ENZYME ACTIVITY. Introduction

Similar documents
Name: Date: AP Biology LAB : FACTORS INFLUENCING ENZYME ACTIVITY

AP BIOLOGY Enzyme Catalysis

Catalase Lab - A Bio ENZYME ACTIVITY Investigation Created by Gen Nelson, modified by Dr G

The Effect of Hydrogen Peroxide Concentration (substrate) on the Activity of the Enzyme Catalase

Catalytic Activity of Enzymes

AP Biology Unit 1, Chapter 5

MiSP ENZYME ACTION Teacher Guide, L1 - L3. Introduction

APBiology Unit 1, Chapter 5

Evaluation copy. Enzyme Action: Testing Catalase Activity. Computer

Rate of Decomposition of Hydrogen Peroxide as a Function of Catalase. Concentration

Enzyme Action: Testing Catalase Activity

Evaluation copy 17B. Enzyme Action: Testing Catalase Activity. Computer

Studying the Effect of Hydrogen Peroxide Substrate Concentration on Catalase Induced Reaction

Source 1 Evaluation. Source (using Harvard reference style)

The Hydrogen Peroxide Breakdown

Enzyme Action: Testing Catalase Activity

ENZYMES: BIOLOGICAL CATALYSTS OF LIFE

Problem: What would happen to enzyme activity if enzymes are placed outside their normal conditions? Hypothesis:

Terminology-Amino Acids

Amylase: a sample enzyme

Enzyme Action: Testing Catalase Activity

ENZYME ACTION: TESTING CATALASE ACTIVITY

BIOLOGY 1101 LAB 1: OSMOSIS & DIFFUSION. READING: Please read pages & in your text prior to lab.

EXERCISE 5. Enzymes H amylase + starch + amylase-starch complex maltose+ amylase.

Enzymes & Experimental Design

Digestive Enzyme Lab

Enzyme Action. Intermediate 2 Biology Unit 1: Living Cells

Lab 2. The Chemistry of Life

Enzymes: What s in your spit? Teacher Version

fossum/files/2012/01/10 Enzymes.pdf

Hyndland Secondary School Biology Department

Bridging task for 2016 entry. AS/A Level Biology. Why do I need to complete a bridging task?

(LM pages 91 98) Time Estimate for Entire Lab: 2.5 to 3.0 hours. Special Requirements

Chemical Tests For Biologically Important Molecules Do not write on this document

Student Manual. Background STUDENT MANUAL BACKGROUND. Enzymes

Classwork #10 - Enzymes Key Vocabulary protein enzyme catalyst reactant substrate active site product

The ideas which form the background to this case study are listed in the following table.

Human Biochemistry. Enzymes

Investigation: Enzymes

Enzymes - Exercise 3 - Rockville

ENZYMES QUESTIONSHEET 1

AP Biology Review: Theme 3- Energy

Enzymes: What s in your spit? Student Version

increase rate of reaction without being consumed reduce activation energy don t change free energy ( G) released or required

Metabolism & Enzymes. From food webs to the life of a cell. Flow of energy through life. Life is built on chemical reactions

BIOLOGICAL MOLECULES REVIEW-UNIT 1 1. The factor being tested in an experiment is the A. data. B. variable. C. conclusion. D. observation. 2.

130327SCH4U_biochem April 09, 2013

Enzymes - Exercise 3 - Germantown

ENZYME CONCENTRATIONS AND ENZYME ACTIVITY: PLANNING SHEET

How do abiotic or biotic factors influence the rates of enzymatic reactions?

