Discriminating between simple and perforated appendicitis

Similar documents
Nonoperative Treatment With Antibiotics Versus Surgery for Acute Nonperforated Appendicitis in Children. A Pilot Randomized Controlled Trial

POSTER SESSION. Routine Interval Appendectomy Is Not Justified After Initial Nonoperative Treatment of Acute Appendicitis

The Egyptian Journal of Hospital Medicine (July 2018) Vol. 72(2), Page

The Diagnostic Value of a Panel of Serological

Conservative Management Of Acute Appendicitis: A Review

Racial and Socioeconomic Disparities in Appendicitis

Medical Management of Appendicitis: Are We There Yet? Monica E. Lopez, MD, FACS, FAAP

Laparoscopic Appendectomy: Valuable. Joel Baumgartner UCHSC Surgery Grand Rounds Resident Debate November 20, 2006

Study of laparoscopic appendectomy: advantages, disadvantages and reasons for conversion of laparoscopic to open appendectomy

Long-Term Results Following Antibiotic Treatment of Acute Appendicitis in Adults

USEFULNESS OF C REACTIVE PROTEIN AND LEUKOCYTE COUNT IN MANAGEMENT OF ACUTE APPENDICITIS IN CHILDREN

Acute appendicitis is the most common surgical emergency in

Surgical resection improves survival in pancreatic cancer patients without vascular invasion- a population based study

Alvarado vs Lintula Scoring Systems in Acute Appendicitis

Nonoperative Management of Appendiceal Phlegmon or Abscess with an Appendicolith in Children

Acute Appendicitis: Surgery vs. the Conservative Antibiotic Approach

The diagnostic value of white cell count, C-reactive protein and bilirubin in acute appendicitis and its complications

NON OPERATIVE TREATMENT OF ACUTE APPENDICITIS - IS THIS APPROPRIATE IN SOUTH AFRICA O.D MONTWEDI

Therapeutic effectiveness of percutaneous drainage and factors for performing an interval appendectomy in pediatric appendiceal abscess

INTRALUMINAL GAS IN NON-PERFORATED ACUTE APPENDICITIS: A predictor of gangrenous appendicitis

Template 1 for summarising studies addressing prognostic questions

Daniel Boduszek University of Huddersfield

Keywords: Appendectomy, Appendicitis, Laparoscopy, Child, Postoperative complications

Cover Page. The handle holds various files of this Leiden University dissertation

NSQIP-P for the comparative analysis of resource utilization and disease-specific outcomes:

Laparoscopic Appendectomy Overrated. University of Colorado Department of Surgery Grand Rounds November 20, 2006 Carlos Rueda M.D.

Interval Likelihood Ratios: Another Advantage for the Evidence-Based Diagnostician

A Meta-Analysis of Antibiotics Versus Surgery for the Treatment of Acute Appendicitis

Citation for published version (APA): Swank, H. A. (2012). Minimally invasive surgery for lower abdominal peritonitis

Perforation in acute appendicitis: Evaluation of hyperbilirubinemia and elevated C reactive protein as a predictive factor

CONSERVATIVE TREATMENT OF APPENDICULAR MASS WITHOUT INTERVAL APPENDICECTOMY: IS IT JUSTIFIED?

Intraluminal gas in non-perforated acute appendicitis: a CT sign of gangrenous appendicitis

Antibiotic Therapy Versus Appendectomy for Acute Appendicitis: A Meta-Analysis

ORIGINAL INVESTIGATION. C-Reactive Protein Concentration and Incident Hypertension in Young Adults

Diagnostic value of C-reactive protein and neutrophil-limphocyte ratio in perforated appendicitis at Hasan Sadikin Hospital Bandung

Therapeutic Consideration of Periappendiceal Abscess: an Evaluation of Non-surgical Treatment Followed by Minimally Invasive Interval Appendectomy

Validity of predictive factors of acute complicated appendicitis

Laparoscopic Versus Open Appendectomy: the Risk of Postoperative Infectious Complications

a Department of Pediatrics, b Department of Internal Medicine, Buddhist Tzu-Chi Received 25 April 2011 Accepted 26 October 2011

Surgical Apgar Score Predicts Post- Laparatomy Complications

Retrospective Multicenter Study on Risk Factors for Surgical Site Infections after Appendectomy for Acute Appendicitis

