Ultrasonic Phased Array Testing of Complex Aircraft Structures

Similar documents
ADVANCE ULTRASONIC INSPECTION

The Evolution and Benefits of Phased Array Technology for the Every Day Inspector

ADVANCED PHASED ARRAY TECHNOLOGIES

PART 1b: Automated Ultrasonic Girth Weld Inspection and Phased Array Ultrasonic Testing, Levels 1, 2 and 3

Application of Time Reversal Technique for the Inspection of Composite Structures

Performance of phased array and conventional ultrasonic probes on the new ISO reference block

Improved Inspection of Composite Wind Turbine Blades with Accessible Advanced Ultrasonic Phased Array Technology

Ultrasonic Testing Level I:

Real Time 2D Ultrasound Camera Imaging: A Higher Resolution Option to Phased Array Bob Lasser Randy Scheib Imperium, Inc.

1. SCOPE ELIGIBILITY EXAMINATION CONTENT RENEWAL & RECERTIFICATION PROCEDURE ESSENTIAL READING...

Ultrasonic Testing of Rails Using Phased Array

Table 1: Samples used in experimental program. Block ID/thickness [ mm ]

APPLICATION AND DEPLOYMENT OF ADVANCED NDE TECHNIQUES IN HIGH PRESSURE VESSELS

Developing a Phased Array Ultrasound Training Program. By: Mick Patino,

PART 1c: Time of Flight Diffraction Ultrasonic Inspector (TOFD) of Welds in Ferritic and Non-Ferritic Materials, Levels 1, 2 and 3

Optimization of Phased-Array Transducers for Ultrasonic Inspection in Composite Materials Using Sliding Probes

Flaw Assessment Using Shear wave Phased array Ultrasonic Transducer

Evaluation of the Quality of Thick Fibre Composites Using Immersion and Air- Coupled Ultrasonic Techniques

ACOUSTORAPHY Acousto-Optical (AO) Ultrasonics & Its Applications

INSPECTION THROUGH AN OVERLAY REPAIR WITH A SMART FLEXIBLE ARRAY PROBE.

Descriptions of NDT Projects Fall 2004 October 31, 2004

Smart NDT Tools: A New Generation of NDT Devices

A Novel Phased Array Ultrasonic Testing (PAUT) System for On-Site Inspection of Welded Joints in Plastic Pipes

High-Power Locomotive Solid Axle Defect on-line Detection Technique

Phased Array Ultrasonics and Eddy Current Examination for Graphite Components

COURSE DESCRIPTION FOR NONDESTRUCTIVE TESTING

Non-Destructive Inspection of Composite Wrapped Thick-Wall Cylinders

Manual Ultrasonic Inspection of Thin Metal Welds

COWLEY COLLEGE & Area Vocational Technical School

Precise defect detection with sensor data fusion

Ultrasonic Testing of Composite Structures

10 Years Experience in Industrial Phased Array Testing of Rolled Bars

COWLEY COLLEGE & Area Vocational Technical School

API. Defined Procedure. for. Ultrasonic Thickness Measurement API-UT-21

Pipeline Technology Conference 2007

CRACK DETECTION AND PIPELINE INTEGRITY SOLUTIONS

ULTRASONIC ARRAY APPROACH FOR THE EVALUATION OF ELECTROFUSION JOINTS OF POLYETHYLENE GAS PIPING

Application of portable Ultrasonic Phased Array Instrument for Rail Welds Ultrasonic Inspection Lao Jinjie a, Lu Chao b

Innovative NDT Solutions. Ultrasonic Sensor Technology Phased-Array Search Units. An AREVA and Siemens company

We are providing Level I, II Training and Certification as per Recommended practice SNT TC 1A 2006 in the following NDT Methods.

