ORIGINAL ARTICLE. Fluctuating Olfactory Sensitivity and Distorted Odor Perception in Allergic Rhinitis

Similar documents
OLFACTION IN ENDOSCOPIC SINUS SURGERY. Mohammed Alsukayt R2 18/05/2016

ImmunoCAP. Specific IgE blood test

Rhinosinusitis. John Ramey, MD Joseph Russell, MD

The Egyptian Journal of Hospital Medicine (October 2018) Vol. 73 (8), Page

Congestion, headache, recurrent infection, post-nasal drip, smell problems? We can find the source and offer solutions for relief.

Prevalence of Fungal Allergy in Patients with Allergic Rhinosinusitis

9/18/2018. Disclosures. Objectives

Clinical Implications of Asthma Phenotypes. Michael Schatz, MD, MS Department of Allergy

ORIGINAL ARTICLE. Characteristics of Olfactory Disorders in Relation to Major Causes of Olfactory Loss

Dr.Adel A. Al Ibraheem

Derriford Hospital. Peninsula Medical School

Comparison of Olfactory Function before and After Endoscopic Sinus Surgery

Rhinosinusitis: A Prospective Study

RoleofAllergyinNasalPolyposis. Role of Allergy in Nasal Polyposis

An Innovative Treatment Option for Patients with Recurrent Nasal Polyps

Retrospective Analysis of Patients with Allergy Sinusitis

MANAGEMENT OF RHINOSINUSITIS IN ADOLESCENTS AND ADULTS

JMSCR Vol 05 Issue 10 Page October 2017

Introduction. Methods. Results 12/7/2012. Immunotherapy in the Pediatric Population

SAN DIEGO ALLERGY ASTHMA & IMMUNOLOGY CONSULTANTS, INC

+ Conflict of interest. + Sinus and Nasal Anatomy. + What is your diagnosis? 1) Allergic Rhinitis. 2) Non-Allergic rhinitis. 3) Chronic Rhinosinusitis

e. Elm Correct Question 2 Which preservative/adjuvant has the greatest potential to breakdown immunotherapy because of protease activity? a.

Dose-dependent effects of tobramycin in an animal model of Pseudomonas sinusitis Am J Rhino Jul-Aug; 21(4):423-7

Coverage Criteria: Express Scripts, Inc. monograph dated 03/03/2010

CENTENE PHARMACY AND THERAPEUTICS DRUG REVIEW 1Q18 January February

Allergies from A to Z

Allergic Rhinitis. Dr. Sasan Dabiri. Otorhinolaryngologist Head & Neck Surgeon January 2011 Imam Hospital complex - Tehran

Eosinophilic Esophagitis: Extraesophageal Manifestations

Commen Nose Diseases

National Imaging Associates, Inc. Clinical guidelines/considerations SINUS & MAXILLOFACIAL AREA CT 70486, 70487, 70488

Diagnosis and Treatment of Respiratory Illness in Children and Adults

5/16/2016 NASAL POLYPI MEDICAL OR SURGICAL PROBLEM. Mohamed Elsayed MD AHMED MAHER TEACHING H. AHMED A.BASET MD AZHAR UNIVERSITY

White Paper: Balloon Sinuplasty for Chronic Sinusitis, The Latest Recommendations

Allergic Rhinitis. Abstract Allergic rhinitis is defined as an immunologic response moderated by IgE and is. Continuing Education Column

MANAGEMENT OF RHINOSINUSITIS IN ADULTS IN PRIMARY CARE

F/P F/P VAS. 2 fexofenadine pseudoefedrine F/P F/P F/P. dust mite HDM 17. fexofenadine pseudoefedrine F/P F/P

CHRONIC RHINOSINUSITIS IN ADULTS

Case Study. Allergic Rhinitis 5/18/2015

Respiratory System Virology

ORIGINAL ARTICLE. Recovery of Olfactory Function Following Closed Head Injury or Infections of the Upper Respiratory Tract

Treatment Of Allergic Rhinitis

Ear, Nose & Throat (ENT) - Head & Neck Surgery. Allergic Rhinitis (Sinus)

DO NOT COPY. Smell disturbance is one of the most common complaints of. Objective olfactory outcomes after revision endoscopic sinus surgery

Evaluation of the effects on nasal mucociliary clearance of various nasal solutions applied topically in patients with sinusitis

Recalcitrant chronic rhinosinusitis. Difficulties in diagnosis and treatment Videler, W.J.M.

FOR CMS (MEDICARE) MEMBERS ONLY NATIONAL COVERAGE DETERMINATION (NCD) FOR COMPUTED TOMOGRAPHY:

An Update on Allergic Rhinitis. Mike Levin Division of Asthma and Allergy Department of Paediatrics University of Cape Town Red Cross Hospital

Allergy Immunotherapy: A New Role for the Family Physician

Chronic Sinusitis. Acute Sinusitis. Sinusitis. Anatomy of the Paranasal Sinuses. Sinusitis. Medical Topics - Sinusitis

Phototherapy in Allergic Rhinitis

Functional Endoscopic Sinus Surgery (FESS)

Chronic Rhinosinusitis-Treatment

Total IgE serum levels correlate with sinus mucosal thickness on computerized tomography scans

Why does the body develop allergies?

