Received 04 November 2008; Accepted in revision 09 January 2009; Available online 20 January 2009

Similar documents
Brief Formalin Fixation and Rapid Tissue Processing Do Not Affect the Sensitivity of ER Immunohistochemistry of Breast Core Biopsies

# Best Practices for IHC Detection and Interpretation of ER, PR, and HER2 Protein Overexpression in Breast Cancer

Final published version:

Comparison on Cell Block, Needle-Core, and Tissue Block Preparations

The Effect of Delay in Fixation, Different Fixatives, and Duration of Fixation in Estrogen and Progesterone Receptor Results in Breast Carcinoma

HER2 status assessment in breast cancer. Marc van de Vijver Academic Medical Centre (AMC), Amsterdam

Dr. dr. Primariadewi R, SpPA(K)

Department of Pathology, Loyola University Medical Center, Maywood, IL 60153, USA 2

Immunohistochemistry in Breast Pathology- Brief Overview of the Technique and Applications in Breast Pathology

KEY WORDS: Breast carcinoma, c-erbb2, Fluorescent. Mod Pathol 2001;14(11):

Template for Reporting Results of Biomarker Testing of Specimens From Patients With Carcinoma of the Breast

Product Introduction

CME/SAM. Abstract. Anatomic Pathology / HER2/neu Results in Breast Cancer

Estrogen Receptor, Progesterone Receptor, and Her-2/neu Oncogene Expression in Breast Cancers Among Bangladeshi Women

Comparison of Immunohistochemical and Fluorescence In Situ Hybridization Assessment of HER-2 Status in Routine Practice

Journal of Breast Cancer

System-wide Ownership Group: Allina Health Breast Program Committee. Hospital Division Quality Council: August 2018

FAQs for UK Pathology Departments

On May 4 and 5, 2002, the College of American Pathologists

HercepTest for the Dako Autostainer Code K5207

Immunohistochemical Expression of Hormone Receptors and The Histological Characteristics of Biochemically Hormone Receptor Negative Breast Cancers

HER2/neu Amplification in Breast Cancer Stratification by Tumor Type and Grade

Cost Effectiveness of Manual Tissue Microarray Technique in Diagnostic Immunohistochemistry

HercepTest TM Code K5204

Welcome! HER2 TESTING DIAGNOSTIC ACCURACY 4/11/2016

A Study to Evaluate the Effect of Neoadjuvant Chemotherapy on Hormonal and Her-2 Receptor Status in Carcinoma Breast

CD10 expression in stromal component of invasive breast carcinoma: A potential prognostic determinant

HER2/neu Evaluation of Breast Cancer in 2019

Assessment Run B HER-2 IHC. HER-2/chr17 ratio**

Determination of HER2 Amplification by In Situ Hybridization. When Should Chromosome 17 Also Be Determined?

Her-2/neu expression and its correlation with ER status and various clinicopathological parameters

Validation of a clinical laboratory test means confirmation,

Comparison of in situ hybridization methods for the assessment of HER-2/neu gene amplification status in breast cancer using a tissue microarray

Immunohistochemical Determination of HER-2/neu Expression in Invasive Breast Carcinoma

NIH Public Access Author Manuscript Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2011 January 1.

Assessment Run B HER2 IHC

MEDICAL POLICY. Proprietary Information of YourCare Health Plan

Priti Lal, MD, 1 Paulo A. Salazar, 1 Clifford A. Hudis, MD, 2 Marc Ladanyi, MD, 1 and Beiyun Chen, MD, PhD 1. Abstract

Optimal algorithm for HER2 testing

Quality assurance and quality control in pathology in breast disease centers

Estrogen receptor (ER)

CANCER. Clinical Validation of Breast Cancer Predictive Markers

Data Supplement 1: 2013 Update Rationale and Background Information

Kristen E. Muller, DO, Jonathan D. Marotti, MD, Vincent A. Memoli, MD, Wendy A. Wells, MD, and Laura J. Tafe, MD