Evidence-Based Medicine Journal Club. A Primer in Statistics, Study Design, and Epidemiology. August, 2013

Critical Review Form Diagnostic Test

The accuracy of emergency medicine and surgical residents in the diagnosis of acute appendicitis

MODEL SELECTION STRATEGIES. Tony Panzarella

APPENDECTOMY IS ONE OF THE

Evaluation of POSSUM and P-POSSUM as predictors of mortality and morbidity in patients undergoing laparotomy at a referral hospital in Nairobi, Kenya

Does the Presence of Abscesses in Diverticular Disease Prelude Surgery?

SELECTED ABSTRACTS. Editor - Rohan Siriwardena. during a laparoscopic cholecystectomy in a highvolume teaching centre, was associated with a low

Acute appendicitis is a common condition and. Elevated serum bilirubin in acute appendicitis: A new diagnostic tool.

Critical Review Form Clinical Prediction or Decision Rule

PTHP 7101 Research 1 Chapter Assignments

Cover Page. The handle holds various files of this Leiden University dissertation.

A Case Report of Acute Renal Artery Occlusion Mimicking Acute Appendicitis

International Journal of Surgery

JMSCR Vol 05 Issue 05 Page May 2017

ABSTRACT. KEY WORDS antibiotics; prophylaxis; hysterectomy

Diagnosis of Ventilator-Associated Pneumonia: A Pilot, Exploratory Analysis of a New Score Based on Procalcitonin and Chest Echography

Levothyroxine replacement dosage determination after thyroidectomy

Negative appendicectomy and perforation rates after laparoscopic appendicectomy

Geographic & Socioeconomic Predictors of Perforated Appendicitis: A National Canadian Cohort Study

Endometriosis of the Appendix Resulting in Perforated Appendicitis

ORIGINAL ARTICLE. A Case Study on the Comparative Effectiveness of Laparoscopic vs Open Appendectomy. at an all-time high.

Abdominal drainage to prevent intra-peritoneal abscess after open appendectomy for complicated appendicitis (Review)

ACS-NSQIP 2015 Julietta Chang MD, Ali Aminian MD, Stacy A Brethauer MD, Philip R Schauer MD Bariatric and Metabolic Institute

Evaluation of the of the sensitivity, accuracy and positive predictive value of ultrasonography in the diagnosis of Appendicitis.

Subtotal cholecystectomy for complicated acute cholecystitis: a multicenter prospective observational study

The influence of underweight and obesity on the diagnosis and treatment of appendicitis in children

Studies on inflammatory bowel disease and functional gastrointestinal disorders in children and adults Hoekman, D.R.

Effect of Ambient Temperature on the Occurrence of Acute Appendicitis in Children Under 5 Years of Age

Late diagnosis of influenza in adult patients during a seasonal outbreak

ASSOCIATION FOR ACADEMIC SURGERY Pediatric Negative Appendectomy Rate: Trend, Predictors, and Differentials

Part 8 Logistic Regression

Postoperative Antibiotics Correlate with Worse Outcomes after Appendectomy for Nonperforated Appendicitis

Appendicitis inflammatory response score: a novel scoring system for acute appendicitis

Acute Diverticulitis. Andrew B. Peitzman, MD Mark M. Ravitch Professor of Surgery University of Pittsburgh

Cover Page. The handle holds various files of this Leiden University dissertation.

A new adult appendicitis score improves diagnostic accuracy of acute appendicitis - a prospective study

SUPPLEMENTAL MATERIAL

Hospital tests and patient related factors influencing time-to-theatre in 1000 cases of suspected appendicitis: a cohort study

Clinicopathologic Characteristics and Prognosis of Gastric Cancer in Young Patients

PATH Inflammation Module - Student Worksheet

Antibiotics Management of Early Appendicitis

Terapia della candidiasi addomaniale

Value of early change of serum C reactive protein combined to modified Alvarado score in the diagnosis of acute appendicitis

The Implications of Missed Opportunities to Diagnose Appendicitis in Children

None of the authors has any disclosures or conflicts of interest to report

Clinical Evaluation of the Nose: A Cheap and Effective Tool for the Nasal Fracture Diagnosis