Enzymes. Ms. Paxson. From food webs to the life of a cell. Enzymes. Metabolism. Flow of energy through life. Examples. Examples

EXERCISE 6 - Lab Procedures

GRU3L1 Metabolism & Enzymes. AP Biology

LAB Catalase in Liver HONORS BIOLOGY, NNHS

March 4, 2017 Built for Speed

ENZYME ACTIVITY. Practical 3

AP Biology. Metabolism & Enzymes

MOHAWK COLLEGE OF APPLIED ARTS AND TECHNOLOGY CHEMICAL AND ENVIRONMENTAL TECHNOLOGY DEPARTMENT. Lab Report ROOM NO: FE E309

Enzymes. Cell Biology. Monday, November 02, 2015 Mrs Wrightson

Analysis of Polyphenoloxidase Enzyme Activity from Potato Extract Biochemistry Lab I (CHEM 4401)

Investigation 13: Enzyme Activity Notes From the teacher

Enzymes. Chapter Enzymes and catalysts. Vital mistake. What is an enzyme?

09 Enzymes. December 04, Chapter 9 Enzymes. Mr. C Biology 1

Enzymes Topic 3.6 & 7.6 SPEED UP CHEMICAL REACTIONS!!!!!!!

Activity # 4. Measurement of Enzyme Activity

Chapter 8.4, 8.5. Enzymes. AP Biology

Enzymes. Enzyme Structure. How do enzymes work?

Question Expected Answers Mark Additional Guidance 1 (a) (enzymes are) proteins / used in metabolism / used in named metabolic pathway ;

2.1.1 Biological Molecules

How do abiotic or biotic factors influence the rates of enzymatic reactions?

Biological Molecules B Lipids, Proteins and Enzymes. Triglycerides. Glycerol

Essential Biology 3.2 Carbohydrates, Lipids, Proteins. 1. Define organic molecule.

Chapter 6. Metabolism & Enzymes. AP Biology

Examples. Chapter 8. Metabolism & Enzymes. Flow of energy through life. Examples. Chemical reactions of life. Chemical reactions & energy

EXPERIMENT 8 (Organic Chemistry II) Carboxylic Acids Reactions and Derivatives

BIO 322/122L Laboratory Plant Water Relations

Name Instructor Lab Section

Name: Bio A.P. Lab Diffusion & Osmosis

Topic 4: Enzymes and metabolism

Arif Ullah - ITHS

Lab 6: Cellular Respiration

In this lab, you will determine, through observation, which protease is secreted into the stomach, and which is secreted into the small intestine.

Organic Molecules: Proteins

WHY IS THIS IMPORTANT?

Review of Energetics Intro

Ch 5 Metabolism and enzymes

LAB 5 - Enzymes BACKGROUND INFORMATION

GCSE. Biology Practical Manual. Unit 3: Practical Skills CCEA GCSE TEACHER GUIDANCE

Life s molecular diversity is based on the. properties of carbon. Chain Ring Branching chain

Lab 4: Enzymes ANSWER KEY. 1. How could you test to see if an enzyme was completely saturated during an experiment? (2 pts)

Movement of substances across the cell membrane

ENZYME ACTIVITY. Readings: Review pp , and in your text (POHS, 5 th ed.).

Biology Unit 3 Review. Objective 1. Describe the important functions of organic molecules Carbohydrates Lipids Proteins Nucleic acids

Version A. AP* Biology: Biochemistry. Name: Period

Determining the Molecular Mass of an Unknown Acid by Titration

The building blocks of life.

Qualitative test of protein-lab2

Factors Affecting the Rate of Enzyme Activity NOTES

Standards: Next Generation Science Standards ( )

Notes 2-4. Chemical Reactions and Enzymes

Transcription:

ENZYME ACTIVITY This activity is an alternative to the titration proposed for Enzyme Catalysis (AP Bio Lab #2, Biology Lab Manual). There are numerous alternative lab activities that measure the rate of enzyme activity (i.e. Gen Nelson, Catalase Lab, http://www.accessexcellence.org). This one is Erol Altug s, which has been modified from the one developed by Tom Carroll of St. Alban s School. The introduction and some questions are from Biology Lab Manual. Introduction Enzymes are biological catalysts that carry out thousands of chemical reactions, which occur in living cells. They are generally large proteins made up of several hundred amino acids, and often contain a non-proteinaceous group that is important in the actual catalysts. In an enzyme-catalyzed reaction, the substance to be acted upon, the substrate, binds in the active site of the enzyme. The enzyme and substrate are held together in an enzymesubstrate complex by hydrophobic bonds, hydrogen bonds, and ionic bonds. The enzyme then converts the substrate to the reaction products in a process that often requires several chemical steps, and may involve covalent bonds. Finally, the products are released into solution and the enzyme is ready to form another enzyme-substrate complex. As is true of any catalyst, the enzyme is not used up as it carries out the reaction, but it recycled over and over. One enzyme molecule can carry out thousands of reaction cycles every minute. Each enzyme is specific for a certain reaction because its amino acid sequence is unique and causes it to have a unique three-dimensional structure. The business end of the enzyme molecule, the active site, also is specific so that only one or a few of the thousands of compounds present in a cell can interact with it. If there is a prosthetic group on the enzyme, it will form part of the active site. Any substance that blocks or changes the shape of the active site will interfere with the activity and efficiency of the enzyme. If these changes are large enough, the enzyme can no longer act at all, and has become denatured. There are several factors that are especially important in determining the enzyme s shape, and these are closely regulated both in the living organism and in laboratory experiments to give the optimum or most efficient enzyme activity: 1

1. ph ph is a negative logarithmic scale that measures the acidity of H + concentration in a solution. The scale runs from 0 to 14 with 0 being the highest in acidity and 14 the lowest. Neutral solutions have of ph of 7. Acid solutions have a ph less than 7; basic solutions have a ph greater than 7. Amino acid side chains contain groups such as -COOH and NH 2 that readily gain or lose H + ions. As the ph is lowered, an enzyme will tend to gain H + ions, and eventually enough side chains will be affected so that the enzyme s shape is disrupted. Likewise, as the ph is raised, the enzymes have an optimum in the neutral ph range and are denatured at either extremely high or low ph. Some have an appropriately low ph optimum. A buffer is a compound that will gain or lose H + ions so that the ph changes very little. 2. SALT CONCENTRATION If the salt concentration is very low or zero, the charged amino acid side chains of the enzyme will stick together. The enzyme will denature and form an inactive precipitate. If, on the other hand, the salt concentration is very high, normal interaction of charged groups will be blocked, new interactions occur, and again the enzyme will precipitate. An intermediate salt concentration such as that of blood (0.9%) or cytoplasm is optimum for most enzymes. 3. TEMPERATURE All chemical reactions speed up as temperature increases. As the temperature increases, more of the reacting molecules have enough kinetic energy to undergo the reaction. Since enzymes are catalysts for chemical reactions, enzyme reactions also tend to go faster with increasing temperature. However, if the temperature of an enzyme-catalyzed reaction is raised still further, an optimum is reached. Above this optimum point the kinetic energy of the enzyme and water molecules is so great that the structure of the enzyme molecules starts to be disrupted. The positive effect of speeding up the reaction is now more than offset by the negative effect of denaturing more and more enzyme molecules. Many proteins are denatured by temperatures around 40 0 50 0 C, but some are still remain active at 70 0 80 0 C, and a few even withstand being boiled. 4. SMALL MOLECULES Many molecules other than the substrate may interact with an enzyme. If such a molecule increases the rate of the reaction it is called an activator. If the molecule decreases the reaction rate it is called an inhibitor. The cell can use these molecules to regulate how fast the enzyme acts. Any substance that tends to unfold the enzyme, such as an organic solvent or detergent, will act as an inhibitor. Some inhibitors act by reducing S-S bridges that stabilize the enzyme s structure. Many inhibitors act by reacting with side chains in or near the active site to change or block it. Others may damage or remove the prosthetic group. Many wellknown poisons, such as potassium cyanide and curare, are enzyme inhibitors that interfere with the active site of a critical enzyme. While not affecting the enzyme s shape, the reaction rate may be further affected by either the enzyme concentration and/or the substrate concentration. The more molecules of either that are present will increase the mathematical probability of random collisions and enzyme- substrate couplings. 2