Ultrasonic Inspection of Adhesive Joints of Composite Pipelines

TTU Phased Array: Quality and Productivity

NTS ULTRASONICS PTY LTD (N

A step forward full automatic analysis Silvère BARUT 1, Nicolas DOMINGUEZ 1, Jean-Noël NOIRET 2, Ivan KAMENEFF 3

Materials and NDT Applications in Aircraft Component Development Tests

Numerical Modelling of Ultrasonic Phased Array Transducers and Their Application

Inspection of Polyethylene Fusions and Electrofusions

Smart NDT Tools: Connection and Automation for Efficient and Reliable NDT Operations

Potential improvements of the presently applied in-service inspection of wheelset axles

Diploma of Medical Ultrasonography (DMU) Physical Principles of Ultrasound and Instrumentation Syllabus

Presentation of a system for AUT on Pipelines and Penstock THE PIPERUNNER

Ultrasonic C-scan inspection of Airbus A380 Glare fuselage panels. ir. Jaap Speijer NDT level 3 UT/ET Fokker Aerostructures BV

Active Thermography Imaging - an Innovative Approach for NDT Inspection

Aerospace MRO of the Future

Research on Digital Testing System of Evaluating Characteristics for Ultrasonic Transducer

Ultrasonic arrays are now widely used in underwater sonar

Research on a Transmit-Receive Method of Ultrasonic Array for Planar Defects

DEVELOPMENT OF AN EDUCATION AND TRAINING PROGRAMME TO TEST PIECES BY MEANS OF TOFD AND PHASED ARRAY TECHNIQUES

A CONTRIBUTION TO QUANTIFYING THE SOURCES OF ERRORS IN PAUT

Ultrasonic Testing courses at DGZfP Education and Training Ltd

Ultrasound. Principles of Medical Imaging. Contents. Prof. Dr. Philippe Cattin. MIAC, University of Basel. Oct 17th, 2016

The scheduled dates for NDT Inspector Certification Examination are as below:

Shcherbakov O.N., Petrov A.E., Polevoy A.G., Annenkov A.S. ULTES LLC, Moscow, Russia

ULTRASOUND IMAGING EE 472 F2018. Prof. Yasser Mostafa Kadah

Other Major Component Inspection II

Principles of Ultrasound. Cara C. Prideaux, M.D. University of Utah PM&R Sports Medicine Fellow March 14, 2012

Rotating Billet Inspection System

CORRELATION OF TRANSDUCER FREQUENCY AND SIGNAL/NOISE RATIO OF THIN WALLED FILAMENT WOUND CFRP-TUBES INSPECTED BY ULTRASONICS

Ultrasonic Thickness Procedure Pulse-Echo Thickness Gage TABLE OF CONTENTS. 1.0 Introduction Reference Documents Summary of Practice 2

THE DEVELOPMENT AND MANUFACTURE OF FIXED- ULTRASONIC INSPECTION REFERENCE REFLECTORS AND TRANSDUCERS FOR COMPRESSOR BLADE DOVETAILS

Automated ultrasonic testing of submerged-arc welded (SAW) pipes using phased-arrays

Ultrasonic Phased Array Inspection Technique Development Tools

O. Petillon and J.P. Dupuis Aerospatiale- Centre Commun de Recherches Louis Bleriot Suresnes, France

ADVANCEMENTS IN NON DESTRUCTIVE TESTING

DEVELOPMENT OF ELECTROMAGNETIC ACOUSTIC TRANSDUCER (EMAT) PHASED ARRAYS FOR SFR INSPECTION

PORTABLE AND HYBRID LASER GENERATION / AIR-COUPLED DETECTION SYSTEM FOR NON DESTRUCTIVE INSPECTION

Developments in Ultrasonic Inspection II

Hand Held Ultrasonic Sizing of Stress Corrosion Cracking

Sound in medicine. CH.12. Dr.Rajaa أ.م.د. رجاء سهيل جنم جامعة تكريت كلية طب االسنان. General Properties of Sound

Reliability Analysis of the Phased-Array Ultrasonic System used for the Inspection of Friction Stir Welds of Copper Canisters

API. Generic Procedure. for the. Ultrasonic Examination. Ferritic Welds

ADVANCED NDE TECHNIQUES AND THEIR DEPLOYMENT ON HIGH PRESSURE EQUIPMENT

On-Wing Ultrasonic Phased Array Inspection of Trent Fan Blades

Inspection Qualification II

Intrinsically Safe Ultrasonic Testers: How important are they?