Assessment Run B HER2 IHC

Estrogen receptor (ER)

ISPUB.COM. C Choccalingam, L Rao INTRODUCTION ESTROGEN AND PROGESTERONE RECEPTORS

Genetic heterogeneity in HER2/neu testing by fluorescence in situ hybridization: a study of 2522 cases

TrainableImmunohistochemicalHER2/neu Image Analysis. A Multisite Performance Study Using 260 Breast Tissue Specimens

Immunohistochemical (IHC) HER-2/neu and Fluorescent- In Situ Hybridization (FISH) Gene Amplification of Breast Cancer in Indian Women

A COMPARISON OF THE EFFECT OF COMMERCIAL

Update on the Practical Management of HER2-Positive Breast Cancer

Assessment of Her-2/neu Overexpression in Primary Breast Cancers and Their Metastatic Lesions: An Immunohistochemical Study

Update on the Practical Management of HER2-Positive Breast Cancer

2018 OPTIONS FOR INDIVIDUAL MEASURES: REGISTRY ONLY. MEASURE TYPE: Process

Immunohistochemical Profile of Breast Cancer Patients at a Tertiary Care Hospital in New Delhi, India

COMPUTER-AIDED HER-2/neu EVALUATION IN EXTERNAL QUALITY ASSURANCE (EQA) OF BREAST CANCER SCREENING PROGRAMME

Breast cancer diagnostic solutions Deliver diagnostic confidence

Adjuvan Chemotherapy in Breast Cancer

Intratumoral Heterogeneity in Breast Cancer: A Case Report and Molecular Discussion

Reporting of Breast Cancer Do s and Don ts

Version 2 of these Guidelines were drafted in response to published updated ASCO/CAP HER2 test Guideline Recommendations-

Patterns of E.cadherin and Estrogen receptor Expression in Histological Sections of Sudanese Patients with Breast Carcinoma

Enhanced Accuracy and Reliability of HER-2/neu Immunohistochemical Scoring Using Digital Microscopy

HER2 CISH pharmdx TM Kit Interpretation Guide Breast Cancer

Low ER+ Breast Cancer. Is This a Distinct Group? Nika C. Gloyeske, MD, David J. Dabbs, MD, and Rohit Bhargava, MD ABSTRACT

Supplementary Online Content

What is HER2 positive breast cancer in 2018? Updated ASCO-CAP guidelines. Giuseppe Viale University of Milan European Institute of Oncology

Ki-67 is a biological tumor marker that reflects tumor

Journal of Breast Cancer

Expression of androgen receptors in primary breast cancer

Quality Assurance and Quality Control in the Pathology Dept.

Evaluation the Correlation between Ki67 and 5 Years Disease Free Survival of Breast Cancer Patients

Case Scenario 1. 2/15/2011 The patient received IMRT 45 Gy at 1.8 Gy per fraction for 25 fractions.

Hypoxia inducible factor-1 alpha and carbonic anhydrase IX overexpression are associated with poor survival in breast cancer patients

Does HER2/neu overexpression in breast cancer influence adjuvant chemotherapy and hormonal therapy choices by Ontario physicians? A physician survey

T he HER2/neu type 1 tyrosine kinase growth factor

The Expression of Basal Cytokeratins in Breast Cancers

IMMUNOHISTOCHEMICAL EXPRESSION OF TISSUE INHIBITOR OF METALLOPROTEINASE-1 (TIMP-1) IN INVASIVE BREAST CARCINOMA

Reviewer's report. Version: 1 Date: 24 May Reviewer: Cathy Moelans. Reviewer's report:

Evolution of Pathology

*Department of Pathology, Faculty of Medicine, University of Malaya and **Department of Pathology, Penang Hospital, Ministry of Health, Malaysia.