Precise results for safe decisions. How to better define and manage peanut allergy

Studies of allergen extract stability: The effects of dilution and mixing

Olfactory Dysfunction and Disorders November 2003

Anosmia. Mohammed alqabasani R 5 Rhinology research chair academic activity King saud university. Rhinology research Chair Weekly Activity

allergic rhinitis 3C47E65837E D1B E Allergic Rhinitis 1 / 6

An Insight into Allergy and Allergen Immunotherapy Co-morbidities of allergic disease

UC San Diego UC San Diego Previously Published Works

Anti-allergic Effect of Bee Venom in An Allergic Rhinitis

Allergic Rhinitis: When to Refer to an Allergist

Documentation, Codebook, and Frequencies

Assessment of biofilm by nasal cytology in different forms of rhinitis and its functional correlations

Evaluation of the Change in Recent Diagnostic Criteria of Chronic Rhinosinusitis: A Cross-sectional Study

Managing and Treating Allergic Rhinitis in the Primary Care Setting

A clinical trial of ipratropium bromide nasal spray in patients with perennial nonallergic rhinitis

Disclaimers. Topical Therapy. The Problem. Topical Therapy for Chronic Rhinosinusitis No Disclosures

What are the causes of nasal congestion?

Sinusitis what it is and what is SNOT: Updates on therapies and other assorted snacks. Shane Gailushas, MD Mercy Ear, Nose, and Throat Clinic

Risk Factors of Chronic Rhinosinusitis After Functional Endoscopic Sinus Surgery

Effect of Steroids for Nasal Polyposis Surgery: A Placebo-Controlled, Randomized, Double-Blind Study

REFERRAL GUIDELINES - SUMMARY

Pediatric Allergy Allergy Related Testing

SYNOPSIS. A Multi-center, Double-blind, Randomized, Placebo-controlled, Parallel Group, Phase II Study to Assess the Efficacy and Safety of RHINOCORT

Treatment Options for Chronic Sinusitis

Characteristics of allergy in autoimmune thyroid diseases. Ildikó Molnár MD, PhD, EndoMed, Hungary

Evaluating Management Paradigms for the Respiratory Patient

Effective Mitigation of Allergen-Induced Asthma

Environmental Allergens. Allergies to Dust, Mold and Pollen. A Patient s Guide

Allergic rhinitis is the most common

Biopsies of Human Olfactory Epithelium

SMELL. By: Col & Lincoln

NATIONAL INSTITUTE FOR HEALTH AND CARE EXCELLENCE

Cough. It s Not All It s Hacked Up To Be. John Johnson, D.O. Allergy & Asthma Centers of Cape Cod Hospitalist, Cleveland Clinic Foundation

Correlation analysis of prognostic and pathological features of patients with chronic sinusitis and nasal polyps following endoscopic surgery

Changes in Nasal Reactivity in Patients with Rhinitis medicamentosa after Treatment with Fluticasone Propionate and Placebo Nasal Spray

The Role of Allergies and Sinus Disorders in Headache & Facial Pain


Recommended management and recent advances in allergic rhinitis

Scottish Medicines Consortium

As-needed use of fluticasone propionate nasal spray reduces symptoms of seasonal allergic rhinitis

SEASONAL ALLERGIC RHINITIS NASAL SYMPTOMS AND QUALITY OF LIFE WITH OLOPATADINE/MOMETASONE COMBINATION NASAL SPRAY

Pediatric acute and chronic rhinosinusitis: comparison of clinical characteristics and outcome of treatment

Medical Policy An independent licensee of the Blue Cross Blue Shield Association

Allergic Rhinitis: Effects on Quality of Life and Co-morbid Conditions

ISSN: Volume 4 Issue CHOLESTEROL GRANULOMA: AN UNCOMMON CLINICAL ENTITY OF THE MAXILLARY SINUS

알레르기질환관련 진단적검사의이해 분당서울대병원알레르기내과 김세훈

Clinical Village Station 13

Transcription:

ORIGINAL ARTICLE Fluctuating Olfactory Sensitivity and Distorted Odor Perception in Allergic Rhinitis Andrea J. Apter, MD; Janneane F. Gent, PhD; Marion E. Frank, PhD Objective: To characterize the relationship between allergic rhinitis, the severity and duration of nasal disease, olfactory function, and self-reported olfactory symptoms, including fluctuations or distortions in odor perception. Design: Assessment of olfactory function and symptoms of 9 patients with allergic rhinitis. Setting: A clinic of a university teaching hospital and research facility. Patients: Sixty patients who presented to the Taste and Smell Clinic who had positive allergy test results and 3 patients who presented to the Allergy-Immunology Clinic. The Taste and Smell Clinic patients were grouped by nasalsinus disease status (3 without chronic rhinosinusitis or nasal polyps, 14 with chronic rhinosinusitis but without polyps, and 16 with nasal polyps). Main Outcome Measures: Subjective olfactory symptom questionnaire and objective olfactory function tests. Results: The Allergy-Immunology Clinic patients were diagnosed as being normosmic and the Taste and Smell Clinic patients as being hyposmic or anosmic with olfactory loss that increased significantly with nasal-sinus disease severity. Comparisons with normative data confirm that olfactory scores observed in all groups were significantly lower than expected because of the aging process alone. The self-reported duration of olfactory loss increased significantly with nasal-sinus disease severity. The Taste and Smell Clinic patients without chronic rhinosinusitis or nasal polyps reported the greatest incidence of olfactory distortions and olfactory loss associated with upper respiratory tract infections. Conclusions: There appears to be a continuum of duration and severity of olfactory loss in allergic rhinitis that parallels increasing severity of nasal-sinus disease. As a result of the increased frequency of respiratory infection associated with allergic rhinitis, these patients are at risk for damage to the olfactory epithelium. Arch Otolaryngol Head Neck Surg. 1999;125:15-11 From the Section of Allergy and Immunology, Department of Medicine (Dr Apter), and the Department of Biostructure and Function, Connecticut Chemosensory Clinical Research Center (Drs Apter, Gent, and Frank), University of Connecticut Health Center, Farmington. Dr Apter is now with the Section of Allergy and Immunology, Division of Pulmonary Allergy and Critical Care Medicine, Hospital of the University of Pennsylvania, Philadelphia. ARECENT study of topical corticosteroid nasal spray treatment of anosmia in patients with severe nasalsinus disease suggests that nasal airway obstruction is not the only cause of olfactory loss in these patients. 1 Following treatment, signs of disease (mucosal thickening, polypoid changes, and polyps) decreased significantly for all patients in the study. While olfactory function likewise improved significantly for 59% of the patients, the sense of smell in the remaining 41% did not change at all. 1 Interestingly, one indicator of the successful olfactory response to treatment was a selfreported history of fluctuations in olfactory sensitivity, which could be interpreted as an indication of a functioning olfactory epithelium in an otherwise anosmic patient. 1 The distortion of odors is another symptom reported by patients with olfactory loss, particularly those patients whose olfactory problems began with head trauma or upper respiratory tract infections. 2-5 In the case of patients who were rendered anosmic by head trauma, these odor distortions have been interpreted as reflecting the regeneration of damaged or severed olfactory connections and can precede recovery of function. 2,3 Distortions in olfactory function have also been associated with smell loss secondary to upper respiratory tract infection. 4 Since there is evidence that the olfactory epithelium has been damaged in these patients, 5 presumably as a result of the viral infection, it is possible that the odor distortions represent malfunction of a damaged epithelium and/or a phase of regeneration of the olfactory receptors. Allergic rhinitis is associated with a loss of smell 6-1 that is less severe than the smell loss associated with chronic rhinosinusitis and nasal polyps. 1 The present 15

