FIBER TYPES - oxidative metabolism is the main form here - ATPase activity is relatively low

Similar documents
Cardiac Properties MCQ

Introduction. Circulation

The Cardiovascular System

االء العجرمي. Not corrected. Faisal Muhammad

Skeletal Muscle Contraction 4/11/2018 Dr. Hiwa Shafiq

Chapter 13 The Cardiovascular System: Cardiac Function

آالء العجرمي أسامة الخضر. Faisal Muhammad

QUIZ/TEST REVIEW NOTES SECTION 1 CARDIAC MYOCYTE PHYSIOLOGY [CARDIOLOGY]

Skeletal Muscle Contraction 5/11/2017 Dr. Hiwa Shafiq

Cardiac physiology. b. myocardium -- cardiac muscle and fibrous skeleton of heart

Skeletal Muscle. Connective tissue: Binding, support and insulation. Blood vessels

Where are the normal pacemaker and the backup pacemakers of the heart located?

Physiology sheet #2. The heart composed of 3 layers that line its lumen and cover it from out side, these layers are :

Department of medical physiology 7 th week and 8 th week

Muscle Cells & Muscle Fiber Contractions. Packet #8

Cardiac Muscle Physiology. Physiology Sheet # 8

THE CARDIOVASCULAR SYSTEM. Heart 2

Marah karablieh. Osama khader. Muhammad khatatbeh. 0 P a g e

Cardiovascular system

About This Chapter. Skeletal muscle Mechanics of body movement Smooth muscle Cardiac muscle Pearson Education, Inc.

Muscle and Muscle Tissue

Collin County Community College. ! BIOL Anatomy & Physiology! WEEK 5. The Heart

Microanatomy of Muscles. Anatomy & Physiology Class

PART I. Disorders of the Heart Rhythm: Basic Principles

Conduction System of the Heart 4. Faisal I. Mohammed, MD, PhD

Ch 12: Muscles sarcolemma, t-tubules, sarcoplasmic reticulum, myofibrils, myofilaments, sarcomere...

Conduction System of the Heart. Faisal I. Mohammed, MD, PhD

Chapter 20b Cardiac Physiology

Chapter 10 Muscle Tissue and Physiology Chapter Outline

Muscle and Neuromuscular Junction. Peter Takizawa Department of Cell Biology

10/23/2017. Muscular pump Two atria Two ventricles. In mediastinum of thoracic cavity 2/3 of heart's mass lies left of midline of sternum

11/10/2014. Muscular pump Two atria Two ventricles. In mediastinum of thoracic cavity 2/3 of heart's mass lies left of midline of sternum

AnS SI 214 Practice Exam 2 Nervous, Muscle, Cardiovascular

Arrhythmias. 1. beat too slowly (sinus bradycardia). Like in heart block

Ch. 6: Contraction of Skeletal Muscle Physiological Anatomy of Skeletal Muscle

The conduction system

Cardiovascular System

2) Put these in order: I repolarization II- depolarization of action potential III- rest IV- depolarization to threshold

*Generating blood pressure *Routing blood: separates. *Ensuring one-way blood. *Regulating blood supply *Changes in contraction

Cadiovascular System-1. Faisal I. Mohammed, MD, PhD

Cardiovascular System: The Heart

Chapter 20: Cardiovascular System: The Heart

Rhythmical Excitation of the Heart

Cardiac arrhythmias. Janusz Witowski. Department of Pathophysiology Poznan University of Medical Sciences. J. Witowski

Chapter 12: Cardiovascular Physiology System Overview

GENERAL PHYSIOLO GY, NERVE & MUSCLE. 1. How many % of the body weight is the total blood volume? A. 5% B. 8% C. 15% D. 40% E. 60%

PSK4U THE NEUROMUSCULAR SYSTEM

Nerve regeneration. Somatic nervous system

Nerve meets muscle. Nerve regeneration. Somatic nervous system

Physiology week 2 Excitable Tissue

Organismic Biology Bio 207. Lecture 6. Muscle and movement; sliding filaments; E-C coupling; length-tension relationships; biomechanics. Prof.