The College of American Pathologists (CAP) offers these

Lower 1D5 Sensitivity but Questionable Clinical Implications

Estrogen receptor (ER)

HER2+ Breast Cancer Review of Biologic Relevance and Optimal Use of Diagnostic Tools

Breast cancer: Antibody selection, protocol optimzation controls and EQA

MEDICAL POLICY. Proprietary Information of Excellus Health Plan, Inc. A nonprofit independent licensee of the BlueCross BlueShield Association

EARLY ONLINE RELEASE

HER2 status in breast cancer: experience of a Spanish National Reference Centre

HER-2/neu amplification detected by fluorescence in situ hybridization in fine needle aspirates from primary breast cancer

Statistical Analysis of Biomarker Data

HER-2/neu Marker Examination using Immunohistochemical Method in Patients Suffering from Gastric Adenocarcinoma

T he HER-2 gene encodes a 185 kda transmembrane

ONCOLOGY LETTERS 5: , 2013

Assessment performed on Friday, September 18, 2015, at Vancouver General Hospital

INTRODUCTION. Aravind Barathi Asogan 1, MBBS, MRCSEd, Ga Sze Hong 2, FRCS, FAMS, Subash Kumar Arni Prabhakaran 1, MBBS, FRCS

Department of Pathology, University of Southern California Keck School of Medicine, Los Angeles, California

Zsuzsanna Varga 1*, Aurelia Noske 1, Constanze Ramach 1,2, Barbara Padberg 1,3 and Holger Moch 1

Transcription:

Int J Clin Exp Pathol (2009) 2, 476-480 www.ijcep.com/ijcep811001 Original Article Immunohistochemical Detection of Estrogen and Progesterone Receptor and HER2 Expression in Breast Carcinomas: Comparison of Cell Block and Tissue Block Preparations Sharenda L. Williams 1, George G. Birdsong 2, Cynthia Cohen 1 and Momin T. Siddiqui 1 Department of Pathology and Laboratory Medicine, 1 Emory University Hospital and 2 Grady Memorial Hospital, Atlanta, GA Received 04 November 2008; Accepted in revision 09 January 2009; Available online 20 January 2009 Abstract: Fine needle aspiration (FNA) is a rapid tool for detection of breast carcinomas. Evaluation of estrogen and progesterone receptors (ER, PR) and HER2 expression by immunohistochemistry (IHC) are routinely performed in breast carcinomas. Formalin fixation of tissue for a minimum of 6 hours, and for HER2 not more than 48 hours is the current recommended practice. In this retrospective study, we compared ER, PR and HER2 expression in breast carcinomas using archival ethanol-fixed FNA cell block with formalin fixed resection tissue block preparations. 34 archival breast carcinoma FNA cell blocks of primary origin with subsequent resection tissue blocks were identified retrospectively. All 34 cases were diagnosed as invasive ductal carcinoma. Cases with neoadjuvant or adjuvant chemotherapy were excluded. Cell blocks were initially fixed in 50% ethanol (4-12 hrs), followed by formalin fixation (minimum 6 hrs). Tissue blocks were formalin-fixed within 4-8 hrs for 6-48 hrs. ER, PR, and HER2 IHC results on the cell blocks and tissue blocks were compared. Alcohol fixed cell block samples for detection of ER and PR by IHC show good agreement with tissue block samples and are therefore a reliable method (weighted Kappa of 0.773 and 0.785, respectively) to triage patients for hormonal treatment. However, HER2 results show only moderate agreement with a weighted kappa of 0.571. The increase in discrepant results may be due to ethanol fixation which results in false positive increased HER2 expression. These results demonstrate the importance of adherence to the College of American Pathologists/ASCO guidelines for HER2 IHC. Key Words: ER, PR, HER2, breast carcinoma, fine needle aspiration, cell block, formalin fixation, alcohol fixation, immunohistochemistry Introduction Breast cancer is a major health concern and a leading cause of death among women [1]. The lifetime risk of developing breast cancer in women is 13% and 210,000 new cases are diagnosed each year in the United States [1]. With so many lives affected, identification of biomarkers plays a paramount role in the treatment, management, and prognosis of breast cancer. Determination of hormonal status is an important primary assessment at the time of a breast cancer diagnosis. Estrogen receptor expression is present in about 70% of breast cancer cases [2]. Although clinical experience has shown that estrogen (ER) and progesterone (PR) receptors are weak prognostic markers for outcome, they are, however, strong biomarkers of response to tamoxifen treatment, and PR status is known to be associated with disease-free and overall survival [2]. Patients with ER-positive/PRpositive tumors have a better prognosis than patients with ER-positive/PR-negative tumors, who have a better prognosis than patients with ER-negative/PR-negative tumors [2]. Determination of human epidermal receptor protein-2 (c-erbb-2; HER2/neu) status is also important; as it is known to be a prognostic as well as predictive marker in both nodenegative and node-positive patients [2, 4, 5,