SUBJECTS AND METHODS SUBJECTS This study was approved by the Institutional Review Board of the University of Connecticut Health Center, Farmington. All subjects gave informed consent for participation. Taste and Smell Clinic Patients Study subjects included 6 Taste and Smell Clinic (TASC) patients with self-described olfactory loss and confirmed allergic rhinitis. Of 363 consecutive new patients evaluated at the TASC, 13 presented with complaints of olfactory dysfunction, had a history of nasal symptoms, and were referred for allergy testing. Seventy (68%) of these patients were considered to have allergic rhinitis and were therefore eligible for inclusion in this study; they reported episodic or continuous nasal congestion, rhinorrhea, postnasal drip, and sneezing and had at least 1 positive allergy skin test result that was relevant to their history, as described below. Ten patients were excluded from the study either because they were involved in litigation (n = 7) or because congenital anosmia could not be ruled out (n = 3). Allergy-Immunology Clinic Patients A group of 3 University of Connecticut Health Center Allergy-Immunology Clinic (AC) patients, all of whom had a diagnosis of allergic rhinitis and none of whom had chronic rhinosinusitis or nasal polyps, served as a comparison group. These patients were sampled in late spring and summer. MEASURES Patient History The questionnaire administered to all patients included subjective assessment of olfactory function, duration of olfactory problem, history of perceiving distorted odors, fluctuations in olfactory sensitivity, and presence of phantom odors (perceiving odors in the absence of any external odor stimulus). Subjects were questioned about problems associated with olfactory loss, including a history of nasal polyps, sinus surgery, head trauma, toxic exposures, or loss of olfactory function associated with upper respiratory tract infections. Subjects were asked to estimate the date of onset of their symptoms of allergic rhinitis. They were also questioned about their history relevant to allergic rhinitis, including exposure to perennial allergens (eg, dogs, cats, mites, and fungi) or irritants (eg, tobacco and volatile organic compounds) or a history of asthma. Physical Examination All TASC patients underwent examination of the nasal cavity with a speculum followed by endoscopic rhinoscopic examination. Visibility of the olfactory clefts was noted. Computed tomographic (CT) scans of the paranasal sinuses were obtained when chronic rhinosinusitis was suspected; it was confirmed if the patient had at least 2 of the clinical signs (rhinorrhea, postnasal drip, or cough for more than 3 months) and if the CT scan showed mucosal thickening or opacification of 1 or more sinuses. The results of the rhinoscopic examination and CT scan were used to classify the TASC patients into 3 groups by increasing severity of nasal-sinus disease (TASC- patients had no evidence of sinusitis or nasal polyps, TASC-S patients had study compares patients with allergic rhinitis whose primary complaint is olfactory dysfunction with those whose primary complaints are of nasal and respiratory symptoms. This comparison is made to characterize the relationship between the severity and duration of nasal disease and the possible damage to the olfactory system. RESULTS HISTORY AND PHYSICAL EXAMINATION The 6 TASC patients included 35 men and 25 women aged 18 to 74 years (mean ± SD, 51.4 ± 12.4 years). The 3 AC patients included 1 men and 2 women aged 27 to 7 years (mean ± SD, 39.5 ± 1. years). Table 1 shows the results of the nasal-sinus disease classification of the TASC patients (TASC-, n = 3; TASC-S, n = 14; and TASC-P with [n = 12] or without [n = 4] chronic rhinosinusitis, n = 16). The AC patients were significantly younger than the TASC patients (P.1). There were no differences in age among the 3 TASC patient groups, but there was a significant difference in sex distribution ( 2 = 9.95, P =.7); only 2 (12%) of the 16 patients with polyps were women, compared with 5 (36%) of the 14 patients with chronic rhinosinusitis and 12 (4%) of the 3 patients with neither chronic rhinosinusitis nor polyps. OLFACTORY FUNCTION Average olfactory function decreased significantly with increasing signs of nasal disease, as reflected in the odor identification scores (F 3,84 = 44.83, P.1) and the butanol threshold scores (F 3,84 = 27.1, P.1) (Figure 1). As expected, there was a significant correlation between the left and right nostril olfactory scores (r =.9, P.1). The AC patient group was normosmic (mean ± SE composite score, 6. ±.22), although the 9 AC patients who complained of olfactory dysfunction were diagnosed as being mildly hyposmic (mean ± SE composite score, 5.67 ±.43). The TASC patients, who all complained of olfactory dysfunction, were severely hyposmic (mean ± SE TASC- score, 3.11 ±.45) and anosmic (mean ± SE TASC-S score,.93 ±.48; mean ± SE TASC-P score,.52 ±.28), with olfactory loss significantly increasing with nasal-sinus disease severity (P =.5). Among the TASC patients, there was a weak association between the presence of nasal sinus disease and the lack of olfactory cleft visibility ( 2 = 4.36, P =.4). The frequency of visible olfactory clefts was significantly lower among the TASC patients with signs of nasal-sinus disease (TASC-S and TASC-P groups combined). One or both clefts were visible in only 19 (63%) of these patients, compared with 26 patients (87%) in the TASC- group (Table 16

