated with Incomplete Wireless Capsule Endoscopy for Inpatient or Outpatient Procedures

Stroke/Carotid Artery Disease Outcome Detail (Form 121/132, CaD ppts)

NIH Public Access Author Manuscript J Stroke Cerebrovasc Dis. Author manuscript; available in PMC 2008 September 1.

Supplementary Online Content

Research Article Comparison of Colour Duplex Ultrasound with Computed Tomography to Measure the Maximum Abdominal Aortic Aneurysmal Diameter

Comorbidity or medical history Existing diagnoses between 1 January 2007 and 31 December 2011 AF management care AF symptoms Tachycardia

Blood Pressure Reduction Among Acute Stroke Patients A Randomized Controlled Clinical Trial

Stroke/Carotid Artery Disease Outcome Detail (Form 121/132)

THE FRAMINGHAM STUDY Protocol for data set vr_soe_2009_m_0522 CRITERIA FOR EVENTS. 1. Cardiovascular Disease

Stroke Case Studies. Dr Stuti Joshi Neurology Advanced Trainee Telestroke fellow

(For items 1-12, each question specifies mark one or mark all that apply.)

Supplementary Appendix

Transient Atrial Fibrillation and Risk of Stroke after Acute Myocardial Infarction

Modena, 6 novembre Heart and Brain. Paolo Bovi

APPENDIX A NORTH AMERICAN SYMPTOMATIC CAROTID ENDARTERECTOMY TRIAL

Case Report Anomalous Left Main Coronary Artery: Case Series of Different Courses and Literature Review

Management of Patients with Atrial Fibrillation Undergoing Coronary Artery Stenting 경북대의전원내과조용근

Department of Internal Medicine, Saitama Citizens Medical Center, Saitama , Japan

Stroke 101. Maine Cardiovascular Health Summit. Eileen Hawkins, RN, MSN, CNRN Pen Bay Stroke Program Coordinator November 7, 2013

Case Report Preoperative Assessment of Anomalous Right Coronary Artery Arising from the Main Pulmonary Artery

True cryptogenic stroke

Clinical Study Metastasectomy of Pulmonary Metastases from Osteosarcoma: Prognostic Factors and Indication for Repeat Metastasectomy

Case Report Internal Jugular Vein Thrombosis in Isolated Tuberculous Cervical Lymphadenopathy

Research Article Predictions of the Length of Lumbar Puncture Needles

PFO Management update

Clinical Study Mucosal Melanoma in the Head and Neck Region: Different Clinical Features and Same Outcome to Cutaneous Melanoma

Qualifying and Outcome Strokes in the RESPECT PFO Trial: Additional Evidence of Treatment Effect

Common Codes for ICD-10

Research Article Prognostic Factors in Advanced Non-Small-Cell Lung Cancer Patients: Patient Characteristics and Type of Chemotherapy

A trial fibrillation (AF) is a common arrhythmia that is

DIAGNOSTIC CRITERIA OF AMI/ACS

8 th ANNUAL CLINICAL CARDIOLOGY COURSE Nashville, TN

Open Access The Addition of MRI to CT Based Stroke and TIA Evaluation Does Not Impact One year Outcomes


The MAIN-COMPARE Registry

Subtyping of Ischemic Stroke Based on Vascular Imaging: Analysis of 1,167 Acute, Consecutive Patients

Lesion patterns in patients with cryptogenic stroke with and without right-to-left-shunt

List of Exhibits Adult Stroke

CHAPTER 5. Symptomatic and Asymptomatic Retinal Embolism Have Different Mechanisms

Case Report Tortuous Common Carotid Artery: A Report of Four Cases Observed in Cadaveric Dissections

GERIATRICS CASE PRESENTATION

Case Report Successful Implantation of a Coronary Stent Graft in a Peripheral Vessel

Research Article Identifying Prognostic Criteria for Survival after Resuscitation Assisted by Extracorporeal Membrane Oxygenation

Correspondence should be addressed to Taha Numan Yıkılmaz;

Thrombolysis in ischaemic stroke in rural North East Thailand by neurologist and non-neurologists