7]. HER2/neu is a transmembrane glycoprotein in the epidermal growth factor receptor family with tyrosine kinase activity. It is expressed at low levels in normal nonneoplastic epithelia, including breast duct epithelium, and is over-expressed in 10-20% of primary breast cancers [2-7]. When the protein is over-expressed, tyrosine kinase is constitutively activated, resulting in mitogenic transduction and poor prognosis [3, 8, 9]. HER2/neu status not only predicts poor outcome, but predicts sensitivity to anthracycline-based chemotherapy regimens, and resistance to cytoxan and tamoxifen therapies in the setting of ER-positive breast cancers [2, 10]. Just as breast cancers expressing ER and PR receptors are responsive to Tamoxifen, breast cancers with HER2 over-expression are candidates for treatment with Trastuzumab (Herceptin), a humanized monoclonal anti-her2/neu antibody [3]. Recent studies have shown that adjuvant Trastuzumab can reduce the risk of recurrence by one half, and mortality by one third, in early-stage breast cancer patients [2, 10]. Because of these prognostic implications, the need for accurate and precise assessment of ER, PR, and HER2/neu expression in breast cancer is critical in the determination of patients appropriate for treatment with these drugs [3, 8, 9]. Immunohistochemistry (IHC) is the most commonly used method of testing for ER, PR, and HER2/neu status [3]. However, several factors can affect the ER, PR, and HER2/neu IHC, including tissue fixation, choice of antibody, and the determination of criteria for positive results [2]. This retrospective study set out to evaluate one such factor - tissue fixation and the use of ethanol versus neutral buffered formalin - the recommended fixative of the College of American Pathologists/American Society of Clinical Oncology (CAP/ASCO). Materials and Methods Case Selection Thirty-four archival primary breast carcinoma cases with both fine needle aspiration cell blocks (CB) and subsequent resection/tissue blocks (TB) were identified retrospectively within a 3 year period (July 2001 to September 2004) at our institution. All 34 cases were diagnosed as invasive ductal carcinoma. Cases with neoadjuvant or adjuvant chemotherapy were excluded from this study. This study was approved by the Emory University School of Medicine Institutional Review Board (IRB 08271). Immunohistochemistry and Scoring for ER, PR and HER2 CB samples were initially fixed in 50% ethanol (4-12hrs), followed by fixation in 10% neutralbuffered formalin (minimum 6 hrs). TB were formalin-fixed within 4-8 hrs for 6-48 hrs (minimum 6 hrs). IHC was performed, following epitope retrieval, with a polymer based detection system (Envision plus, Dako, Carpinteria, CA) using mouse monoclonal antibodies for ER and PR (Dako, Carpinteria, CA), ER (1D5; 1:50), PR (PgR636; 1:400), and Herceptin kit (HercepTest, Dako, Carpinteria, CA) according to the manufacturer s instructions. For ER and PR, antigen retrieval is performed as follows: sections were deparaffinized and rehydrated with deionized water. They were then heated in citrate buffer (ph 6.0), using an electric pressure cooker for 3 minutes at 12-15 pounds per square inch (PSI) approximately at 120 C, and cooled for 10 minutes prior to immunostaining. All slides were loaded on an automated system (DAKO Autostainer) and exposed to 3% hydrogen peroxide for 5 minutes, incubated with primary antibody for 30 minutes, with labeled polymer (Envision + dual link) for 30 minutes, 3,3 - diaminobenzidine (DAB) as a chromogen for 5 minutes, and hematoxylin as counterstain for 5 minutes. These incubations were performed at room temperature. Between incubations sections were washed with Tris-buffered saline (TBS). Cover-slipping was performed using the Tissue-Tek SCA (Sakura Finetek USA, Inc, Torrance, CA) coverslipper. Positive controls of known positive tissues (endometrium and breast) and negative controls with primary antibody replaced with TBS are run with the patient/study slides. Nuclear staining in more than 10% of tumor cells was considered positive for ER and PR. Antigen retrieval for HER2/neu using HercepTest is performed by immersing and incubating the slides in 10mmol/L citrate buffer in a calibrated water bath (95-99ºC) for 40 (± 1) minutes. After decanting the epitope retrieval solution, the sections are rinsed in the wash buffer, and later soaked in the buffer for 5-20 minutes prior to staining. The slides 477 Int J Clin Exp Pathol (2009) 2, 476-480