The Reaction and the Assay In this exercise you will study the enzyme catalase, which accelerates the breakdown of hydrogen peroxide (a common but poisonous - byproduct of oxidative metabolism) into water and oxygen, according to the summary reaction: 2H 2 O 2 + catalase 2H 2 O + O 2 + catalase This catalase-mediated reaction is extremely important in the cell because it prevents the accumulation of hydrogen peroxide (H 2 O 2 ), a strong oxidizing agent that tends to disrupt the delicate balance of cell chemistry. This compound is broken down in the peroxisome. Catalase is found in both animal and plant tissues. It is more easily found in animal tissue (especially bovine liver), but animal extract is too strong for this experiment and if used requires significant dilution prior beforehand. Catalase is significantly abundant in plant storage organs such as potato tubers, corns, and in the fleshy parts of fruits and those work much better for this activity. You will isolate catalase from potato tubers and measure its rate of activity under different conditions. You will be conducting a biological assay, whereby a disc of filter paper will be immersed in the enzyme solution, and then placed in the hydrogen peroxide substrate. The oxygen produced from the subsequent reaction will become trapped in the disc, thus giving it buoyancy. The time measured from the moment the disc touches the substrate until it reaches the surface of the solution is a measure of the rate of the enzyme activity. (The disc should be flat on top of the solution at the end.) Materials 100 ml graduated cylinders 2.1 cm filter paper discs (or uniform-cut discs made by identical paper punches) 50 ml beakers (or small disposable paper cups) Rulers (if paper cups are used) Blender Cheesecloth Distilled water Forceps Hot plate Hydrogen peroxide Ice Potatoes Thermometer (Candy thermomter) 3

PROCEDURE Extraction/Preparation of Potato Catalase (Your instructor may do this in advance) 1. Peel a fresh potato tuber and cut the tissue into small cubes. 2. Weigh out 50 grams of tissue. 3. Place the tissue, 50 ml of cold distilled water, and a small amount of crushed ice in a pre-chilled blender. 4. Homogenize for 30 seconds at high speed. FROM THIS POINT ON, THE ENZYME PREPARATION MUST BE CARRIED OUT IN AN ICE BATH. 5. Filter the potato extract, using cheesecloth. 6. Pour the filtrate into a 100 ml graduated cylinder and add cold distilled water to bring up the final volume to 100 ml. NOTE This extract will arbitrarily be labeled 100 units of enzymes per ml, or 100 units/ml, and will be used in the tests. Independent Variables & Measurements & Recordings You will be manipulating the independent variables. So as to be able to plot more than two data points (i.e. a line) any experiment needs a minimum of three measurements, which usually works out as: standard conditions, conditions above normal, conditions below normal. In these tests, you will work with five variations of any one condition. You and your lab partner(s) will be responsible for conducting an experiment measuring rate changes for one of the conditions, which your instructor will assign. However, you need to observe how the other conditions are being manipulated and what can be learned about enzyme function. All recordings are to be kept in the Data Table at the end of these instructions. Those results will be submitted along with your graphs and answers to questions. EVERY STUDENT IS RESPONSIBLE FOR RECORDING AND GRAPHING THE CLASS AVERAGE RESULTS OF ALL THE EXPERIMENTS. 4

