Mortality in patients with loss of consciousness at the scene of trauma

Similar documents
D. Pre-Hospital Trauma Triage and Bypass Algorithm

ARTICLE IN PRESS. doi: /j.jemermed TRAUMA PATIENTS CAN SAFELY BE EXTUBATED IN THE EMERGENCY DEPARTMENT

Criteria for cancelling Helicopter Emergency Medical Services (HEMS) - dispatches

Factors Contributing to Fatal Outcome of Traumatic Brain Injury: A Pilot Case Control Study

PARA107 Summary. Page 1-3: Page 4-6: Page 7-10: Page 11-13: Page 14-17: Page 18-21: Page 22-25: Page 26-28: Page 29-33: Page 34-36: Page 37-38:

Restore adequate respiratory and circulatory conditions. Reduce pain

The etiology of the trauma was defined as the mechanism by which the traumatic event occurred and

Chapter 2 Triage. Introduction. The Trauma Team

Trauma Patients What do we really know?

Chapter 34. Objectives. Objectives 01/09/2013. Chest Trauma

Factors Affecting Pneumonia Occurring to Patients with Multiple Rib Fractures

ESCAMBIA COUNTY TRAUMA TRANSPORT

EAST MULTICENTER STUDY DATA DICTIONARY

PRINCIPLES OF THE ORGANIZATION, DIAGNOSTICS AND

DATA COLLECTION AND MANAGEMENT

EAST MULTICENTER STUDY DATA DICTIONARY. Temporary Intravascular Shunt Study Data Dictionary

Efficacy of the Motor Component of the Glasgow Coma Scale in Trauma Triage

PEDIATRIC BLUNT TRAUMA WHAT S DIFFERENT? NORDIC TRAUMA COURSE 2016

Case Report Fractured Ribs and the CT Funky Fat Sign of Diaphragmatic Rupture

Use Of The Pediatric Trauma Score To Triage Severity Of Childhood Injury

The effect of emergency medical services response on outcome of trauma laparotomy at a Level 1 Trauma Centre in South Africa

Chest x-ray in Trauma Pearls and pitfalls. Mats O. Beckman. Stockholm

England & Wales 2 YEARS OF SEVERE INJURY IN CHILDREN

Scoring of anatomic injury after trauma: AIS 98 versus AIS 90 do the changes affect overall severity assessment?

Received 4 September 2014 Accepted 24 June 2015

Focused History and Physical Examination of the

1. In a rear-impact motor vehicle crash, which area of the spine is most susceptible to injury? A. Cervical B. Thoracic C. Lumbar D.

Updated October 16, 2014

SIERRA-SACRAMENTO VALLEY EMS AGENCY PROGRAM POLICY

Chapter 29 - Chest Injuries

The Dynamics of Trauma. Jamie Syrett, MD Director of Prehospital Care Rochester General Health System

Trauma Registry Documentation December 16, 2014

Activity Three: Where s the Bleeding?

Lower limb and associated injuries in frontal-impact road traffic collisions.

What to do with missing data in clinical registry analysis?

Original Article Role of pleural fluid attenuation values on CT for hemothorax diagnosis in trauma patients

Summary of Pediatric Trauma Patients

Severe trauma presenting to the resuscitation room of a Hong Kong emergency department

TEVAR FOR! THORACIC AORTIC TRAUMA"

Violence competes with the economy as the number

Injury caused by an object breaking the skin and entering the body. immediate intervention to repair internal

Gender-specific differences in severely injured patients between 2002 and 2011: data analysis with matched-pair analysis

Cardiac Arrest due to Trauma

England & Wales SEVERE INJURY IN CHILDREN

Andrés Eduardo Suárez Jaramillo

Liver lacerations in abdominal trauma management based on anatomical knowledge: A Case report

PRE-HOSPITAL PATIENT CARE PROTOCOLS BASIC LIFE SUPPORT/ADVANCED LIFE SUPPORT

Geriatric Trauma Resuscitation: Lessons from a Geriatric Trauma Surgeon

RESULTS AND DISCUSSION PATIENTS AND METHODS. Total no. of cases

SCAPULAR FRACTURES IN BLUNT CHEST TRAUMA SELF-EXPERIENCE STUDY

Review. 1. Kinetic energy is a calculation of:

Life-Saving Treatment by Fluid Resuscitation and a Thoracotomy in a Case of Deep Pulmonary Laceration

Research Article Reduction of Pain and Edema of the Legs by Walking Wearing Elastic Stockings

What are the predictors of scapula fractures in high-impact blunt trauma patients and why do we miss them in the emergency department?