Predictors of Ischemic Stroke After Hip Operation: A Population-Based Study

Lucia Cea Soriano 1, Saga Johansson 2, Bergur Stefansson 2 and Luis A García Rodríguez 1*

Research Article The Effect of Elevated Triglycerides on the Onset and Progression of Coronary Artery Disease: A Retrospective Chart Review

ORIGINAL CONTRIBUTION. Early Stroke Risk After Transient Ischemic Attack Among Individuals With Symptomatic Intracranial Artery Stenosis

Stroke is the third-leading cause of death and a major

Practical Considerations in the Early Treatment of Acute Stroke

2018 OPTIONS FOR INDIVIDUAL MEASURES: REGISTRY ONLY. MEASURE TYPE: Process

ACOFP 55th Annual Convention & Scientific Seminars. How Complicated is Your Panel? Effective Risk Coding in Primary Care. Alison Mancuso, DO, FACOFP

Long-term results (22 years) of the Ross Operation a single institutional experience

7. Echocardiography Appropriate Use Criteria (by Indication)

Does ABCD 2 Score Below 4 Allow More Time to Evaluate Patients With a Transient Ischemic Attack?

ARRHYTHMIAS AND DEVICE THERAPY

Index. cardiology.theclinics.com. Note: Page numbers of article titles are in boldface type.

Acute brain MRI DWI patterns and stroke recurrence after mild-moderate stroke

Management and Investigation of Ischemic Stroke By Etiology

2019 COLLECTION TYPE: MIPS CLINICAL QUALITY MEASURES (CQMS) MEASURE TYPE: Process

Chapter 4: Cardiovascular Disease in Patients With CKD

Title:Determinants of high sensitivity cardiac troponin T elevation in acute ischemic stroke

Comparison of Five Major Recent Endovascular Treatment Trials

The MAIN-COMPARE Study

ASE 2011 Appropriate Use Criteria for Echocardiography

Supplementary Online Content

Case Report Three-Dimensional Dual-Energy Computed Tomography for Enhancing Stone/Stent Contrasting and Stone Visualization in Urolithiasis

Clinical Study Predictors of Occult Paroxysmal Atrial Fibrillation in Cryptogenic Strokes Detected by Long-Term Noninvasive Cardiac Monitoring

Transcription:

SAGE-Hindawi Access to Research Stroke Research and Treatment Volume 2011, Article ID 281496, 5 pages doi:10.4061/2011/281496 Clinical Study Cardioembolic but Not Other Stroke Subtypes Predict Mortality Independent of Stroke Severity at Presentation Latha Ganti Stead, 1, 2 Rachel M. Gilmore, 1 M. Fernanda Bellolio, 1 Anunaya Jain, 1, 3 Alejandro A. Rabinstein, 4 Wyatt W. Decker, 1 Dipti Agarwal, 1 and Robert D. Brown Jr. 4 1 Department of Emergency Medicine, Mayo Clinic, Rochester, MN 55905, USA 2 Division of Clinical Research, Department of Emergency Medicine, University of Florida, Gainesville, FL 32610, USA 3 Department of Neurosurgery, University of Rochester, Rochester, NY 14642, USA 4 Department of Neurology, Mayo Clinic, Rochester, MN 55902, USA Correspondence should be addressed to Latha Ganti Stead, lstead@ufl.edu Received 2 April 2011; Accepted 8 July 2011 Academic Editor: Alison Baird Copyright 2011 Latha Ganti Stead et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Introduction. Etiology of acute ischemic stroke (AIS) is known to significantly influence management, prognosis, and risk of recurrence. Objective. To determine if ischemic stroke subtype based on TOAST criteria influences mortality. Methods. We conducted an observational study of a consecutive cohort of patients presenting with AIS to a single tertiary academic center. Results. The study population consisted of 500 patients who resided in the local county or the surrounding nine-county area. No patients were lost to followup. Two hundred and sixty one (52.2%) were male, and the mean age at presentation was 73.7 years (standard deviation, SD = 14.3). Subtypes were as follows: large artery atherosclerosis 97 (19.4%), cardioembolic 144 (28.8%), small vessel disease 75 (15%), other causes 19 (3.8%), and unknown 165 (33%). One hundred and sixty patients died: 69 within the first 30 days, 27 within 31 90 days, 29 within 91 365 days, and 35 after 1 year. Low 90-, 180-, and 360-day survival was seen in cardioembolic strokes (67.1%, 65.5%, and 58.2%, resp.), followed for cryptogenic strokes (78.0%, 75.3%, and 71.1%). Interestingly, when looking into the cryptogenic category, those with insufficient information to assign a stroke subtype had the lowest survival estimate (57.7% at 90 days, 56.1% at 180 days, and 51.2% at 1 year). Conclusion. Cardioembolic ischemic stroke subtype determined by TOAST criteria predicts long-term mortality, even after adjusting for age and stroke severity. 1. Introduction Etiology of acute ischemic stroke (AIS) is known to significantly influence management, prognosis, and risk of recurrence. Certain stroke subtypes are associated with higher stroke severity at the time of presentation, which may account for the higher mortality seen. In 1993 the TOAST (Trail of ORG 10172 in Acute Stroke Treatment) investigators described a classification of AIS based on etiology, which is now the most commonly used etiological classification [1]. Comparison of clinical characteristics, functional outcomes, and mortality rates for specific ischemic stroke mechanisms may allow clinicians to identify those patients who are at higher risk and to evaluate treatment strategies more definitely. We conducted an observational study of all patients who presented to the emergency department (ED) with AIS and determined if ischemic stroke subtype (ISS) influences mortality even after correcting for stroke severity on initial presentation. 2. Methods This study was conducted at a tertiary care academic medical center, with an annual ED census of approximately 75,000 visits. The medical records of all patients with a discharge diagnosis of stroke or transient ischemic attack (TIA) or diagnoses which could be mistaken for stroke or TIA were screened (ICD-CM codes 433-437) between December 2001 and March 2004 to determine if the case met the criteria for