Biology November 2009 Exam Three FORM W KEY

CARDIOVASCULAR SYSTEM

Concept 50.5: The physical interaction of protein filaments is required for muscle function

Introduction to Neurobiology

Muscle Physiology. Dr. Ebneshahidi Ebneshahidi

Musculoskeletal Systems. Anatomy: Arrangement of Cells Physiology: Contractions

Chapter 50. You re on your own for: Sensory Reception Mechanoreceptors Gravity, Hearing and Equilibrium. Chemoreception taste and smell

Skeletal Muscle and the Molecular Basis of Contraction. Lanny Shulman, O.D., Ph.D. University of Houston College of Optometry

Cardiovascular Physiology. Heart Physiology. Introduction. The heart. Electrophysiology of the heart

Objectives of the lecture:

MUSCULAR SYSTEM CHAPTER 09 BIO 211: ANATOMY & PHYSIOLOGY I

Cardiovascular health & Health Promotion HH2602 & HH5607

(D) (E) (F) 6. The extrasystolic beat would produce (A) increased pulse pressure because contractility. is increased. increased

BIPN 100 F15 (Kristan) Human Physiology Lecture 10. Smooth muscle p. 1

Chapter 9 - Muscle and Muscle Tissue

Chapter 9 Muscle. Types of muscle Skeletal muscle Cardiac muscle Smooth muscle. Striated muscle

Circulatory System Function Move circulatory fluid (blood) around body Gas Transport Nutrient Transport Excretory Product Transport

Basics of skeletal muscle electrophysiology. Tóth András, PhD

Ch 12 can be done in one lecture

EXAM II Animal Physiology ZOO 428 Fall 2006

Chapter 20 (2) The Heart

Chapter 10! Chapter 10, Part 2 Muscle. Muscle Tissue - Part 2! Pages !

Physiology of the nerve

The Physiology of the cardiac

Muscles and Muscle Tissue

Chapter 10 -Muscle Tissue

Ask Mish. EKG INTERPRETATION part i

Collin County Community College

10 - Muscular Contraction. Taft College Human Physiology

Conduction system of the heart

BIPN100 F15 Human Physiology I (Kristan) Problem set #5 p. 1

Principles of Anatomy and Physiology

Full file at

2/19/2018. Learn and Understand:

flow of blood May carry blood

Gene annotation for heart rhythm. 1. Control of heart rate 2. Action Potential 3. Ion channels and transporters 4. Arrhythmia 5.

CARDIAC PHYSIOLOGY. Amelyn U. Ramos-Rafael,M.D. Functional Anatomy of the Heart

STRUCTURAL ELEMENTS OF THE NERVOUS SYSTEM

Questions. Question 1!

AN INTRODUCTION TO INVOLUNTARY (ESPECIALLY SMOOTH) MUSCLES 1

Muscle Tissue. Muscle Tissue Outline. General Function of Muscle Tissue

Chapter 18 - Heart. I. Heart Anatomy: size of your fist; located in mediastinum (medial cavity)

TA Review. Neuronal Synapses. Steve-Felix Belinga Neuronal synapse & Muscle

Shock-induced termination of cardiac arrhythmias

Skeletal Muscle Qiang XIA (

Electrical Conduction

Cardiac muscle is different from other types of muscle in that cardiac muscle

Cellular Messengers. Intracellular Communication

Faris Haddad. Dania Alkouz. Mohammad-Khatatbeh

Transcription:

Cardiac Muscle Physiology Special characteristics of cardiac muscle - Branching and interdigitating cells - At their ends, they are connected by INTERCALATED DISCS - The discs are always at the Z-lines of the myofibrils - The disc bind the myocytes together and cause them to pull on each other when they contract - The adjacent fibers also form low-resistance GAP JUNCTIONS - This way action potentials are transmitted rapidly from one fiber to another - This permits the myocardium to function as a SYNCYTIUM Z-lines - The T-tubules are AT THE Z LINES, not at the A-I junction as they are in the skeletal muscle Intercalated discs - the resting membrane potential of a myocardial cell is about -80mV - CONTRACTILE RESPONSE - starts just after the start of depolarization - lasts about 300 msec MAJOR DIFFERENCE is that instead of being directly attached to the Ryanodine receptor, the L-type dihydropyridine receptor calcium channel has to release some calcium into the cell. Seeing as the Ryanodine receptor is a calcium-gated calcium channel, this initiates the release of calcium. The Cardiac Action potential briefly: GLYCOSIDE DRUGS - Eg. Digoxin - Inhibit / ATPase - Thus, more and less inside the cell - This reduces the activity of the / exchanger (which runs mainly on Na+ concentration gradient) - Thus, less Ca++ is exchanged out of the cell - More intracellular = greater contractility Out In 200 ms Action potential current current current GLYCOSIDE TOXICITY Overinhibition of the / ATPase results in a partially depolarized cell. This slows conduction and can cause the cell to depolarize spontaneously. Hence, arrhythmias and bradycardia. digoxin also competes with K+ ions for the same binding site on the ATPase; thus in hypokalemia, its effect is greater because it has no competition. In hyperkalemia, it may be outcompeted and thus not therapeutic. REFRACTORY PERIOD Phases 0, 1, 2 and most of 3 are refractory to stimulation. In fact, until the membrane reaches -50 mv the myocyte cannot contract again. This is the ABSOLUTE REFRACTORY PERIOD. Thankfully, it means the cardiac muscle can never suffer tetany. FIBER TYPES - oxidative metabolism is the main form here - ATPase activity is relatively low