evidence of sinusitis from either the CT scan or rhinoscopic examination but no polyps, and TASC-P patients had evidence of polyps on rhinoscopic examination). Olfactory Tests The test of olfactory function that was developed and used by the TASC consists of 2 parts: a test of detection threshold sensitivity to n-butyl alcohol (up to 4% 1-butanol by volume) and a test of odorant identification using common household items (eg, baby powder, coffee, chocolate, and peanut butter). 11 Nostrils are tested separately. The performance scores from the threshold and identification tests are reported on an 8-point scale (-7); the diagnostic range is to 1.75 for anosmia, 1.75 to 6. for hyposmia, and 6. to 7. for normosmia. Since previous studies have shown a significant correlation between nostrils on the TASC test, 1,11 results are reported as the mean of the 2 nostril scores. Allergy Tests Skin testing included puncture tests and, if the results were negative, intradermal tests. For punctures, a bifurcated needle (ALO Laboratories, Columbus, Ohio) was used. Perennial allergens tested were Dermatophagoides farinae (1 allergic units [AU] per milliliter), Dermatophagoides pteronyssinus (1 AU/mL), Alternaria (1:2 wt/vol), Aspergillus (1:2 wt/vol), Cladosporium (1:2 wt/vol), Penicillium mix (1:2 wt/vol), cat washings and pelt (5 AU/mL and later 5 bioequivalent AU/mL), and dog epithelia (1:2 wt/ vol). Seasonal allergens were those relevant to the northeastern United States: white birch (1:2 wt/vol), maple mix (1:2 wt/vol), white oak (1:2 wt/vol), timothy grass (1:2 wt/vol), June grass (1:2 wt/vol), and ragweed mix (short and giant, 138 antigen E units per milliliter, 1:2 wt/vol). The presence of a wheal diameter at least 3 mm larger than that of the saline control with surrounding erythema noted 2 minutes after placement of the test allergen was considered a positive puncture test result. When puncture test results were negative, intradermal injections of.2 ml (1:1 wt/vol for fungi, pollens, and dog; 5 AU/mL for mite; and 5 AU/mL or 5 bioequivalent AU/mL for cat) were administered for relevant allergens. For intradermal tests, a wheal with a surrounding flare at least 5 mm in diameter and at least 3 mm in diameter larger than that of the saline intradermal control was considered a positive result. Data Analysis Descriptive statistics are reported as mean ± SE unless otherwise noted. Nonparametric tests ( 2 analysis) were used to compare the frequency distributions of the subjective assessment of symptoms and the history of olfactory problems, rhinitis, other problems associated with olfactory dysfunction, and skin test results. Smell test scores (mean of the smell test scores of the left and right nostrils) used in the analyses included the threshold test score, odor identification test score, and a composite score based on the average of the threshold and odor identificationscores. Analysesofvarianceandindependentsample t tests were used to compare the TASC patients with the AC patients. In addition, the olfactory test results from patients inthisstudywerecomparedwitholfactoryscoresonthetasc odor identification and butanol threshold tests collected from 18 control subjects aged 25 to 84 years. Subjects who report normalolfactoryabilityhavebeenrecruitedsince1981toserve as controls for the TASC olfactory tests. 1). Further analysis of the composite olfactory function scores showed that neither visibility of the olfactory clefts nor its interaction with disease status significantly affected olfactory function (Table 2); ie, nasal-sinus disease status has a significant effect on olfactory function, and although cleft visibility is associated with nasal-sinus disease, it is not a significant factor in olfactory function. The mean composite olfactory scores for each TASC patient group were significantly lower than scores predicted for people their age (t, 7.24-2.5; P.1). The mean composite olfactory score for the AC patients was also significantly lower than expected for their age group (t = 2.36, P =.1) (Figure 1 and Figure 2). The self-reported duration of olfactory loss for the TASC patients increased significantly with increasing signs of nasal-sinus disease (F 2,57 = 4.35, P =.2). Patients with allergic rhinitis but no other signs of nasal-sinus disease (TASC- patients) reported having olfactory problems for significantly less time than patients with allergic rhinitis and chronic rhinosinusitis (TASC-S) or polyps (TASC-P) (P =.5) (Figure 3). The self-reported duration of nasal symptoms did not differ significantly among the 3 TASC patient groups. A typical TASC patient had been suffering with nasal symptoms for 2.6 ± 2.4 years (mean ± SE), which is significantly longer than for a typical AC patient (1.7 ±.5 years) (F 3,7 = 13.57, P.1) (Figure 3). Figure 4 shows the frequency distribution of symptoms of olfactory dysfunction for the 3 AC patients, the 3 TASC- patients, and the 3 combined TASC-S and TASC-P patients. Compared with the other 2 patient groups, TASC- patients reported a greater incidence of olfactory distortions (14 [47%], compared with 3 [1%] of 3 patients in each of the other groups [ 2 = 15.56, P.1]) (Figure 4). Fluctuations were reported significantly more frequently by the combined TASC-S and TASC-P group (22 patients [73%], compared with 1 patients [33%] in the AC group and 13 patients [43%] in the TASC- group [ 2 = 1.4, P =.6] (Figure 3). The incidence of reports of phantom odors was not significantly different among the patient groups. For each of these symptoms of olfactory dysfunction, we explored the association of olfactory cleft visibility within nasal-sinus disease status and found that for TASC patients without nasal-sinus disease, odor distortions were reported significantly more often by patients with olfactory clefts visible than by those in whom neither cleft was visible ( 2 = 4.4, P =.4). In fact, only 4 (13%) of the TASC- patients had neither olfactory cleft visible and none of these patients reported olfactory distortions. Items from patient medical histories that were associated with olfactory loss are shown in Figure 5. Patients in the combined TASC-S and TASC-P group had 17