2 Stroke Research and Treatment diagnosis of ischemic stroke. This study was approved by the authors institutional review board. The medical records for all patients were reviewed, and details of clinical history, demographic information, risk factor profile, neurological examination, brain imaging studies, and other diagnostic studies were abstracted. Followup was updated for the final data analysis using the date of the last service or dismissal available from registration databases. In addition, dates and causes of death were ascertained from the State of Minnesota Electronic Death Certificate Data; autopsy reports were also reviewed where available. The National Institutes of Health Stroke Scale (NIHSS) was calculated by physicians (LGS, RMG) certified in the NIHSS, based on previously validated methods [2, 3]. The scoring was derived from documentation of the neurological examination performed by the neurologist on call at the time of ED presentation. Stroke subtype was assigned to every patient by two independent physicians based on review of clinical history, neurological examination, and diagnostic studies in accordance with criteria outlined in the TOAST study. The TOAST classification includes the following categories: (1) large artery (LAD), (2) cardioembolic (CE), (3) small vessel (SAD), (4) other determined cause, and (5) cryptogenic. Patients defined as having large-artery atherosclerosis had imaging showing greater than 50% stenosis or occlusion of a major brain artery or branch cortical artery supplying the region of brain affected. A cardiac source of stroke was assigned to patients with at least one of the following predisposing factors (1) prosthetic valve, (2) significant mitral stenosis, (3) atrial fibrillation or flutter, (4) left atrial or ventricular thrombus, (5) myocardial infarction <6 months prior to stroke, (6) dilated cardiomyopathy, (7) akinetic/hypokinetic left ventricular segment, (8) atrial myxoma, (9) infective endocarditis, (10) sick-sinus syndrome, and (11) congestive heart failure, in the absence of significant ipsilateral arterial stenosis. Patients with small vessel occlusion had a clinical history of a classical lacunar syndrome with either no evidence of infarction on neuroimaging or less than 1.5 cm infarct in the corresponding subcortical or brainstem region. Patients with evidence of stroke of other more unusual etiologies such as vasculitis or hypercoagulable states were classified as stroke of other determined cause. Patients who did not meet the criteria for any of the above categories were defined as having cryptogenic stroke. This category was comprised of 3 distinct groups of patients (a) those that had more than one cause identified, (b) no cause identified despite extensive investigations, and (c) insufficient information obtained to identify a cause. 3. Statistical Methods The primary outcome variable was mortality within 1 year, as estimated using the Kaplan-Meier method. For patients who died within 1 year, the duration of followup was calculated from the date of ED presentation to the date of death. The duration of followup for all remaining patients was censored at the date of last followup if within 1 year or at 366 days. Associations with survival were evaluated using indicator variables in Cox proportional hazards models. The associations were evaluated with and without adjusting for sex, age, and NIHSS (ln (score + 0.5) of NIHSS which was used in the model) and were summarized by calculating risk ratios (RRs) and 95% confidence intervals (CIs). All calculated P values were two sided, and P values less than 0.05 were considered statistically significant. Statistical analyses were performed using the SAS software package (SAS Institute, Inc, Cary, NC). 4. Results The initial study population consisted of all 681 consecutive patients who presented to the ED with acute ischemic stroke. Among these 681 patients, 19 denied research authorization and were therefore excluded from further study in accordance with Minnesota Statute 144.335. For purposes of obtaining recent and consistent followup, this sample was further limited to the 500 patients who resided in the local county or the surrounding nine-county area at the time of the ED visit. Hence, during the period of study 500 eligible patients were identified. No patients were lost to followup. Two hundred and sixty one (52.2%) were male, and the mean age at presentation was 73.7 years (standard deviation, SD = 14.3, range 18 to 101 years). Magnetic resonance imaging or computed tomography (CT) of the brain was carried out in all patients with 60% of patients having both imaging modalities. Echocardiography was performed in 65% of patients, 92% of which were transesophageal echocardiography. 85% had vascular imaging with 65% of these having CT angiogram or magnetic resonance angiogram. All 500 patients were assigned a subtype, large artery atherosclerosis 97 (19.4%), cardioembolic 144 (28.8%), small vessel disease 75 (15%), other determined cause 19 (3.8%), and unknown 165 (33%). The unknown category was further subdivided into: more than one cause identified 37 (7.4%), no cause identified 63 (12.6%), and those with insufficient investigations performed to identify a cause 65 (13.0%). Detailed information of the demographic characteristics by ISS is presented in Table 1. One hundred and sixty patients died: 69 within the first 30 days, 27 within 31 90 days, 29 within 91 365 days, and 35 after 1 year. The estimated survival (±standard error) at 90 days, 180 days, and 1 year was 80.1% ± 1.8%, 77.5% ± 1.9%, and 73.5% ± 2.0%, respectively. Among the patients alive at last followup, the median followup was 1.8 years (interquartile range, 1.1 2.6 years). The lower 90-, 180-, and 360-day survival was seen in cardioembolic strokes (67.1%, 65.5%, and 58.2%, resp.), followed for cryptogenic strokes (78.0%, 75.3%, and 71.1%). Interestingly, when looking into the cryptogenic category, those with insufficient information to assign a stroke subtype had the lowest survival estimate (57.7% at 90 days, 56.1% at 180 days and 51.2% at 1 year). The survival estimates (±standard error) bytoastcategoryarepresentedintable 2 and Figure 1. In order to calculate risk ratios (RR) for comparing the survival within the first year across the TOAST categories, we built 3 models to adjust for different factors. These models are summarized in Table 3. Using the SAD group as the