COMPARISON OF OUTCOMES (EARLY AND LATE) FOLLOWING OPEN AND LAPAROSCOPIC REPAIR OF INGUINAL HERNIAS: AN EXPERIENCE OF A SINGLE SURGICAL UNIT

Peritoneal Involvement in Stage II Colon Cancer

Clinical Study Ultrasound for Appendicitis: Performance and Integration with Clinical Parameters

Learning Objectives 9/9/2013. Hypothesis Testing. Conflicts of Interest. Descriptive statistics: Numerical methods Measures of Central Tendency

9/4/2013. Decision Errors. Hypothesis Testing. Conflicts of Interest. Descriptive statistics: Numerical methods Measures of Central Tendency

Timing of NT-pro-BNP sampling for predicting adverse outcome after acute pulmonary embolism

The appendix is a small, tube-like structure attached to the first part of the large intestine, also called the colon. The appendix.

Antibiotic Therapy vs Appendectomy for Treatment of Uncomplicated Acute Appendicitis The APPAC Randomized Clinical Trial

St. Jude Children's Research Hospital. September 9, 2014 Final Report

3 rd Department of General Surgery, Jagiellonian University Medical College in Cracow Kierownik: prof. dr hab. W. Nowak

Research Article In Critically Ill Patients, Serum Procalcitonin Is More Useful in Differentiating between Sepsis and SIRS than CRP, Il-6, or LBP

CLINICAL VIGNETTE 2016; 2:1

Transcription:

1 Discriminating between simple and perforated appendicitis Bröker M.E.E. 1, Van Lieshout E.M.M., PhD 2, Van der Elst M., MD PhD 1, Stassen L.P.S., MD PhD 3, Schepers T., MD PhD 1 1 Department of Surgery, Reinier de Graaf Groep Delft, The Netherlands. 2 Department of Surgery-Traumatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands. 3 Department of Surgery, University Hospital Maastricht, The Netherlands. Corresponding author M.E.E. Bröker Department of Surgery Reinier de Graaf Groep Delft PO Box 5011 2600 GA Delft The Netherlands Tel: +31-6-48103375 Fax: +31-15-260359

2 Abstract Introduction Several studies have been performed in order to diagnose an acute appendicitis using history taking and laboratory investigations. The aim of this study was to create a model for the identification of a perforated appendicitis. Patients and Method All consecutive patients who have undergone an appendectomy in the Reinier de Graaf hospital between January 1, 2007 and July 31, 2009 were included in a retrospective cohort study. Baseline patient characteristics, history and laboratory data were collected. Variables discriminating perforated from non-perforated appendicitis were identified using univariate and multivariable analyses. These items were used to create a model to predict perforation. Results A total of 498 patients were included in the study. In the univariate analysis leukocyte count (LC), C-Reactive Protein levels (CRP), Erythrocyte Sedimentation Rate levels (ESR), days of symptoms and temperature were identified as predictors of perforated appendicitis. A predictive model was created using CRP, LC, ESR, duration of abdominal pain, and temperature. The predicted probability (P) of a perforated appendicitis can be calculated from the following model: (P) = 1 / (1 + e (- (-2.788 + 0.012 * CRP + 0.207*days with complaints))). Conclusion Perforation of appendicitis can be predicted from the CRP level and the duration of abdominal pain. These findings might influence the choice between conservative or surgical treatment of appendicitis, and could provide guidance in the early start of antibiotics.

3 Introduction To date, surgery remains the cornerstone in the treatment of appendicitis. However, recent research has revealed that antibiotic treatment might be an appropriate alternative in selected cases. 1, 2 Conservative management with antibiotics causes suppression of bacterial infection by regression of lymphoid hyperplasia. Thereby it might prevent ischemia and bacterial invasion in the early stage of appendicitis. 3 The complication rates in conservative management increase with perforation leading to higher failure rates in treatment. This especially holds true for children, in whom antibiotics fail in 15 to 25 percent of cases with perforated appendicitis. 4 Moreover, previous studies have revealed a 3.5 to tenfold increase in mortality rate following perforation. 5-7 Therefore, accurate pre-operative diagnosis of perforation is important. In patients with suspected appendicitis, inflammatory markers like leukocyte count (LC) and C-Reactive Protein level (CRP) provide as much diagnostic information as clinical findings, such as body temperature and duration of abdominal pain. 8 In children CRP values aid in the diagnosis of perforated appendicitis. Whether LC may discriminate simple from perforated appendicitis in the pediatric population remains uncertain. 9-13 Despite previous investigations it remains unclear whether LC, CRP levels and Erythrocyte Sedimentation Rate (ESR) levels combined with body temperature and duration of abdominal pain have a predictive value in diagnosing a perforated appendicitis in unselected patient groups. The aim of this study was to determine the predictive value of LC, CRP levels and ESR levels, combined with body temperature and duration of abdominal pain for the discrimination of simple and perforated appendicitis in patients with acute appendicitis.