Joint Geometry Indications in Conventional Ultrasonic Tests and Phased Array Tests

Development of Indigenous Ultrasonic Data Acquisition and Recording System for ISI of Pressure Tubes of PHWR

Introduction. Table of Contents

The Volume POD as an Optimisation Tool of Multiple NDT Inspections of Complex Geometries

Field inspection of Phase-Array ultrasonic for polyethylene electrofusion joints

Non-Destructive Inspection of Polyethylene Fusions and Electrofusions Dr. Ken Oliphant, P.Eng. and Dalton Crosswell, JANA Corporation

Pressure Vessel Inspections Using Ultrasonic Phased Arrays By Michael Moles, Noël Dubé and Frédéric Jacques

Non Destructive Testing Services

Ir. Franc J.M Buijsen ASNT/EN4179 Level 3 NDT Engineer NDT on composite materials

Employer s Unit of Competence Ultrasonic testing of materials, products and plant

INTEGRATION OF NONDESTRUCTIVE TESTING IN AIRCRAFTS MENTENANCE

Ultrasonic Testing. Basic Principles

Flip Chips and Acoustic Micro Imaging: An Overview of Past Applications, Present Status, And Roadmap for the Future

Case studies on uncertainties of ultrasonic weld testing interpretation

equipment FOR automated UltRasONIC testing OF plates ematest-pl

Transcription:

ECNDT 2006 - Tu.1.1.2 Ultrasonic Phased Array Testing of Complex Aircraft Structures Ernst RAU, Ernst GRAUVOGL, Holger MANZKE, EADS Mil., Manching, Germany Philippe CYR, Olympus NDT, Québec, Canada 1. Introducion: EADS Military aircraft is working on evaluation of modern ultrasonic equipment and coupling systems, for maintenance conditions and final assembly aircraft with focus on modern CFRP structures and corrosion problems on aging aircraft. To get the state of the art, a lot of approaches from conventional UT up to ultrasonic phased array have been investigated so far. The use of a high mobile phased array equipment allows a very comfortable and fast ultrasonic inspection and makes inspections of complex aircraft structures possible. With respect to the aircraft maintenance conditions, the report will describe the development of ultrasonic testing up to ultrasonic phased array testing during the so called B-Scan Project, the advantages and also the physical limits of this inspection method. 2. Principle of Pulse Echo Ultrasonic Testing by Scanning with a Longitudinal Wave: In a single probe, an electrical pulse drives a piezo crystal. The result is a mechanical vibration and a sound beam. In air there is a sound velocity of 333 m/sec., in materials like CFRP about 3000 m/sec., in Aluminium about 6320 m/sec for example. Big changes in the sound impedance resulting in a big loss of energy in the sound beam, a disadvantage for ultrasonic testing. Due to this great changes in sound impedance, coupling is necessary to bring the sound bundle into the material, for example water with a sound velocity of 1483 m/s. When the sound beam is reaching the backwall, dependent to the change of sound velocities, a reflection of the beam will result. During the inspection we are looking for two pieces of relevant information, the running time of the beam and the reflected energy of the sound beam in one screen: 1

Amplitude height (Power of sound beam) Sound beam time-of-flight corresponds with thickness Fig. 1: A-Scan of a CFRP calibration Fig. 2: Equipment under calibration procedure This is the information of one point in the inspection area called A-scan. If the probe is moving along a line, the result is a run of a lot of A-scans along 1 axis. This is a X-section of ultrasonic signals through the part called B-scan. If the probe is scanning in a 2nd axis, the result is a scan of a surface. The resultant image must be differentiated for c-scan amplitude and c-scan time of flight. Example: B-Scan C-Scan Amplitude (Echo C-Scan Time of flight Fig. 3: B-Scan Fig. 4: C-Scan Amplitude Fig. 5: B-Scan Time-of-Flight 2