Stroke Research and Treatment 3 Large vessel (N = 97) Table 1: Summary of patient characteristics by TOAST classification. Cardioembolic (N = 144) Small vessel (N = 75) Other (N = 19) Multiple causes (N = 37) No cause identified (N = 63) Insufficient info (N = 65) Male gender 67 (69.1%) 66 (45.8%) 39 (52%) 10 (52.6%) 21 (56.8%) 32 (50.8%) 26 (40%) Age Mean (SD) 70.7 (12.22) 78.4 (11.81) 72.6 (13.50) 50.7 (19.71) 73.8 (9.90) 66.6 (16.78) 82.3 (8.32) Range 39 91 41 101 44 94 18 82 39 90 25 89 59 98 NIHSS Mean (SD) 7.0 (6.40) 10.1 (9.06) 3.8 (2.71) 5.7 (5.77) 8.1 (8.92) 6.3 (7.14) 13.4 (11.26) Median 4.0 7.0 3.0 5.0 4.0 4.0 9.5 Q1, Q3 3.0, 10.0 3.0, 15.0 2.0, 5.0 1.0, 8.0 2.0, 8.0 1.0, 8.0 4.0, 20.0 Prior MI 14 (14.4%) 16 (11.1%) 11 (14.7%) 1 (5.3%) 13 (35.1%) 8 (12.7%) 9 (13.8%) CHF 7 (7.2%) 46 (31.9%) 6 (8%) 0 (0%) 12 (32.4%) 2 (3.2%) 10 (15.4%) Coronary artery disease 25 (25.8%) 40 (27.8%) 19 (25.3%) 3 (15.8%) 18 (48.6%) 13 (20.6%) 16 (24.6%) Atrial fibrillation 8 (8.2%) 89 (61.8%) 3 (4%) 2 (10.5%) 15 (40.5%) 3 (4.8%) 6 (9.2%) Prior stroke 22 (22.7%) 35 (24.3%) 13 (17.3%) 2 (10.5%) 11 (29.7%) 15 (23.8%) 19 (29.2%) Prior TIA 19 (19.6%) 20 (13.9%) 14 (18.7%) 0 (0%) 8 (21.6%) 9 (14.3%) 12 (18.5%) HTN 75 (77.3%) 110 (76.4%) 61 (81.3%) 8 (42.1%) 32 (86.5%) 48 (76.2%) 51 (78.5%) Hyperlipidemia 58 (59.8%) 56 (38.9%) 43 (57.3%) 3 (15.8%) 18 (48.6%) 31 (49.2%) 23 (35.4%) Diabetes 28 (%) 35 (%) 30 (%) 2 (%) 9 (%) 18 (%) 13 (%) Smoker Never 32 (33%) 79 (54.9%) 44 (58.7%) 10 (52.6%) 20 (54.1%) 23 (36.5%) 30 (46.2%) Active 24 (24.7%) 14 (9.7%) 13 (17.3%) 4 (21.1%) 2 (5.4%) 16 (25.4%) 6 (9.2%) Former 40 (41.2%) 44 (30.6%) 17 (22.7%) 5 (26.3%) 12 (32.4%) 23 (36.5%) 25 (38.5%) TOAST N Events Table 2: Survival estimates within the first year. Survival at 90 days (SE) Survival at 180 days (SE) Survival at 360 days (SE) Large artery 97 16 87.1% (0.04) 82.4% (0.04) 82.4% (0.04) Cardioembolic 144 57 67.1% (0.04) 65.5% (0.04) 58.2% (0.04) Small vessels 75 4 98.6% (0.01) 97.1% (0.02) 94.2% (0.03) Other 19 3 89.5% (0.07) 84.2% (0.08) 84.2% (0.08) Cryptogenic 165 45 78.0% (0.03) 75.3% (0.03) 71.1% (0.04) More than one cause 37 7 85.5% (0.06) 82.3% (0.07) 79.2% (0.07) No cause 63 7 94.8% (0.03) 91.2% (0.04) 87.4% (0.05) Insufficient info 65 31 57.7% (0.06) 56.1% (0.06) 51.2% (0.06) reference, patients with LAD, CE, or cryptogenic strokes had significantly poorer survival (Model 1). This association wasstillobservedafteradjustingforageandgender(model 2).However,afteradjustingforageandNIHSS(Model3), only the difference between CE and SAD attained statistical significance, with a RR 3.4 (95% CI 1.2 9.6). Most deaths (60%) in our cohort were attributable to the acute stroke itself, confirming the results of others [4]. Other causes were respiratory distress/pneumonia (15%), cardiovascular (myocardial infarction and congestive heart failure) (7%), and renal failure (7%). We are unable to comment on whether there was a difference in tpa treatment or revascularization between subtypes as we did not have patient-specific data on which patients in this dataset as to who received t-pa by subtype. Overall, the number of patients who received t-pa during the study period was small and thus would likely have little effect on outcomes by subtype. 5. Discussion Cardioembolic stroke is known to have the worst prognosis amongst ischemic stroke subtypes, and this has been reported in the literature [4, 5]. However, in contrast to the current study, these studies have failed to show CE stroke as an independent predictor of mortality. Bang et al. showed