Part I EFFECT OF CATALASE CONCENTRATION This part of the lab exercise considers the impact of enzyme concentration to carry out biochemical reactions (rate of reactivity) while using a substrate concentration that is in access. 2. Label five 50 ml beakers as follows: 100% 100 units/ml 75% 75 units/ml 50% 50 units/ml 25% 25 units/ml 0% 0 units/ml 3. Prepare 40 ml of enzyme for each of the above concentrations in the following manner: {Your instructor MAY have already prepared the catalase (enzyme) concentrations already.} Use the table below, combining catalase (enzyme) with water, in order to get the required enzyme concentrations. Enzyme Concentration % 100% 75% 50% 25% 0% ml of original enzyme solution ml of cold distilled water units per ml 40 ADD 0 = 100 30 ADD 10 = 75 20 ADD 20 = 50 10 ADD 30 = 25 0 ADD 40 = 0 4. Keep your catalase preparations in the ice bath. 5. Label an additional set of IDENTICAL beakers for the substrate (hydrogen peroxide). Into each of the labeled beakers, place 40 ml of hydrogen peroxide in each. Label an additional set of five 50 ml beakers as follows. 100% 100 units/ml 75% 75 units/ml 50% 50 units/ml 25% 25 units/ml 0% 0 units/ml 6. Using forceps, immerse a 2.1 cm filter paper disc into the prepared catalase solution for 5 seconds. 7. Remove the disc and drain for 10 seconds on a paper towel. 8. Place the disc at the bottom of the first substrate solution corresponding to the concentration of catalase in which the disk was placed in. The oxygen produced from the breakdown of the hydrogen peroxide by catalase becomes trapped in the fibers of the disc, thereby causing the disc to float to the surface of the solution. 5

9. Measure (using a stopwatch) the reaction time for the amount of time from when the disc was placed at the bottom of the beaker until the disc floats on top of the solution (rate will be measured in seconds). The rate (R) of the reaction is calculated as R = 1/t. 10. Repeat this procedure twice for each enzyme concentration and average the results. 11. Record your results in Table 1 on the Data Tables. 12. Later, plot your data on a graph, which should be properly labeled. 6

Part 2 EFFECT OF SUBSTRATE CONCENTRATION During this section of the activity, you will determine the effect of substrate (hydrogen peroxide) concentration on the rate of catalase activity. 1. Obtain five 50 ml beakers and label them as indicated by the chart below. Prepare the serial solutions using the instructions below and add them to the appropriate beaker. Be certain to use room-temperature water. 2. Using only the 100 units/ml enzyme concentration solution, 100% catalase solution, repeat the assay procedure as outlined on page 5-6 (I, steps 3 8) with the filter papers. Keep the enzyme solution in an ice bath. 3. Repeat the procedure for each of the substrate concentrations. Be sure to use the same enzyme every time. 4. Record your results in Table 2 in the Data Tables. Later, plot your data on a graph. How to Prepare Serial Dilutions for Substrate (Hydrogen Peroxide) As you did with the Enzyme Concentration, you will have five variations of the stock substrate concentrations (100%, 75%, 50%, 25%, and 0%). However, it is too dangerous to work with 100% hydrogen peroxide, so our maximum strength will be 3%, which is the standard concentration of H 2 O 2 that can be purchased in grocery stores and pharmacies. You will end up with 3.0%, 2.25%, 1.5%, 0.75%, and 0.0%. Take 3.0% H 2 O 2 and mix with an equal volume of distilled water to create 1.5%. Mix equal volumes of 3.0% and 1.5% to create 2.25% and mix equal volumes of 1.5% and 0.0% to create your 0.75% solution of H 2 O 2. You need equal amounts to do the assay. Use this table as a guide to determine how much. Beaker Hydrogen Peroxide Dilution ml of 3% H 2O 2 ml of water 0.0% 0.0% H 2O 2 (0% Concentration) 0.0 40.0 0.75% 0.75% H 2O 2 (25% Concentration) 10.0 30.0 1.5% 1.5% H 2O 2 (50% Concentration) 20.0 20.0 2.25% 2.25% H 2O 2 (75% Concentration) 30.0 10.0 3.0% 3.0% H 2O 2 (100% Concentration) 40.0 0.0 7

IMPORTANT: It is very important that your substrate solutions are accurately prepared. 8