Fig. 6: Sample with Impact Damage C-Scan Amplitude Sectorial Scan Index axis (a Kind of B-Scan) C-Scan Time of Flight A-Scan Sectorial-Scan Scan Axis Fig. 7: Scan of a CFRP Step wedge Specimen 3

Fig. 7: EADS CFRP Step wedge Specimen The traditional way for scanning used a X/Y Scanner and a single probe scanning line by line, disadvantage, it is slow and low mobile. Advantage, very flexible coupling by a water filled slot and cheap probes. Ultrasonic Testing with a X/Y Scanner Fig. 8: X/Y Scanner on Flexi Track Fig. 9: Processing unit X/Y Scanner 4

3. Ultrasonic Phased Array Testing: 3.1 Principle Ultrasonic Phased Array Testing In Ultrasonic phased array technique, an array is built as a bar with an accumulation of many small probes, in our case 128. Along this array, it is possible to produce a running sound beam along the scanning direction for the B-scan. To create a sound beam, an active group of elements is chosen, using an active group of elements step by step, the beam is running along the scanning direction. The 2 nd direction for a c-scan is recorded by an encoder. UT Phased Array Probes Fig. 10: Kinds of Ultrasonic Phased Array Probes Fig. 11: Scheme of Sectorial Scanning 5

Sectorial scan of a monolithic CFRP area with Porosity Fig. 12: Resultant image of a Sectorial Scan 3.2 Challenge for phased Array systems: Good coupling and handling during aircraft maintenance conditions The array built like a bar with a big flat plexi delay line does not work very well with double curved aircraft structures. There is also a risk, that painted surfaces will be damaged by scratches. Fig. 12: 64 Element array on plexi delay line For this reason, a flexible coupling system will be needed. Softwedges may the best constructions for such systems, used in service conditions. 6

3.2.1 Principle of Waterboxes: Case Ultrasonic Array Water Delayline Flexible Diagram Fig. 13: Scheme of UT Phased Array Waterboxes A water delay is built up between a flexible diaphragm and an ultrasonic array. The flexible diaphragm follows the curves along the structure. Coupling on the surface is still necessary. 3.2.2 Commercial Waterbox. Sound beam window with diaphragm filled with water 4 small contact points on the edges Brushes Fig. 14: Supplier Waterbox Wheel Encoder for C-scanning 7

The first tested water box was wobbly and unstable on curved surfaces, therefore no constant angle of incidence was given and consequently no reproduceable inspection results could be made during repeating inspections. Fig. 15: Commercial waterbox on curved CFRP structure 3.2.3 Improved Coupling Systems for Ultrasonic Phased Array In Service Inspections: 3.2.3.1 EADS Phased Array waterbox for 5 MHz, 128 Element Array: Fig. 16a: EADS Waterbox without case Fig. 16b: EADS Waterbox assembly 8

Dead zone about 17mm Contact points Fig. 17: Comparison of two Waterboxes for 5MHz Arrays The EADS Waterboxes have several contact points in order to be very flexible to the inspection problem, so that a stable angle of incidence is given, disadvantage is a dead zone of minimum17 mm at the side of both waterboxes, but there is no possibility to minimizing it much more. The dead zone must be covered by an inspection with a single probe, if an edge of a part does not allow scanning to the edge. The symmetric construction and the small size are very good for handling and have a good performance on curved structures. Fig. 18: Waterbox stable via contact points on a curved aircraft structure At the resulting sectorial scan, the time delay of the curved structure is visible and is disturbing while processing with the gates. Gates are as a basic tool as a straight and does not follow the outline. A solution for this problem will be a triggering of the interface echo to the 0-position at the screen, visualized as a red bar, Fig. 19. How ever, it is necessary for the inspector to know, that there is a loss of amplitude height at the sides of the result screen, due to the tapered angle of incidence. 9

interface echo Fig. 19: Sectorial Scan of Curved Structure 3.2.3.2 Phased Array Water Box for 2.25 MHz, 128 Element Array: Fig. 19: Water Box with Integrated small Encoder The next version was a water box with a little integrated encoder in the box due to a better handling to inspectors. 10