4 Patients and Methods All consecutive patients who underwent an appendectomy for an acute appendicitis at the Reinier de Graaf hospital (Delft, the Netherlands), between January 1, 2007 and July 31, 2009, were included in this retrospective cohort study. All records with the appropriate codes for open and laparoscopic appendectomy were screened for eligibility. The eligibility criteria were a histology report showing appendicitis. Patients were excluded when the removed appendix was not inflamed (N=27), when a malignancy was present (N=4) or when there were signs of chronic infection in patients with chronic abdominal pain which were treated with an appendectomy (N=5). Baseline characteristics including gender, age, and time interval between presentation at the Emergency Department and surgery were collected from patient files. Leukocyte count (LC), C-Reactive Protein levels (CRP), Erythrocyte Sedimentation Rate levels (ESR), temperature at presentation, and the duration of abdominal pain as recorded during inspection at the ED were also collected from the patient records. Information concerning the type of surgery (open versus laparoscopic procedure), condition of the appendix (inflamed, necrotic, infiltrate), and the presence of a perforated appendix was collected from surgical reports. Histology reports were screened for presence of inflammation and perforation. Patients were stratified into 2 groups; non-perforated appendicitis and perforated appendicitis. The perforated appendicitis group consisted of patients whose surgical report noticed a perforated appendix, abscess formation or purulent peritoneal fluid. There is controversy in literature on how to define a perforated appendicitis, which might either be based on the surgical report 2, 4, 7, 9, 14 or the histology report 10, 13. As most studies used surgeons intra-operative findings to define a perforated appendicitis, which is in

5 accordance with the definition of a perforated appendicitis in the International Coding of Diseases (ICD-10) codes K35.0 (acute appendicitis with peritoneal abscess) and K35.1 (acute appendicitis with generalized peritonitis), we used the intra-operative findings of the surgeon as gold standard for statistical analysis. A second rationale for using the surgeon s findings as gold standard is that after-treatment is based upon the surgeon s opinion. Patients with perforated appendicitis received three days of intra-venous antibiotics with Cefazolin and Metronidazole. A comparison of surgeon s findings and histology reports of perforated appendicitis was added. Data analysis Analysis was performed using the Statistical Package for the Social Sciences (SPSS) version 16.0 (SPSS, Chicago, IL). First, univariate analysis was performed by comparing characteristics between ruptured and simple appendicitis using Mann-Whitney U-test for numeric variables (e.g., age, ESR, CRP, LC, temperature, duration of abdominal pain, surgical delay), and Fisher exact test for categorical variables (e.g., gender). Next, multivariable logistic regression analysis was performed in order to model the relation between different covariates and the occurrence of perforation according to the surgeon. For this, a stepwise regression model with backward elimination (likelihood ratio) of covariates was developed. All items included in the univariate tests were entered in the initial model as covariate. After each step, the covariate with the worst predictive value based upon a log likelihood test was removed until the model with the best fit remained. The classification cut-off for elimination was set at p=0.5. The best model was selected based upon the criterion (1) highest Nagelkerke R 2, (2) best goodness-of-fit according to Hosmer and Lemeshow (HL χ 2 and p-value), and (3) area under the Receiver Operating Curve of the calculated probability (P). The coefficients of the final multivariable model were used to create a formula for calculation of predicted perforation.