Table 1. Sex, Age, and Nasal-Sinus Disease Status of Patient Groups* Patient Group No. of Patients (Men/Women) Age, y Allergic Rhinitis Nasal Sinus Disease Status Chronic Sinusitis Olfactory Cleft Visibility, No. (% of TASC group) Nasal Polyps Neither One Both AC 3 (1/2) 39.5 ± 1. +......... TASC- 3 (12/18) 51.7 ± 13.1 + 4 (13) 1 (33) 16 (53) TASC-S 14 (9/5) 49.7 ± 12.6 + + 6 (43) 5 (36) 3 (21) TASC-P 16 (14/2) 52.2 ± 11.5 + +/ + 5 (31) 5 (31) 6 (38) *AC indicates Allergy-Immunology Clinic; TASC, Taste and Smell Clinic; TASC-, TASC patients without chronic rhinosinusitis or nasal polyps; TASC-S, TASC patients with chronic rhinosinusitis, but without nasal polyps; and TASC-P, TASC patients with nasal polyps. Mean ± SD. Plus sign indicates condition present in all cases; minus sign, condition absent; and plus or minus, condition present in some but not all cases. Test Score 7 6 5 4 3 2 1 AC TASC- TASC-S Patient Group (Mean Score) Butanol Threshold Odor Identification TASC-P 4 y 51 y Age-Corrected Norm (Predicted Score) Figure 1. Olfactory function scores (butanol threshold and odor identification tests) for patients with allergic rhinitis from an Allergy-Immunology Clinic (AC) (n = 3; mean age, 39.5 years) and a Taste and Smell Clinic (TASC) (n = 6; mean age, 51.4 years). The TASC patients were grouped by nasal disease status: TASC- patients had no chronic rhinosinusitis or nasal polyps (n = 3); TASC-S patients had chronic rhinosinusitis but no polyps (n = 14); and TASC-P patients had nasal polyps with or without chronic rhinosinusitis (n = 16). All patient groups were significantly different from each other ( P =.5). T-shaped bars indicate SEs. Age-corrected scores are based on data from control subjects (n = 18; age range, 25-84 years); age is related to the olfactory function test scores as shown in Figure 2. a significantly higher history of nasal polyps (15 [5%] of 3) and sinus surgery (22 [73%] of 3) than patients in either of the other 2 groups ( 2 = 14.48, P.1, and 2 = 11.29, P =.4, respectively) (Figure 5). A significantly higher incidence of upper respiratory tract infections associated with olfactory loss was reported by each of the TASC groups (17 [57%] of the TASC- patients and 8 [27%] of the TASC-S/TASC-P patients) than by the AC patients (n = 2 [7%]; 2 = 18.1, P.1) (Figure 5). The AC patients had a higher incidence of asthma (15 [5%] of 3) than either of the TASC groups (5 [17%] of the TASC- patients and 1 [33%] of the TASC-S/ TASC-P patients; 2 = 7.5, P =.2). The groups did not differ in the incidence of head trauma or toxic exposures in their medical histories. As has been reported elsewhere, 7,8 we also found that distortions in olfaction were significantly associated with a history of upper respiratory tract infections for the patient group as a whole (n = 9) ( 2 = 7.65, P =.6) and for the TASC- group in particular ( 2 = 5.13, P =.2). Table 2. Composite Olfactory Scores of Taste and Smell Clinic (TASC) Patients by Nasal-Sinus Disease Status and Olfactory Cleft Visibility* Patient Group Neither Olfactory Cleft Visible Composite Olfactory Score SKIN TESTS There was little difference in skin test results among the 3 patient groups. Allergy test results showed that there were no differences when allergens were grouped as perennial (on average, 87% of each patient group tested positive for mite, cat, dog, and/or fungi) or seasonal (on average, 84% of each patient group tested positive for grass, trees, and/or ragweed). However, there were significant differences for some individual tests. Fewer TASC patients tested positive for dog (16 [53%] TASC- and 8 [28%] TASC-S/TASC-P patients compared with 21 [7%] AC patients; 2 = 1.75, P =.5) and for ragweed (17 [57%] TASC- and 15 [5%] TASC-S/TASC-P patients compared with 26 [87%] AC patients; 2 = 9.99, P =.7). COMMENT One or Both Olfactory Clefts Visible Mean TASC- 4.6 ± 1.6 (4) 2.9 ±.4 (26) 3.1 ±.4 TASC-S/TASC-P.8 ±.4 (11) 1. ±.4 (17).9 ±.3 Mean 1.8 ±.7 2.1 ±.3... *Values are mean ± SE. TASC- indicates TASC patients without chronic rhinosinusitis or nasal polyps; TASC-S, TASC patients with chronic rhinosinusitis; and TASC-P, TASC patients with polyps. Numbers in parentheses are numbers of patients. We examined the olfactory function of patients with allergic rhinitis. Our study sample included patients from an AC, whose primary complaint did not include olfactory dysfunction, and patients from a TASC, whose primary complaint was olfactory loss. We found that the TASC patients were older, had had nasal symptoms longer, had lower olfactory function scores, and were more likely to have histories of nasal-sinus disease than the AC patients. We also observed that men and women were not uniformly distributed among the TASC nasal-sinus disease 18