Pre-hospital Trauma Life Support. Rattiya Banjungam Emergency Physician, Khon Kaen Hospital

3. D Objective: Chapter 4, Objective 4 Page: 79 Rationale: A carbon dioxide level below 35 mmhg indicates hyperventilation.

SAN LUIS OBISPO COUNTY EMERGENCY MEDICAL SERVICES AGENCY PREHOSPITAL POLICY

McHenry Western Lake County EMS System Paramedic, EMT-B and PHRN Optional Continuing Education 2019 #2 Blunt Trauma

WHATCOM COUNTY MEDICAL EXAMINER 1500 NORTH STATE STREET BELLINGHAM, WA ANNUAL REPORT

Different Patterns in Abdominal Stab Wound in the Self-Inflicted and Assaulted Patients: An Observational Analysis of Single Center Experience

Isolated Sternal Fracture S-M Yuan ABSTRACT. Isolated sternal fracture is rare and benign. A 36-year-old female presented had severe chest

Disaster Triage START/JUMPSTART. Objectives: What is the Goal of MCI Management?

MANAGEMENT OF THORACIC TRAUMA. Luis H. Tello MV, MS DVM, COS Portland Hospital Classic Banfield Pet Hospital - USA

Firefighter Pre Hospital Care Program Module 25. Triage

Correlation of Computed Tomography findings with Glassgow Coma Scale in patients with acute traumatic brain injury

EAST MULTICENTER STUDY DATA COLLECTION TOOL

Haemodynamic deterioration in lateral compression pelvic fracture after prehospital pelvic circumferential compression device application

A Review on the Role of Laparoscopy in Abdominal Trauma

BETA BLOCKADE: IT S NOT JUST FOR CARDIOLOGY PATIENTS

Trauma Overview. Chapter 22

Trauma Workshop! Skills Centre, St George Hospital! Saturday 15 March 2014!

Cardiopulmonary Physiotherapy

Immobilizing the spine New national approach

Indian Journal of Physiotherapy and Occupational Therapy. Assessment of inelastic sleeves in patients with upper limb lymphoedema

Projected Percent Increase in San Diego County Population Levels by 2050

ITLS Pediatric Provider Course Basic Pre-Test

INJURIES, DEATHS AND COSTS RELATED TO MOTOR VEHICLE CRASHES IN WHICH ALCOHOL WAS A FACTOR, WISCONSIN, 2013

Data Collection Tool. Standard Study Questions: Admission Date: Admission Time: Age: Gender:

Pediatric Trauma. July 27 th, Suzana Buac, PGY4. Dr. Neil Merritt

Student Guide Module 4: Pediatric Trauma

Shenandoah Co. Fire & Rescue. Injuries to. and Spine. December EMS Training Bill Streett Training Section Chief

Case Report Evolution of Skin during Rehabilitation for Elephantiasis Using Intensive Treatment

CLINICAL MANUAL. Trauma System Activation Trauma Code Criteria

Falling down a flight of stairs: The impact of age and intoxication on injury pattern and severity

Pediatric Isolated Trachea Rupture Treated with a Conservative Approach İ Akdulum 1, M Öztürk 2, N Dağ 1, A Sığırcı 1 ABSTRACT

Chapter 24 Soft Tissue Injuries Presentation Notes

Disaster Triage START/JUMPSTART

County of Santa Clara Emergency Medical Services System

NON-OPERATIVE MANAGEMENT OF PEDIATRIC SOLID ORGAN INJURY

Clinical outcomes of multiple rib fractures: does age matter?