6 Results Overall study cohort A total number of 498 patients who underwent appendectomy with an initial histology report showing appendicitis were included (see Table 1). One hundred and five patients had a perforated appendicitis according to the attending surgeon (21.1%). The median age was 28.9 years (P 25 -P 75 15.9-44.6 years). The number of patients under sixteen years of age was 127 (25.5%) and 293 (58.8%) of the patients was male. The appendectomy was performed laparoscopically in 331 patients (66.5%). A discrepancy between the surgical report and the histology report was found in 18 percent of cases. In this study the median duration between presentation and surgery was six hours (P 25 -P 75 4-11 hours). There was no association between delay and perforation. However, patients with a perforated appendicitis reported a longer period of abdominal pain. (p<0.001; Table 1). Univariate analysis of possible predictors between the groups with perforated appendicitis and non-perforated appendicitis is shown in Table 1. No statistically significant differences were noted between both groups with respect to age, age groups and surgical delay. There is a significant difference between the groups treated by open or laparoscopic appendectomy, with more perforations in the open group. Patients with a perforated appendicitis had higher LC (P 0.011), CRP level (P<0.001), ESR level (P<0.001) and temperature (P<0.001) than patients with a simple appendicitis (Table 1). The items age, gender, surgical delay, LC, ESR, CRP, temperature, and days with abdominal pain were entered into the initial logistic regression model. During backward stepwise selection, the following items were eliminated in consecutive order: gender (p=0.508), temperature (p=0.450), ESR (p=0.284), and surgical delay (p=0.130). The model

7 was further refined by a second selection model using the remaining covariates age, LC, CRP, and duration of abdominal pain. Age (p=0.505) and LC (p=0.109) were subsequently eliminated following the backward selection process. The final model included CRP and duration of abdominal pain and was characterized by a Nagelkerke R-square value of 0.244 and a Hosmer and Lemeshow goodness of fit with a Chi-square value of 9.099 and a P-value of 0.334. The specificity of this model is 96.3%; negative and positive predictive values are 83.7% and 66.7%, respectively. The overall accuracy is 82.2%. The regression coefficients for the final regression model are shown in Table 2A. From these coefficients, the predicted probability (P) of a perforated appendix was calculated using the following formula: Predicted probability (P) = 1 / (1 + e (- (-2.788 + (0.012 * CRP) + (0.207 * days with complaints))). Figure 1 shows the association between CRP levels and observed perforations in the entire study population. From this Figure it clear that the correlation between CRP and the risk of perforation is not influenced by the leukocyte count (panel A) or the ESR (panel B).

8 Discussion The aim of this study was to create a predictive model for perforated appendicitis using disease history, three laboratory examinations and body temperature. LC, CRP levels, ESR levels, days of symptoms and temperature were statistically significantly higher in patients with a perforated appendicitis. 8, 10, 15, 16 Most studies in the literature focus on predicting appendicitis. Fewer studies look at the differences between simple and perforated appendicitis. These studies found that LC, granulocyte count and the CRP-level have a discriminatory capacity for perforated appendicitis as compared to simple appendicitis. 1, 8, 10, 16. In our study, CRP-levels weighted most heavily in the predictive model. The percentage of perforated appendicitis in this study was approximately 21%, which is in concurrence with literature data. 14, 16, 17 Visual signs of perforation as observed by the surgeon during surgery were used, to define perforation. Most studies in literature defined their perforated appendicitis group based on surgical reports. 2, 4, 7, 9, 14 Fewer studies defined this group based on the histology report 10, 13 and some combined the surgical report with the histology report. 11 Based on the literature and the ICD10 we chose to use the surgical report. Furthermore, the aftertreatment was based upon this opinion in the surgical report. The discrepancy between the surgical report and the histology report, which was found in 18% of the cases, could be explained by mechanical damage to the appendix, or by the fact that the surgeon did not record the perforation nor the presence of purulent fluid, or the histology investigation was incomplete because the request was not to search for a perforation but only for appendicitis. Because of this discrepancy, we decided to repeat the data analysis with perforation based on the histology report. This final model included CRP and duration of abdominal pain and was characterized by a Nagelkerke R-square value of 0.336 and a Hosmer and