THE ION CHANNELS Extracellular Fluid: poor in, rich in Myocardiocyte: rich in, poor in The ubiquitous / ATPase is the pump that keeps sodium out and potassium in. The SERCa pump : (sarco/endoplasmic reticulum pump) constantly sucks calcium into the sarcoplasmic reticulum. Sarcoplasmic Reticulum (SR) Sympathetic Input: beta-receptors activate phospholamban, which in turn upregulates the calcium pumping. The more calcium in the SR, the more contractility. This document was created by Alex Yartsev (dr.alex.yartsev@gmail.com); if I have used your data or images and forgot to reference you, please email me. Ion Channels of the Myocardial Muscle cell SERCA ATPase phospholamban Calcium gated ATP ATP FAST I-R Trans. O-R Ca-G L-type THE GLORY TO THE Na+/K+ ATPase; Its common to all animals; maintains the potential difference between inside and outside (for myocardial cells, this is about -90 millivolts) Its responsible for much of the RESTING POTENTIAL. For every 3 sodium atoms going out, 2 potassium ions come in. Thanks to the Na+ /K+ ATPase, the sodium concentration gradient can be used to pump other things, for instance, CALCIUM as in this calcium/sodium exchange pump. You have to keep the calcium out of the myocardiocyte, because too high a concentration will open the calcium-gated calcium channels in the sarcoplasmic reticulum, and cause contraction. The outward current of calcium is also maintained by the active ATP-powered calcium pump. FAST VOLTAGE-GATED SODIUM CHANNELS: when the threshold potential is reached, these let the sodium back into the cell in a huge torrent of positivity, thereby depolarizing the cell. They only open for a millisecond, and then close until the cell has repolarised. RESTING OPEN POTASSIUM CHANNELS: While the cell is at rest, the potassium channels allow a potassium leak out of the cell. This is driven by the concentration gradient. However, potassium is also being attracted back into the cell by the electrostatic attraction of all that negative charge inside. This negative charge is provided by the predominantly negative large proteins in the cytosol. And so the current of potassium reaches an equilibrium at around -90 millivolts, with the attracting and repelling forces becoming equal at this voltage. IN ACTUAL FACT, there are several types of potassium channels. Inward-rectifying: - open at rest, closed during depolarisation Outward-rectifying - closed at rest, open during depolarisation Transient: - open ONLY during phase 1 very brief period of action, responsible for the fast down-stroke Calcium-Gated: - open at the end of phase 2, when calcium concentration peaks- these are responsible for the end of phase 2 VOLTAGE-GATED CALCIUM CHANNELS: the L-TYPE CALCIUM CHANNELS These open during the fast upstroke phase, when suddenly the cell becomes less negative; on its way up, at around -40 millivolts, they let calcium back into the cell (it flows along a gradient of concentration). They help trigger the calcium-gated release of more calcium! From the sarcoplasmic reticulum.