Journal of Phlebology and Lymphology

GOALS: To be able to assure proper patient selection in spinal motion restriction

Upper extremity open fractures in hospitalized road traffic accident patients: adult versus pediatric cases

Lessons from a large trauma center: impact of blunt chest trauma in polytrauma patients still a relevant problem?

S A Scandal in Bohemia: You see, but you do not

Head injury in children

Bleeding and Shock. Circulatory System

Midlands Silver Trauma Group.

CORE STANDARDS STANDARDS USED IN TARN REPORTS

7. Hypovolemic shock caused by severe burns is the result of a loss of: A) plasma. B) platelets. C) whole blood. D) red blood cells.

Transcription:

Int J Emerg Med (2010) 3:91 95 DOI 10.1007/s12245-009-0154-3 ORIGINAL RESEARCH ARTICLE Mortality in patients with loss of consciousness at the scene of trauma André Luciano Baitello & Francisco de Assis Cury & Paulo César Espada & Rogério Yukio Morioka & José Maria Pereira de Godoy Received: 19 July 2009 / Accepted: 8 December 2009 / Published online: 9 February 2010 # Springer-Verlag London Ltd 2010 Abstract Background and aim: The aim of this study was to evaluate if loss of consciousness at the scene of an accident in patients with thoracic trauma classified by the Abbreviated Injury Scale (AIS) as thorax >2 has a different outcome in respect to immediate hospital discharge, hospitalization, death and type of accident. Methods: A prospective study was performed in the Regional Trauma Center of São José do Rio Preto. All patients with scores related to thoracic injury 2 were included in this study. Thus, 134 patients with penetrating and 231 with blunt thoracic injuries were evaluated. The chi-square, Fisher's exact and relative risk tests were utilized for statistical analysis with an alpha error greater than 5% (p<0.05) being considered statistically significant. Results: A significantly higher number of patients who lost consciousness (35 33.9%) died compared to those who did not lose consciousness (9 3.5%, Fisher's exact test: p< 0.0001) where the relative risk (RR) of death when an individual lost consciousness was 9.7 (95% CI: 4.8 19.4). In respect to the necessity of hospital treatment, those who lost consciousness were more commonly hospitalized (Fisher's exact test: p<0.0001). A. L. Baitello : F. de Assis Cury : P. C. Espada : R. Y. Morioka Department of Trauma, Medical School of São José do Rio Preto, FAMERP, São Paulo, Brazil J. M. P. de Godoy (*) Cardiology and Cardiovascular Surgery Department, Medical School of São José do Rio Preto-FAMERP, Rua Floriano Peixoto, 2950, São José do Rio Preto, SP 15020-010, Brazil e-mail: godoyjmp@riopreto.com.br Conclusion: The loss of consciousness at the time of trauma is a warning sign in patients with thoracic injuries whether associated with other types of injuries or not. Keywords Loss of consciousness. Thoracic trauma. Mortality Introduction The incidence of thoracic injuries in the USA is 12 per 1 million inhabitants per day, with 20 to 25% of the deaths resulting from trauma attributed to thoracic injuries. It is estimated that thoracic injuries account for approximately 16,000 deaths in the USA annually [1 4]. The lungs, rib, stern, scapula, diaphragm, heart and aorta are the most important regions of injury in thorax trauma [5 7]. Chest x-ray is the initial primary imaging examination for the evaluation of the thorax in polytrauma patients, enabling an assessment of the extent of injuries and early screening for management decisions [8]. The Abbreviated Injury Scale (AIS) and the Injury Severity Score (ISS), which are accurate methods to assess the severity of injuries and have many potential applications, have been introduced in emergency medicine [9]. The AIS is a consensus-derived, anatomically based system of grading injuries on a non-linear scale ranging from 1 (minor injury) to 6 (lethal injury) [10, 11]. Loss of memory is most commonly reported with brain trauma [12, 13]; however, the association between loss of memory at the time of the initial treatment and the evolution of these patients has not been stressed in the