9 Lemeshow goodness of fit with a Chi-square value of 6.809 and a P-value of 0.557. The specificity of this model is 85.4%; negative and positive predictive values are 83.1% and 71.8%, respectively. The overall accuracy is 81.7%. The regression coefficients for this final regression model are shown in Table 2B. From these coefficients, the predicted probability (P) of a perforated appendix was calculated using the following formula: Predicted probability (P) = 1 / (1 + e (- (-4.054 + (0.014 * CRP) + (0.294 * days of abdominal pain))). Despite the discrepancy, the final results of both analyses are almost similar. The coefficients in the formula are only slightly affected. We therefore conclude that our model, in which the surgeon s observation of the presence of perforation per-operatively, is valid. In this study we found a statistically significant correlation between perforation and the choice of surgical intervention, e.g. open or laparoscopic (P<0.001). We cannot rule out a selection bias in which an open approach might be chosen more quickly in patients being severely ill. Furthermore, the Cochrane review, comparing open versus laparoscopic appendectomy, suggest a nearly threefold increase of intra-abdominal abscesses after a laparoscopic appendectomy, which might lead to some Surgeons choosing open appendectomy more often. 18 In conclusion, increased CRP, LC, ESR and temperature were found to be predictive of perforation in case of appendicitis. Also, a reliable model including CRP level and duration of abdominal pain, could be created, which can predict the probability of perforation in case of appendicitis. Based on such parameters an increased risk of perforated appendicitis can be established, leading to an early start of antibiotic therapy before surgery.

10 References 1. Hansson J, Korner U, Khorram-Manesh A, et al. Randomized clinical trial of antibiotic therapy versus appendicectomy as primary treatment of acute appendicitis in unselected patients. Br J Surg 2009; 96(5):473-81. 2. Yamini D, Vargas H, Bongard F, et al. Perforated appendicitis: is it truly a surgical urgency? Am Surg 1998; 64(10):970-5. 3. Abes M, Petik B, Kazil S. Nonoperative treatment of acute appendicitis in children. J Pediatr Surg 2007; 42(8):1439-42. 4. Aprahamian CJ, Barnhart DC, Bledsoe SE, et al. Failure in the nonoperative management of pediatric ruptured appendicitis: predictors and consequences. J Pediatr Surg 2007; 42(6):934-8; discussion 938. 5. Andersson RE. The natural history and traditional management of appendicitis revisited: spontaneous resolution and predominance of prehospital perforations imply that a correct diagnosis is more important than an early diagnosis. World J Surg 2007; 31(1):86-92. 6. Velanovich V, Satava R. Balancing the normal appendectomy rate with the perforated appendicitis rate: implications for quality assurance. Am Surg 1992; 58(4):264-9. 7. Blomqvist PG, Andersson RE, Granath F, et al. Mortality after appendectomy in Sweden, 1987-1996. Ann Surg 2001; 233(4):455-60. 8. Andersson RE, Hugander AP, Ghazi SH, et al. Diagnostic value of disease history, clinical presentation, and inflammatory parameters of appendicitis. World J Surg 1999; 23(2):133-40. 9. Okamoto T, Sano K, Ogasahara K. Receiver-operating characteristic analysis of leukocyte counts and serum C-reactive protein levels in children with advanced appendicitis. Surg Today 2006; 36(6):515-8. 10. Wu HP, Lin CY, Chang CF, et al. Predictive value of C-reactive protein at different cutoff levels in acute appendicitis. Am J Emerg Med 2005; 23(4):449-53. 11. Williams RF, Blakely ML, Fischer PE, et al. Diagnosing ruptured appendicitis preoperatively in pediatric patients. J Am Coll Surg 2009; 208(5):819-25; discussion 826-8. 12. Rothrock SG, Pagane J. Acute appendicitis in children: emergency department diagnosis and management. Ann Emerg Med 2000; 36(1):39-51. 13. Beltran MA, Almonacid J, Vicencio A, et al. Predictive value of white blood cell count and C- reactive protein in children with appendicitis. J Pediatr Surg 2007; 42(7):1208-14. 14. Ponsky TA, Huang ZJ, Kittle K, et al. Hospital- and patient-level characteristics and the risk of appendiceal rupture and negative appendectomy in children. JAMA 2004; 292(16):1977-82. 15. Zimmerman MA, Selzman CH, Cothren C, et al. Diagnostic implications of C-reactive protein. Arch Surg 2003; 138(2):220-4. 16. Andersson RE. Meta-analysis of the clinical and laboratory diagnosis of appendicitis. Br J Surg 2004; 91(1):28-37. 17. Oliak D, Yamini D, Udani VM, et al. Can perforated appendicitis Be diagnosed preoperatively based on admission factors? J Gastrointest Surg 2000; 4(5):470-4. 18. Sauerland S, Lefering R, Neugebauer EA. Laparoscopic versus open surgery for suspected appendicitis. Cochrane Database Syst Rev 2004(4):CD001546.