Part 3 EFFECT OF TEMPERATURE 1. Use 40 ml of a 3.0% hydrogen peroxide solution as the substrate. 2. Use 100% (100 units/ml) enzyme concentration. 3. Run the reactions in five water baths at five different temperatures. (Since the experiment will be ran FIVE times in FIVE different water baths, students will need FIVE BEAKERS of 3.0% hydrogen peroxide (100% concentration), each one containing 40 ml of the solution, AND FIVE BEAKERS of catalase at 100% concentration with EACH BEAKER containing 100 ml.) Follow the same procedure of using standard conditions (i.e. room temperature) and then two temperatures above and two below. The following temperatures are suggested: 4 0 C 10 0 C 22 0 C (room temperature) 40 0 C 65 0 C + NOTE: At the time of each assay record the exact temperature of the water bath. 4. Use the same assay procedure as outlined on page 5-6 (I, steps 3 8) for the five beakers with each one ran at one of the temperatures above. 5. Record your results in Table 4. Plot your data on a graph. 9

DISCUSSION and/or QUESTIONS for REPORT 1. Basic questions of the experiment: a. What is the enzyme of this reaction? b. What is the substrate of this reaction? c. What is the product of this reaction? d. What is the gas produced and how could you demonstrate that? 2. How does enzyme activity vary with enzyme concentration? 3. How is the rate of enzyme activity affected by increasing the concentration of the substrate? 4. What do you think would happen if you increased the substrate concentration to 40.0% hydrogen peroxide? 5. How does changing the substrate concentration compare to changing the enzyme concentration in this experiment? 6. Explain the results when the hydroxylamine is added to the enzyme. 7. From the temperature data, what can you conclude about how temperature affects enzyme activity? How would you explain the results? 8. What is meant by optimum temperature? According to the class data, what is the optimum data for the potato catalase and why? 9. What would you predict if you had first mixed the catalase (100%) in serial solutions of varying phs of 3, 5, 7, 9, 11? What would you predict would be optimum ph? 10. Design a controlled experiment to test the effect of varying ph, temperature, or enzyme concentration. 10

DATA TABLES Name Date Lab partner(s) Table 1 Effect of Enzyme Concentration on Rate of Activity Enzyme Concentration % Enzyme Concentration Time to Float Disc (in seconds) (units/ml) Trial 1 Trial 2 Average Rate Class Average 100 100 75 75 50 50 25 25 0 0 Table 2 Effect of Substrate Concentration on Enzyme Activity Substrate Concentration Time to Float Disc (in seconds) (from serial dilutions) Trial 1 Trial 2 Average Rate Class Average 0.0 % H2O2 0.75% H2O2 1.5% H2O2 2.25% H2O2 3.0% H2O2 11

Table 3 Effect of Temperature on Rate of Enzyme Activity Time to Float Disc (in seconds) Temperature (degrees C) Trial 1 Trial 2 Average Rate Class Average 4 10 22 40 65+ While you only worked on one of the variables, you are responsible for understanding all the factors manipulated (enzyme concentration, substrate concentration, temperature, inhibitor, and if done ph) and how that affects enzyme function. Because you will need to graph the class average of multiple experiments, your instructor may allow you to use an electronic graphing program for this laboratory exercise. Submit these tables and your graphs along with any questions the instructor asks you to answer. 12

COLLEGE BOARD ENZYME CATALYSIS LABORATORY ACTIVITY Overview In this laboratory activity, students will observe the conversion of hydrogen peroxide to water and oxygen gas by the enzyme catalase. They will then measure the amount of oxygen generated and calculate the rate of enzyme-catalyzed reaction. Objectives Before doing this laboratory activity students should understand: the general functions and activities of enzymes the relationship between the structure and function of enzymes the concept of initial reaction rates of enzymes how the concept of free energy relates to enzyme activity that changes in temperature, ph, enzyme concentration, and substrate concentration can affect the initial reaction rates of enzyme-catalyzed reactions After performing this laboratory activity students should be able to: measure the effects of changes of temperature, ph, enzyme concentration, substrate concentration on reaction rates of an enzyme-catalyzed reaction in a controlled experiment explain how environmental factors affect the rate of enzyme-catalyzed reactions 13