92 Int J Emerg Med (2010) 3:91 95 Table 1 Loss of consciousness and evolution of the patients in respect to the outcome (immediate hospital discharge, hospitalization and death) literature. The aim of this study was to evaluate whether loss of consciousness at the scene of an accident in patients with thoracic injuries classified as 2 according to the AIS has a different outcome compared to less severe injuries in respect to immediate hospital discharge, hospitalization, death and type of accident. Methods Immediate discharge Hospitalization Death Total No 113 135 9 257 Yes 13 55 35 103 Total 126 190 44 360 Chi-square=76.542; DF=2; p=0.000 A prospective study was carried out at the Regional Trauma Center of São José do Rio Preto from 1 July 2004 to 30 June 2005 to identify patients with thoracic injuries according to the AIS. All patients with scores 2 were included in the study. The AIS is a consensus-derived, anatomically based system of grading injuries on a nonlinear scale ranging from 1 (minor injury) to 6 (lethal injury) [10, 11]. Loss of consciousness at the scene of the accident before evaluation in the hospital emergency room was correlated with: immediate hospital discharge, hospitalization and death. The evaluation of the loss of consciousness was made by trained emergency ambulance teams, specialists in this type of situation. Additionally, associations between the types of trauma and loss of consciousness were evaluated in respect to (1) car crashes, (2) motorbike crashes, (3) pedestrian-vehicle collisions, (4) falls, (5) bicycle accidents, (6) gunshot wounds, (7) stabbings, (8) fights, (9) burns, (10) impaling, (11) electric shock involving falls to the ground, (12) bites, (13) drowning with thoracic trauma, (14) suicide, (15) nonintentional injuries and (16) others. The injuries were evaluated using the ISS, TRISS and the Revised Trauma Score (RTS), but this was not the objective of the study. The chi-square, Fisher's exact and relative risk tests were utilized for statistical analysis with an alpha error greater than 5% (p<0.05) considered statistically significant. Results A total of 365 patients classified with scores of 2 according to the AIS were evaluated. The ages of the patients varied from 13 to 89 years old (mean, 37.9 years). The number of men (291) was significantly greater than the number of women (74) (p<0.0001). A total of 134 patients with penetrating thoracic injuries and 231 with blunt injuries were included in this study. A significantly higher number of patients who lost consciousness (35 33.9%) died compared to those who did not lose consciousness (9 3.5%, Fisher's exact test: p< 0.0001) where the relative risk (RR) of death when an individual lost consciousness was 9.7 (95% CI: 4.8 19.4). In respect to discharge from hospital, patients who lost consciousness were more commonly hospitalized (Fisher's exact test: p<0.0001). Forty-seven patients arrived at the hospital with a systemic arterial pressure of 0 mmhg and 45 patients with a pressure of less than 90 mmhg. In relation to the respiration rate, 49 patients had a rate of 0 inspirations per minute and 8 patients less than 10 inspirations per minute. Table 2 Types of trauma associated with loss of consciousness Type of accident Loss of consciousness Without loss of consciousness Total p-value Relative risk 95% CI Others: burns, impaling, electric shock, bites, drowning, suicide and non-intentional wounds Car crash 35 54 89 0.001 1.5 (1.1 to 2.1) Motor crash 12 33 45 0.9143 0.9 (0.5 to 1.5) Pedestrian-vehicle collisions 13 8 21 0.0017 2.3 (1.5 to 3.4) Falls 19 54 73 0.3964 0.8 (0.5 to 1.3) Bicycle accidents 9 13 22 0.2233 1.4 (0.8 to 2.5) Gunshots 6 12 18 0.6039 1.1 (0.5 to 2.3) Stabbings 2 38 40 0.0001 0.1 (0.04 to 0.6) Fights 2 11 13 0.762 0.3 (0.08 to 1.2) Others 2 11 13 0.3635 0.5 (0.1 to 1.9) Total 103 257 360