7 6 AC 3 AC (n=3) TASC- (n=3) TASC-S/TASC-P (n=3) Olfactory Score 5 4 3 No. of Patients 2 1 2 1 Predicted Score BA=7.74.36 Age (y) BA ID=7.86.28 Age (y) ID 1 2 3 4 5 6 7 8 9 Age, y Figure 2. Olfactory function test scores by age in the normal population. Regression equations for the butanol threshold (BA, solid line) and odor identification (ID, dashed line) test scores, based on data from normal control subjects (n = 18; age range, 25-84 years), are BA = 7.74.36 age (years) and ID = 7.86.28 age (years). Allergy-Immunology Clinic (AC) scores fell below the age-related norms, as indicated for both the BA (filled symbol) and ID (open symbol) tests. Duration, y 3 25 2 15 1 5 Olfactory Loss Nasal Symptoms AC TASC- TASC-S TASC-P Figure 3. Mean self-reported duration of olfactory loss and nasal symptoms for patients with allergic rhinitis. Duration of olfactory loss was significantly longer for Taste and Smell Clinic (TASC) patients with signs of nasal-sinus disease (TASC patients with chronic rhinosinusitis but without polyps [TASC-S] and TASC patients with nasal polyps with or without chronic rhinosinusitis [TASC-P]) than for TASC patients with no signs of nasal-sinus disease [TASC-]). Duration of nasal symptoms was significantly shorter for Allergy-Immunology Clinic (AC) patients than for any TASC patient group. Asterisk indicates P =.5. T-shaped bars indicate SEs. groups. While there were slightly more women than men in the TASC- (allergic rhinitis only) group, men outnumbered women 2 to 1 in the TASC-S (chronic rhinosinusitis) group and 7 to 1 in the TASC-P (nasal polyps) group. This finding is consistent with a previous study of 445 patients with nasal polyps in which men outnumbered women 2 to 1. 12 Among all patients with allergic rhinitis, there appears to be a continuum of olfactory loss from patients without additional nasal-sinus disease to those who have chronic rhinosinusitis to those with nasal polyps (the majority of whom also have sinusitis). These findings are consistent with our previously published studies 7,1 ; patients with allergic rhinitis alone tend to have milder olfactory problems. Although the AC patients were younger and olfactory function is known to decline with age, 13 a comparison with age-corrected predicted scores illustrates that the aging process alone cannot account for the degree of olfactory loss suffered by TASC patients (Figures 1 and 2). It is clear from Figure 1 that the olfactory Distortion Fluctuation Phantom Figure 4. Frequency of olfactory symptoms reported by patients from the Allergy-Immunology Clinic (AC) or the Taste and Smell Clinic (TASC). TASC- indicates TASC patients without chronic rhinosinusitis or nasal polyps; TASC-S, TASC patients with chronic rhinosinusitis; and TASC-P, TASC patients with polyps. Distortions and fluctuations in olfaction were reported significantly more frequently by the indicated groups; asterisk indicates P =.2. No. of Patients 3 2 1 Polyps Sinus Surgery Head Trauma AC (n=3) TASC- (n=3) TASC-S/TASC-P (n=3) Toxic Exposure function scores of the TASC patients are substantially below the scores predicted for people their age. Interestingly, the olfactory function scores for the AC patients are also significantly lower than expected for their age group (Figure 2), although their diagnostic category remains normosmic. Nasal obstruction, as measured by olfactory cleft visibility (Table 1), is significantly although weakly associated with nasal-sinus disease. However, we did not find an association between cleft visibility and olfactory function in the present study or in our earlier study. 1 At best, cleft visibility is a crude a measure of nasal obstruction; however, other studies using other measures (eg, rhinomanometry 8,9 ) have also been unable to demonstrate an association between obstruction and olfactory dysfunction. It is interesting that the duration and severity of olfactory loss is associated with the severity of nasal-sinus disease, whereas the duration of nasal symptoms alone is not. Since olfactory loss may be considered to be one of the signs of nasal-sinus disease, 1 our results suggest that the 9 patients in the AC group who had already complained of olfactory problems may be among the first in Viral Upper Respiratory Infection Figure 5. Frequency of positive findings in the medical history of patients from the Allergy-Immunology Clinic (AC) or the Taste and Smell Clinic (TASC). TASC- indicates TASC patients without chronic rhinosinusitis or nasal polyps; TASC-S, TASC patients with chronic rhinosinusitis; and TASC-P, TASC patients with polyps. Significant differences between TASC and AC patients are indicated (asterisk) for a history of polyps ( P.1), sinus surgery ( P =.4), and viral upper respiratory infection ( P.1). 19