The Action Potential in a Myocardial Muscle Cell

Phase 2 Contraction occurs in this phase due to the increased calcium ion concentration Phase 3 This document was created by Alex Yartsev (dr.alex.yartsev@gmail.com); if I have used your data or images and forgot to reference you, please email me. The longest phase; balance between incoming calcium and outgoing potassium. The potassium continues to leak out via the outward-rectifying potassium channels, and the calcium continues to leak in via the L-type calcium channels; the rates of leakage are matched and so in terms of electricity, there is no change in potential difference. Positive ions in, positive ions out. This causes a plateau in the voltage graph. The end of phase 2 is caused by a peak in calcium concentration this opens the calcium-gated potassium channels. Repolarisation; the L-type calcium channels close, but the outward-rectifying potassium channels (as well as the calcium-gated potassium channels) are still open, and so the cell is slowly brought back to the equilibrium of Phase 4. Plateau due to calcium influx and potassium out-flux - gated potassium channels open Gradual return to -90mV The ABSOLUTE REFRACTORY PERIOD ends when the membrane reaches around -50 mv. ADDITIONALLY: Contrary to my puerile diagrams, the ion channel picture is far from simple. There are throngs of ion channels besides those mentioned above. Acetylcholine-activated Potassium Channels are activated by the actions of the parasympathetic nervous system; it stands to reason if you want to slow down the heart, you make it more difficult to reach threshold by hyperpolarizing the cell. This hyperpolarity is achieved by opening these Ach-gated potassium channels, and letting even more potassium exit the cell during the resting phase. Confusingly, these are also activated by Adenosine. but via a different receptor, the purine A1. Arachidonic Acid-activated Potassium Channels allow fatty acids to shorten the action potential, for example during an ischaemic event. Acidosis opens these channels, and as a consequence phases 2 and 3 are shorter (repolarisation is faster) ATP-sensitive Potassium Channels are inactive at normal ATP concentration; however as soon as the concentration drops (i.e. in ATP-depleted fatigued heart muscle, or during a coronary artery occlusion). They shorten the action potential and therefore shorten systole. Apparently that plays a protective factor to the ATP-depleted myocytes, by reducing demand. However it also kills people with heart failure and pulmonary oedema. Why do we obsess over electrolytes? That requires a topic all of its own Too much - Changes serum potassium in external suppresses K+ concentration ectopic affect pacemakers the resting and membrane slows conduction; potential; insanely high potassium may even depress - the Changes sinoatrial external node! Na+ concentration affect the MAGNITUDE of the action potential Too little - This serum stands potassium true for will all produce excitable more tissues ectopic pacemakers, and therefore tachyarrhythmias Too little - magnesium is also somehow arrhythmogenic (especially together with low potassium) but nobody knows why. Cardiovascular Physiology, 6th Edition. David E. Mohrman, Lois Jane Heller. From CIAP http://proxy14.use.hcn.com.au/resourcetoc.aspx?resourceid=64 Arnold M. Katz Cardiac Ion Channels, NEJM Volume 328:1244-1251April 29, 1993 Number 17 Guyton and Hall, 2006 Textbook of Medical Physiology 11 th edition. Henry Gray (1825 1861). Anatomy of the Human Body. 1918.

MECHANICAL CHARACTERISTICS - Like in skeletal muscle, there is a resting length at which the contraction of the cardiac muscle is maximal - The initial length of the fibers is determined by the degree of diastolic filling (that s what stretches the sarcomeres) - The pressure these fibers develop when they contract increases along with the filling pressure up to a point. Then it decreases again. - The stretching of fibers causes Troponin C to increase its affinity for calcium, which in turn increases contractility. - HOWEVER the decrease in contraction strength is NOT due to a decrease in the number of cross-bridges like it is in skeletal muscle. A stupidly dilated heart still hasn t got to that point. - Instead the decrease is due to disruption of the myocardial fibers- they come apart at the intercalated discs. AUTONOMIC FACTORS INFLUENCING CONTRACTILITY - Beta-1 receptors affect the contractility of the heart by influencing homeostasis: o They produce camp, which in turn activates Protein Kinase A, which in turn phosphorylates voltagegated calcium channels, forcing them to spend more time in the open state. o Protein Kinase A also phosphorylate phospholamban, which causes the SERCA pump to concentrate more potassium in the sarcoplasmic reticulum, and the result is more calcium release during the contraction. o Increased SERCA activity also means shortened relaxation time, which is important if the heart rate is increased ( a nicely relaxed ventricle permits better diastolic filling) - The heart also has Beta-2 receptors, but they are not innervated, and are concentrated in the atria CARDIAC METABOLISM - Our hearts have an insanely generous blood supply, numerous mitochondria, and they have a higher concentration of myoglobin. - Normally, less than 1% is produced by anaerobic metabolism; in states of great strive this can go up to 10%, but that s about it. Under anaerobic conditions no contraction is possible. Normally, the heart is a fat-burning organ - 35% of the caloric needs are satisfied by CARBOHYDRATES - 5% by KETONES - 60% by FAT - Of tis fat, 50% is in the form of circulating free fatty acids References: Ganong Review of Medical physiology, 23 rd ed, chapter 5