Table 1 Correlation of ER, PR and HER2 expression by IHC between CT and TB samples Positive Negative Discrepancy agreement (%) agreement (%) (%) Kappa Correlation (Spearman) ER 90.4 86.7 5.80% 0.773 0.76 (<0.0001) PR 93.9 94.7 8.8% 0.785 0.79 (<0.0001) HER2/neu 73.3 81 15.6% 0.571 0.56 (<0.002) Positive: >10% for ER and PR; 3+ for HER2/neu. Negative: <10% for ER and PR; 0 or 1+ for HER2/neu are loaded onto the autostainer using the HercepTest program as described in the manufacturers insert. In the autostainer, the slides are rinsed, followed by 200 μl peroxidase-blocking reagent for 5 minutes, followed by rinsing and then placed in 200 μl primary anti-her2 protein (or negative control reagent) for 30 minutes, rinsed twice and finally immersed in 200 μl substrate chromogen solution (DAB) for 10 minutes. The slides are counterstained with hematoxylin, and finally coverslipped. HER2 results were determined based on the maximum area of staining intensity, according to the package insert and ASCO/CAP guidelines as follows: strong circumferential membranous staining in > 30% of invasive carcinoma cells = 3+; moderate, circumferential membranous staining in 10% of invasive tumor cells or 3+ in 30% of cells = 2+; weak and incomplete membranous staining in invasive tumor cells= 1+, no staining= 0. Tumors with 0 and 1+ staining were considered negative and cases scored as 2+ equivocal, and 3+ were considered positive, evaluated on 4x and 10x magnifications. Statistical Analysis ER, PR and HER2 IHC performed on CB and TB samples were compared. Statistical analyses, including positive and negative agreement and discrepancy rate were calculated using the Spearman rank correlation analysis (ρ) and Cohen kappa (κ) test of agreement. Kappa values above 0.6 correlated with good agreement, 0.4-0.6 was considered moderate agreement, whereas kappa results below 0.4 corresponded to fair, below 0.2 reflected poor agreements. Results Positive and negative agreements of ER, PR and HER2 expression by IHC on CB and TB samples are described in Table 1. It was noted that fifteen of thirty-four total cases (44.1%) had HER2/neu IHC discrepant results between FNA ethanol-fixed CB and formalin-fixed TB samples (Table 2). Of those 15 cases, 7 (46.7%) had either equivocal HER2/neu staining (4 cases) or positive HER2/neu staining (3 cases) by ethanol-fixed cell block IHC but were negative by formalin-fixed TB IHC. 2 of the 15 cases were either equivocal for HER2/neu IHC (1 case) or negative for HER2/neu IHC (1 cases) by ethanol-fixed cell block, while the formalin-fixed tissue blocks were positive for HER2/neu IHC. One ethanolfixed cell block was positive for HER2/neu IHC, while the formalin-fixed tissue block was equivocal for HER2/neu IHC. Three ethanol fixed cell blocks were negative for HER2/neu IHC, while the formalin-fixed tissue blocks were equivocal for HER2/neu IHC. Overall, nine of fifteen cases (60%) were either equivocal for HER2/neu IHC (4 cases) or positive for HER2/neu IHC (5 cases) by ethanol-fixed CB samples, while being either negative for HER2/neu IHC (7 cases) or equivocal for HER2/neu IHC (1 case) by formalin-fixed TB samples (Table 2). Discussion Fine needle aspiration (FNA) is a rapid, less invasive, and accurate diagnostic tool for the detection of breast carcinomas. IHC is the recommended primary screening tool for hormonal assessment in breast cancers and is routinely performed in the laboratory [8]. However, recent studies have brought to light significant variability in the IHC assessment of HER2/neu expression [4, 11, 12]. It is estimated that 20% of current HER2/neu testing may be inaccurate [6]. This variation may be related to multiple pre-analytic and analytic factors such as types of fixatives, time of fixation, primary antibody used, and variation in scoring stained slides (scoring is reported as negative (0/1+), equivocal (2+), or positive (3+) [4, 5, 13, 14]. With such variability, accurate HER2/neu results are critical in identifying patients for 478 Int J Clin Exp Pathol (2009) 2, 476-480