Int J Emerg Med (2010) 3:91 95 93 Table 3 Medians of RTS for the different types of injury 1 21 70 7.84 0.00 10, 11, 14 0 13 7.84 0.00 15 0 17 7.84 0.00 2 10 36 7.84 0.00 3 10 12 7.84 2.96 4 8 68 7.84 0.00 5 4 18 7.84 0.00 6 10 8 6.74 7.84* 7 7 34 7.84 0.00 8 1 23 7.84 0.00 Table 5 Medians of ISS for the different types of injury 1 38 53 13.0 18.0 10, 11, 14 7 6 10.0 9.5 15 14 3 5.0 4.0 2 26 20 9.0 11.0 3 6 16 16.0 18.5 4 50 26 8.0 12.0 5 11 11 10.0 9.5 6 3 15 22.5 19.8 7 20 21 13.0 9.0 8 17 7 6.0 7.5 Ten patients with head injuries had AIS of 6, 50 patients had AIS of 5, and 115 patients had AIS of 4. The types of accident most associated with loss of consciousness were car crashes and pedestrian-vehicle collisions; stabbings were not associated with loss of consciousness (Tables 1, 2). There was no statistical significance comparing the other types of accidents. Tables 3, 4 and 5 show the results of the trauma indexes. The RTS (Table 3), TRISS (Table 4) and ISS (Table 5) demonstrated that there were significant differences in the medians of the different types of trauma (Mood's median test: p=0.000). Additionally, significant differences were observed in the association between the type of injury and the respiratory rate (Mood's median test: p= 0.04, Table 6). The mean systolic pressure was significantly lower in patients with gunshot wounds (p<0.0001, Table 7). Table 4 Medians of TRISS for the different types of injury 1 51 40 98.9 5.5 10, 11, 14 4 9 99.3 0.8 15 3 14 99.6 0.2 2 18 28 99.4 0.8 3 18 4 95.5 36.8* 4 41 35 98.8 3.6 5 11 11 99.2 3.3 6 16 2 96.9 53.9 7 25 16 99.1 1.0 8 6 18 99.4 1.4 Table 6 The association between the type of injury and the respiratory rate 1 40 51 20.0 4.0 10, 11, 14 6 7 20.2 5.5 15 9 8 19.0 4.5* 2 18 28 20.0 3.5 3 6 16 20.0 5.0 4 29 47 20.0 2.0 5 6 16 20.0 2.3 6 8 10 20.0 22.0 7 5 36 20.0 3.5 8 9 15 20.0 2.0

94 Int J Emerg Med (2010) 3:91 95 Table 7 Mean systolic blood pressure and standard deviation in the different types of injuries *ANOVA: p=0.000 Type of injury Patients Mean Standard deviation Car crash 91 117.58 40.92 Motorbike crash 46 114.57 36.62 Pedestrian-vehicle collisions 22 112.73 57.91 Falls 76 125.00 34.89 Bicycle accidents 22 122.73 37.44 Gunshots 18 75.00 60.32* Stabbings 41 118.54 33.36 Fights 24 131.25 19.63 Non-intentional wounds 13 125.82 13.19 Impaling, electric shock, suicide 17 125.38 12.66 There were no significant differences between blunt and penetrating traumas in respect to discharge after the initial evaluation, hospitalization and death (chi-square test: p= 0.3, Table 8). Moreover, there were no significant differences between blunt and penetrating injuries in respect to the trauma indexes, blood pressure, pulse and respiration rate. Discussion This study shows that loss of consciousness is a risk factor that affects the prognosis of patients that suffer thoracic injuries whether associated with other types of injury or not. Patients who lost consciousness were more frequently hospitalized and died in the hospital, thereby demonstrating the greater severity of the clinical status with a relative risk of 9.7. In this study, the evaluation of the loss of consciousness was made between the scene of the accident and the patient s arrival in the emergency room, and so this is simple and rapid information that may be used as a warning sign for prognosis. These observations associating thoracic injury with loss of consciousness were not found in publications linked to PubMed, Scopus, ISI, ATLS (Advanced Trauma Life Support) and Scielo, and so provide Table 8 Blunt and penetrating traumas in respect to outcome (discharge after the initial evaluation, hospitalization and death) Quick discharge Hospitalization Death Total Penetrating 42 79 13 134 Blunt 84 118 30 232 Total 126 197 43 366 Chi-square test: p=0.306 new information for the thoracic surgeon in respect to the severity of wounds. In this study, 47 patients arrived at the hospital with blood pressure that was unrecordable, which affected the state of consciousness of these patients. Brain injuries were another important aspect in this study; 175 patients had an AIS 4. Thus, the severity of this type of injury may contribute to the percentage of patients who lose consciousness. The pre-hospital triage policy might have impacted the outcome as the ambulance service transports the more severely ill patients directly to a trauma reference center and the less severely ill patients to other smaller centers. Although this was not an objective of the current study, the time from the ambulance service arriving at the scene of the accident to the patient arriving at hospital was quick and similar for all patients. This policy may contribute to the access of more severely ill patients, those who probably would have died if the ambulance service was not specialized, to specialized treatment. Thoracic injury is a significant cause of mortality, and identification of factors involved in the trauma are important [14]. In the current study, loss of consciousness was identified as yet another aggravating factor in thoracic injuries. The type of accident influenced the outcomes in this study; loss of consciousness is associated with car crashes and pedestrian-vehicle collisions; however, stab wounds are not associated with loss of consciousness. Conclusion Loss of consciousness evaluated at the time of the injury is a warning sign about the severity of thoracic injuries of patients whether associated with other types of injuries or not.