this group to develop more serious signs of nasal-sinus disease in the future. A significant number of TASC patients in this study reported a history of viral respiratory tract infections, which perhaps is to be expected, since allergic rhinitis has been shown to be associated with frequent respiratory tract infections. 14 There is evidence from biopsy specimens of human olfactory mucosa 5 that damage perhaps irreversible damage can occur as a result of these infections and that the degree of damage is correlated with olfactory dysfunction. Distortions in olfactory perception, which could be a consequence of epithelial damage, tend to be reported by patients whose olfactory loss is associated with viral respiratory tract infections. 7,8 Among the patients in our study, the highest incidence of olfactory distortions and history of upper respiratory tract infection were reported by the patients with the lowest incidence of nasal obstruction, yet their olfactory function was significantly impaired. This suggests that the link between allergic rhinitis and olfactory loss may be caused in part by more frequent respiratory tract infections promoted by the pathophysiologic characteristics of allergic rhinitis, and not only by inflammatory diseases, such as nasal polyposis. This may also explain why, for a sizable number of patients in our earlier study, 1 topical nasal steroid treatment for olfactory loss associated with nasal-sinus disease failed. Among our patients, the frequency of self-reported fluctuations in olfactory sensitivity increased with the increasing severity of nasal-sinus disease. However, the frequency of self-reported distortions in odor perception was highest in those with less serious disease (Figure 4). It is possible that odor distortions only occur during a phase of recovery following an upper respiratory tract infection (ie, perhaps a degenerating [or possibly regenerating] olfactory epithelium temporarily produces faulty odor perceptions). 15 This might explain why the highest incidence of self-reported distortions was among patients in the TASC- group (Figure 4), which also had the highest incidence of olfactory loss associated with upper respiratory tract infections. The TASC-S/TASC-P group also reported histories of upper respiratory tract infections but not distortions. The distortions may have occurred in an earlier stage in the development of this group s nasalsinus disease. One of the limitations of our study is that the AC group in particular was a sample of convenience (ie, we offered olfactory function testing to everyone who came to the allergy clinic for treatment during the late summer). This could account for some of our results (eg, the younger age and the higher incidence of asthma in the AC group). Our systematic examination of 9 patients with allergic rhinitis, including a series of 6 TASC patients, suggests that 2 details from a patient s history may help determine the most likely cause of their olfactory loss: patient reports of fluctuations in olfactory sensitivity are significantly associated with obstructive nasal-sinus disease, and patient reports of distorted olfactory perceptions are significantly associated with viral respiratory tract infections. In patients with allergic rhinitis, the duration and severity of olfactory loss are associated with more severe nasal-sinus disease. These patients are at increased risk for olfactory loss because allergic rhinitis promotes the development of repeated respiratory tract infections, which lead to damage to the olfactory epithelium. Accepted for publication April 2, 1999. This work was supported in part by research grants 5P5-DC168 and M1RR6192 from the National Institutes of Health, Bethesda, Md. Presented as a poster at the 2th Annual Meeting of the Association for Chemoreception Sciences, April 25, 1998, Sarasota, Fla. Reprint requests: Andrea Apter, MD, Section of Allergy and Immunology, Division of Pulmonary Allergy and Critical Care Medicine, Silverstein 3, Hospital of the University of Pennsylvania, 34 Spruce St, Philadelphia, PA 1914. REFERENCES 1. Mott AE, Cain WS, Lafreniere D, et al. Topical corticosteroid treatment of anosmia associated with nasal and sinus disease. Arch Otolaryngol Head Neck Surg. 1997;123:367-372. 2. Goodspeed RB, Catalanotto FA, Gent JF, et al. Clinical characteristics of patients with taste and smell disorders. In: Meiselman HL, Rivlin RS, eds. Clinical Measurement of Taste and Smell. New York, NY: Macmillan Publishing Co; 1986: 451-466. 3. Nordin S, Murphy C, Davidson TM, et al. Prevalence and assessment of qualitative olfactory dysfunction in different age groups. Laryngoscope. 1996;16: 739-744. 4. Cowart BJ, Young IM, Varga EK, Lowry LD. The natural history of smell dysfunctions secondary to upper respiratory infection (URI) [abstract]. Chem Senses. 1998;23:68. 5. Jafek BW, Hartman D, Eller PM, et al. Postviral olfactory dysfunction. Am J Rhinol. 199;4:91-1. 6. Fein BT, Kamin PB, Fein NN. The loss of sense of smell in nasal allergy. Ann Allergy Asthma Immunol. 1966;24:278-283. 7. Apter AJ, Mott AE, Cain WS, et al. Olfactory loss and allergic rhinitis. J Allergy Clin Immunol. 1992;9:67-68. 8. Cowart BJ, Flynn-Rodden K, McGeady SJ, Lowry LD. Hyposmia in allergic rhinitis. J Allergy Clin Immunol. 1993;91:747-751. 9. Meltzer EO, Jalowayski AA, Orgel HA, Harris AG. Subjective and objective assessments in patients with seasonal allergic rhinitis: effects of therapy with mometasone furoate nasal spray. J Allergy Clin Immunol. 1998;12:39-49. 1. Apter AJ, Mott A, Frank M, Clive J. Allergic rhinitis and olfactory loss. Ann Allergy Asthma Immunol. 1995;75:311-316. 11. Cain WS, Gent JF, Goodspeed RB, Leonard G. Evaluation of olfactory dysfunction in the Connecticut Chemosensory Clinical Research Center. Laryngoscope. 1988;98:83-88. 12. Moloney JR. Nasal polyps, nasal polypectomy, asthma, and aspirin sensitivity: their association in 445 cases of nasal polyps. J Laryngol Otol. 1977;91:837-846. 13. Cain WS, Gent J. Olfactory sensitivity: reliability, generality, and association with aging. J Exp Psychol Hum Percept Perform. 1991;17:382-391. 14. Naclerio R, Solomon W. Rhinitis and inhalant allergens. JAMA. 1997;278:1842-1848. 15. Leopold D. Distorted olfactory perception. In: Doty RL, ed. Handbook of Olfaction and Gustation. New York, NY: Marcel Dekker Inc; 1995:441-454. 11