Table 2 Discrepancy of HER2/neu IHC results between ethanol-fixed CB and formalin-fixed TB samples Ethanol-fixed CB (N) Formalin-fixed TB (N) Negative (5) 2+ (3) 2-3+ (1) 3+ (1) 2+ (5) Negative (4) 3+ (1) 3+ (4) Negative (3) 2+ (1) whom this therapy is appropriate as treatment because Trastuzumab treatment is not without risks [2, 11]. 1.4% of patients receiving Trastuzumab as a single agent developed cardiotoxic side effects and patients receiving Trastuzumab with paclitaxel or anthracyclines developed cardiotoxic side effects at 13% and 27%, respectively [2]. In addition to the possible side effects, Trastuzumab is costly with a treatment expense of approximately $100,000 [6]. It is these reports of variability along with possible drug side effects and drug expense that prompted the recent recommendations of the American Society of Clinical Oncology/College of American Pathologist (ASCO/CAP) group and the ad hoc committee on improved standardization for IHC [15]. Recommendations from the above governing bodies dictated not only fixation time, but also specific fixative type essential for obtaining accurate results [15]. According to the recommendations, breast specimens should be fixed for a minimum of 6 hours and a maximum of 48 hours duration [2, 6, 10]. Minimum and maximum fixation times are important as delayed fixation results in increased proteolytic degradation which may cause irreversible weak or absent staining [14]. Formalin fixation times that are too short cause a mixture of formaldehyde, and ethanol fixation results in tissues showing intense staining of the center or of the periphery of the histologic section of interest [14]. The other recommendation from the ASCO/CAP meeting involved usage of 10% neutral-buffered formalin as the mandated fixative. Although formaldehyde was discovered in 1859, it wasn t until 1892 while it was being evaluated as an antiseptic that the observation of its skin firming/hardening quality was noted [18]. Hence the use of formaldehyde in histology began [17, 18]. Through the years, alternative fixatives such as ethanol have come about; however, formalin still offers a stable and cost-effective medium to conduct immunohistochemistry [2, 14-17]. Ethanol fixatives initially seemed acceptable; however, drawbacks such as flammability, and the recent recognition of it being a detrimental fixative for certain antibodies, including hormone receptors such as HER-2/neu were noted [15]. The detrimental effect of ethanol as a fixative was further explored in the current study in which we compared ER, PR and HER2/neu expression of breast carcinomas using archival ethanol fixed FNA CB with formalin fixed resection TB preparations. Ethanol-fixed tissues have greater over-expression of HER2/neu immunostaining and therefore yield false positive results. 90.4 % and 93.9% positive agreement (weighted Kappa of 0.773 and 0.785) was obtained for ER and PR stained ethanol-fixed CB and formalin-fixed TB samples, respectively. However, only a moderate positive agreement of 73.3% (weighted Kappa of 0.571) was obtained between ethanol-fixed and formalin-fixed tissues with HER2/neu IHC. The increase in discrepant results in HER2/neu stained sections is most likely due to ethanol fixation which results in increased false positive HER2/neu expression since all other factors including fixation time, choice of antibody, and HER2/neu reporting thresholds were controlled. The results of this study are consistent with the literature findings, confirming the inconsistency and variation that occurs in ethanol-fixed tissues with HER2/neu IHC. Alcohol fixed FNA CB samples are reliable to triage patients for hormonal treatment, but they may not be appropriate for management of breast cancer patients with Trastuzumab. This study further proves the value of formalinfixed tissues in the hormonal assessment of breast cancer by IHC and the importance of adherence to the ASCO/CAP guidelines for HER2/neu IHC. Please address all correspondences to Momin T. Siddiqui M.D., FIAC, Department of Pathology and Laboratory Medicine, Emory University Hospital, Atlanta, GA, United States. Tel: 404-712-4188; Email: mtsiddi@emory.edu 479 Int J Clin Exp Pathol (2009) 2, 476-480