4 Stroke Research and Treatment Table 3: Risk ratios of mortality. Factors Model 1 Model 2 Model 3 included RR (95% CI) RR (95% CI) RR (95% CI) P value P value P value TOAST LAD 3.5 (1.2 10.4) P = 0.027 4.0 (1.3 11.9) P = 0.014 2.1 (0.7 6.4) P = 0.18 CE 9.4 (3.4 25.9) P < 0.001 7.8 (2.8 21.4) P < 0.001 3.4 (1.2 9.6) P = 0.020 SAD Reference Reference Reference Reference Other 3.1 (0.7 13.9) P = 0.14 9.0 (2.0 41.3) P = 0.005 4.7 (1.0 21.6) P = 0.05 Cryptogenic 18.9 (2.2 17.1) P < 0.001 5.9 (2.1 16.3) P < 0.001 2.5 (0.9 7.0) P = 0.094 Female n/a 0.9 (0.6 1.3) P = 0.48 n/a Age n/a 1.8 (1.5 2.2) P<0.001 1.6 (1.3 1.9) P<0.001 Ln(NIHSS) n/a n/a 3.6 (2.8 4.7) P<0.001 Risk ratio per 10 year increase in age. Risk per a doubling in NIHSS score. Survival (%) 100 80 60 40 20 0 0 1 2 3 4 5 6 7 8 9 10 11 12 Months following ED presentation TOAST classification LAD CE SAD Other Cryptogenic Figure 1: Survival estimates by TOAST classification. that ischemic stroke subtype was a significant predictor of recurrent stroke after adjusting for potential confounders but did not find that it was an independent predictor of poor prognosis [6]. Sprigg et al. reported in their evaluation of the TAIST (Tinzaparin in Acute Ischemic Stroke Trial) that patients with small vessel occlusion had better outcome as compared to patients with large artery atherosclerosis or cardioembolic stroke [7]. Internationally there seems to be a similar trend. Recently Winter et al. reported from Marburg that patients with cardioembolic stroke had more severe clinical deficits on presentation, and a worse outcome, than the other stroke subtypes [8]. A community-based study from Brazil also reported the highest case fatality rate in strokes of undetermined etiology followed by cardioembolic stroke and large vessel atherothrombosis [9]. Lavados and colleagues from Chile reported a similar higher mortality for cardioembolic stroke when compared to small vessel disease [10]. We have demonstrated an association between CE stroke and increased mortality, independent of age, gender, and NIHSS. It would appear likely that cardiac and other comorbidities most likely explain this finding. Cardiac conditions that predispose to stroke (such as extensive acute myocardial infarction, chronic myocardial injury with left ventricular aneurysm formation, valvular and nonvalvular atrial fibrillation) are themselves associated with increased mortality. It is not unexpected that such patients would carry a particularly poor prognosis after acute ischemic stroke. Similarly, conditions such as diabetes that may underlie such heart diseases may also increase risk for poor outcome following stroke. The findings of this study clearly identify patients presenting with CE stroke as a particularly high risk group. How best to optimize therapy and ameliorate that risk for these patients, however, is uncertain. For example, whether stroke subtype may influence efficacy of established therapies such as thrombolytic therapy is unknown. It is probably reasonable to assume that embolic material in CE stroke is predominantly thrombus laden (rather than composed of plaque debris, as may pertain in aortic and carotid artery disease). If this assumption is indeed correct, then one could hypothesize that patients with CE stroke may be a subgroup that ought to derive greater benefit from timely administration of thrombolysis and may conceivably benefit from thrombolysis over an extended time window beyond the conventional three hours from symptom onset. Greater vigilance in respect of blood pressure control during the acute phase of stroke may be warranted. Heightened awareness of poor prognosis among these patients may also lead to more aggressive treatment of coexisting cardiac disorders. 6. Conclusion Cardioembolic ischemic stroke subtype determined by TOAST criteria predicts long-term mortality, even after adjusting for age and stroke severity. Further studies to define the precise nature of this increased risk will be required