3.2.4 Wheel Probe Encoder Wheel Wheel around probe, probe inside Fig. 20: Wheel Probe, NDT Solutions Fig. 21: R/D-Tech Wheel Probe 11

Another solution for coupling will be a wheel probe. Future experiments at EADS Mil. for this kind of coupling system will be made. 3.2.4 Polymer Softwedge for Array Systems: Fig. 22/23: Polymer Softwedge Another usefull and cost effective application, if a very high flexibility of the coupling system is not needed is a softwedge. Disadvantage is, the delay line with 1050m/s sound velocity does have a higher sound attenuation as a water system, so more gain will be used 12

to get a acceptable result from the backwall, resulting is a loss of the resolution at the upper layers in composite structures. 3.3 C-Scanning by a mobile Phased Array System: The water box must be moved over the inspection area, which is covered by couplant. One axis is given by the array, the length of the scan is recorded by an encoder wheel. This kind of inspection is very quick, the system is very flexible for several kinds of inspections, the scanning process is very stable and fast and the resulting images are very good to handle while being processed by NDT personnel. The full data set can be stored on a flash card and a subsequent evaluation independent from the aircraft structure is possible by an evaluation software. Scan data can also be provided to other NDT personnel for discussion. Processing Unit Water Box with Encoding Wheel Fig. 24: Ultrasonic Phased Array Inspection on an EF2000 Aircraft 3.4 Possibilities and Used Cases for Beam Influence by Phased Array Such a system is very flexible by using different time delays for the excitation pulse. 3.4.1 Beam focalisation: In some cases, the exact depth of the defect to be found is known. For example a weld inspection. In such case, a beam focalisation is used to have the spot of the highest sound pressure and resulting a high resolution a depth. By applied time delay to several vibrator elements the focus depth can be programmed at a law file. 13

1 2 3 1. Electric pulse to several elements with different delays 2. Beam during focusing 3. Focused beam at the chosen depth For distance and gain calibration a special specimen is necessary, a calibration block with cross-holes is easy to build. 14

Fig. 25: Aluminium X-hole specimen Highest resolution at the upper cross hole at 3.5mm Loosing resolution with rising distance Fig. 26: C-Scan amplitude of Aluminium X-hole specimen 3.4.2 Steering Beam Inspection: By Ultrasonic Phased Array is also the possibility to steer the beam around a used area under the array. By different calculated time delays of the electric excitation, the beam is steering between the calculated angles. 15

Fig. 27: Steering beam, excitated by different time delays At one used case, at a CFRP J-Spar sample, the spar was moving during the bonding process, following a constant radius is not given and the possibility for a delamination is rising. Maybe such areas must be monitored at the future. A steering beam inspection for areas with single side access is useful. On aircraft, a straight to handle the waterbox could be useful. Fig. 28: Steering beam, excitated by different time delays A steering beam of +/- 20 was used, radius refection visible on screen. 16

Interface echo Reflection of the radius Defect indication A defect is indicated by breaking down back wall echo and a rising defect echo. 4. Conclusions The use of a high mobile phased array equipment allows a very comfortable and fast ultrasonic inspection under aircraft maintenance condition. The scans of the structures appear very plastic and give a good inspection tool to the inspector. Gate technique during Data evauluation is a good possibility to work out the defects from the scan by suppress the structure indications, so also not NDI people may get a feeling for a defect with less explanation. The sensors are very flexible for different inspection cases. The biggest problem is good coupling and also a constant angle of incedance, for reproduceable inspection results. EDAS is on a high level with the waterbox construction, but never the less, there are exciting problems to scan close to disturbing structures (see Fig. 17). There is still capable of improvement. 5. References [1] Phased Array Technical Guidelines (R/D-Tech) [2] Training Paper Ultrasonic Testing Level 2 (Airbus: W.Bisle, H.-W. Conze, A. Kück, G. Wehmann) 17