Int J Emerg Med (2010) 3:91 95 95 References 1. Anthoine D, Vaillant G, Martinet Y (1990) Diagnostic pitfalls, artifacts and difficulties of thoracic radiography. Rev Pneumol Clin 46(6):251 259 2. Collins J (2000) Chest wall trauma. J Thorac Imaging 15(2):112 119 3. Fabian TC, Croce MA, Minard G (2002) Current issues in trauma. Curr Probl Surg 39(12):1160 1244 4. Reuter M (1996) Trauma of the chest. Eur Radiol 6(5):707 716 5. Miller DL, Mansour KA (2007) Blunt traumatic lung injuries. Thorac Surg Clin 17(1):57 61, vi 6. Sangster GP, González-Beicos A, Carbo AI, Heldmann MG, Ibrahim H, Carrascosa P, Nazar M, D'Agostino HB (2007) Blunt traumatic injuries of the lung parenchyma, pleura, thoracic wall, and intrathoracic airways: multidetector computer tomography imaging findings. Emerg Radiol 14(5):297 310 7. Waydhas C, Nast-Kolb D (2006) Chest injury. Part II: Management of specific injuries. Unfallchirurg 109(10):881 892, quiz 893 4 8. Ho ML, Gutierrez FR (2009) Chest radiography in thoracic polytrauma. AJR Am J Roentgenol 192(3):599 612 9. Ndiaye A, Chambost M, Chiron M (2009) The fatal injuries of car drivers. Forensic Sci Int 30;184(1 3):21 27 10. Kilgo PD, Meredith JW, Osler TM (2006) Incorporating recent advances to make the TRISS approach universally available. J Trauma 60(5):1002 1008, discussion 1008 1009 11. Ott R, Krämer R, Martus P, Bussenius-Kammerer M, Carbon R, Rupprecht H (2000) Prognostic value of trauma scores in pediatric patients with multiple injuries. J Trauma 49(4):729 736 12. Willemse-van Son AH, Ribbers GM, Verhagen AP, Stam HJ (2007) Prognostic factors of long-term functioning and productivity after traumatic brain injury: a systematic review of prospective cohort studies. Clin Rehabil 21(11):1024 1037, Review 13. Klein E, Caspi Y, Gil S (2003) The relation between memory of the traumatic event and PTSD: evidence from studies of traumatic brain injury. Can J Psychiatry 48(1):28 33 14. Cury F, Baitello SL, Echeverria RF, Espada P, Godoy JMP (2009) Rates of thoracic trauma and mortality due to accidents in Brazil. Annais of Thorax Medicine 4(1):25 26