Stroke Research and Treatment 5 to guide the development of strategies which may improve outcome in this setting. Acknowledgments Dr. L. G. Stead was supported through a Mayo Foundation Emergency Medicine Research Career Development Award during the period of this research. This paper was made possible by Grant no. 1 UL1 RR024150 from the National Center for Research Resources (NCRR), a component of the National Institutes of Health (NIH), and the NIH Roadmap for Medical Research. The contents of this paper are solely the responsibility of the authors and do not necessarily represent the official view of NCRR or NIH. Information on NCRR is available at http://www.ncrr.nih.gov/. Information on Reengineering the Clinical Research Enterprise can be obtained from http://nihroadmap.nih.gov/. References [1] H. P. Adams Jr., B. H. Bendixen, L. J. Kappelle et al., Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. Toast. Trial of org 10172 in acute stroke treatment, Stroke, vol. 24, pp. 35 41, 1993. [2] S. E. Kasner, J. A. Chalela, J. M. Luciano et al., Reliability and validity of estimating the NIH stroke scale score from medical records, Stroke, vol. 30, no. 8, pp. 1534 1537, 1999. [3] L. S. Williams, E. Y. Yilmaz, and A. M. Lopez-Yunez, Retrospective assessment of initial stroke severity with the NIH stroke scale, Stroke, vol. 31, no. 4, pp. 858 862, 2000. [4] G. de Jong, L. Van Raak, F. Kessels, and J. Lodder, Stroke subtype and mortality: a follow-up study in 998 patients with a first cerebral infarct, Clinical Epidemiology, vol. 56, no. 3, pp. 262 268, 2003. [5] M. Murat Sumer and O. Erturk, Ischemic stroke subtypes: risk factors, functional outcome and recurrence, Neurological Sciences, vol. 22, no. 6, pp. 449 454, 2002. [6] O. Y. Bang, P. H. Lee, S. Y. Joo, J. S. Lee, I. S. Joo, and K. Huh, Frequency and mechanisms of stroke recurrence after cryptogenic stroke, Annals of Neurology, vol. 54, no. 2, pp. 227 234, 2003. [7]N.Sprigg,L.J.Gray,P.M.W.Bathetal., Earlyrecovery and functional outcome are related with causal stroke subtype: data from the Tinzaparin in acute ischemic stroke trial, Stroke and Cerebrovascular Diseases, vol.16,no.4, pp. 180 184, 2007. [8] Y. Winter, C. Wolfram, M. Schaeg et al., Evaluation of costs and outcome in cardioembolic stroke or TIA, Neurology, vol. 256, no. 6, pp. 954 963, 2009. [9] N. L. Cabral, A. R.R. Gonçalves, A. L. Longo et al., Incidence of stroke subtypes, prognosis and prevalence of risk factors in Joinville, Brazil: a 2 year community based study, Neurology, Neurosurgery and Psychiatry, vol. 80, no. 7, pp. 755 761, 2009. [10] P. M. Lavados, C. Sacks, L. Prina et al., Incidence, casefatality rate, and prognosis of ischaemic stroke subtypes in a predominantly Hispanic-Mestizo population in Iquique, Chile (PISCIS project): a community-based incidence study, The Lancet Neurology, vol. 6, no. 2, pp. 140 148, 2007.

MEDIATORS of INFLAMMATION The Scientific World Journal Gastroenterology Research and Practice Diabetes Research International Endocrinology Immunology Research Disease Markers Submit your manuscripts at BioMed Research International PPAR Research Obesity Ophthalmology Evidence-Based Complementary and Alternative Medicine Stem Cells International Oncology Parkinson s Disease Computational and Mathematical Methods in Medicine AIDS Behavioural Neurology Research and Treatment Oxidative Medicine and Cellular Longevity