11 Tables and Figures Table 1. Univariate analysis of possible predictors between the groups with perforated appendicitis and non-perforated appendicitis* Total Nonperforated* Perforated* P-value (N=498) (N=393) (N= 105) Children <16 years (n) 1 127 (25.5%) 100 (25.4%) 27 (25.7%) 1.000 4 Median age (years) 1 29 (16-45) 28 (16-42) 34 (15-54) 0.265 4 Male (n) 1 293 (58.8%) 233 (53.9%) 60 (57.1%) 0.738 3 Median duration abdominal 1(1-2) 1 (1-2) 2 (1-3) <0.001 4 pain 2 ( days) Median temperature ( o C) 2 37.5 (37.0-38.0) 37.4 (37.0-37.9) 37.9 (37.3-38.6) <0.001 4 Median surgical delay (hours) 2 6 (4-11) 6 (4-11) 6 (4-11) 0.678 3 Operation Open (n) 1 Laparoscopic (n) 1 167 (33.5%) 331 (66.5%) Appendicitis (histology report) Phlegmonous (n) 1 Gangrenous (n) 1 Infiltration (n) 1 Perforated 355 (71.3%) 24 (4.8%) 119 (23.9%) 107 (21.5%) 112 (28.5%) 281 (71.5%) 336 (85.5%) 22 (5.6%) 35 (8.9%) 31 (7.9%) 55 (52.4%) 50 (47.6%) 19 (18.1%) 2 (1.9%) 84 (80.0%) 76 (72.4%) <0.001 3 <0.001 5 <0.001 3 Median LC (10 3 /ml) 2 14,2 (11.5-17.4) 14 (11.1-17.0) 14.5 (12.5-18.4) 0.011 4 Median ESR level (mm/hour) 2 14 (8-24) 11 (5-19) 25 (14-40) <0.001 4 Median CRP level (mg/l) 2 50.5 (19-106) 38 (15-77) 124 (71-187) <0.001 4 This table shows the univariate analysis of various items and perforation rates. LC, Leukocyte Count; ESR, Erythrocyte Sedimentation Rate; CRP, C-Reactive Protein. 1 Data are presented as numbers with the percentage between brackets. 2 Data are presented as median with the P25 and P75 between brackets. Data were analyzed using a 3 Fisher test, 4 the Mann-Whitney U-test or a 5 Chi-squared test. P-values below 0.05 were considered statistically significant. *According to the surgeon s findings during the operation.

12 Table 2A. Logistic regression model for the prediction of ruptured appendicitis based on surgical reports P- Regression Odds ratio (95% CI) value coefficient CRP <0.001 0.012 1.012 (1.008 1.016) Days with abdominal pain 0.029 0.207 1.230 (1.021 1.481) Regression coefficients and odds ratios for CRP and duration of abdominal pain resulting from the logistic regression model are given. C.I. confidence interval; CRP, C-Reactive Protein.

13 Table 2B. Logistic regression model for the prediction of ruptured appendicitis based on histology reports P- Regression Odds ratio (95% CI) value coefficient CRP <0.001 0.014 1.014 (1.009 1.019) Days with abdominal pain 0.005 0.294 1.093 (1.093 1.646) Regression coefficients and odds ratios for CRP and duration of abdominal pain resulting from the logistic regression model are given. C.I. confidence interval; CRP, C-Reactive Protein

14 Figure 1. Perforation rates for increasing CRP levels, different LC levels (panel A) and for different ESR levels (panel B). These figures show the expected perforation rates which can be deducted from CRP, LC and ESR. CRP, C-Reactive Protein; LC, Leukocyte Count; ESR, Erythrocyte Sedimentation Rate.