References [1] Dowsett M, Hanna WM, Kockx M, Penault- Llorca F, Ruschoff J, Gutjahr T, Habben K and van de Vijver M. Standardization of HER2 testing: results of an international proficiencytesting ring study. Mod Pathol 2007;20:584-591. [2] Gown AM. Current issues in ER and HER2 testing by IHC in breast cancer. Mod Pathol 2008;21:S8-S15. [3] Diaz NM. Laboratory testing for HER2/neu in breast carcinoma: An evolving strategy to predict response to targeted therapy. Cancer Control 2001;8:415-418. [4] Fitzgibbons PL, Murphy DA, Dorfman DM, Roche PC and Tubbs R. Interlaboratory comparison of immunohistochemical testing for HER2 - Results of the 2004 and 2005 College of American Pathologists HER2 imunohistochemistry tissue microarray survey. Arch Pathol Lab Med 2006;130:1440-1445. [5] Jacobs TW, Gown AM, Yaziji H, Barnes MJ and Schnitt SJ. Specificity of HercepTest in determining HER-2/neu status of breast cancers using the United States Food and Drug Administration-approved scoring system. J Clin Oncol 1999;17:1983-1987. [6] Wolff AC, Hammond EH, Schwartz JN, Hagerty KL, Allred DC, Cote RJ, Dowsett M, Fitzgibbons PL, Hanna WM, Langer A, McShane LM, Paik S, Pegram MD, Perez EA, Press MF, Rhodes A, Sturgeon C, Taube S, Tubbs R, Vance G, van de Vijver M, Wheeler TM and Hayes DF. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. Arch Pathol Lab Med 2007;131:18-43. [7] Rhodes A, Borthwick D, Sykes R, Al-Sam S and Paradiso A. The use of cell line standards to reduce HER-2/neu assay variation in multiple European cancer centers and the potential of automated image analysis to provide for more accurate cut points for predicting clinical response to trastuzumab. Am J Clin Pathol 2004;122:51-60. [8] Gown AM and Yaziji H. Accuracy and precision in HER2/neu testing in breast cancer: Are we there yet? Hum Pathol 2004;35:143-146. [9] Bilous MA, Dowsett M, Hanna W, Isola J, Lebeau A, Moreno A, Penault-Llorca F, Ruschoff J, Tomasic G and van de Vijver M. Current perspectives on HER2 testing: A review of national testing guidelines. Mod Pathol 2003; 16:173-182. [10] Zarbo RJ and Hammond EM. Conference summary, strategic science symposium: Her2- /neu testing of breast cancer patients in clinical practice. Arch Pathol Lab Med 2003; 127:549-553. [11] Vani K, Sompuram SR, Fitzgibbons P and Bogen SA. National HER2 proficiency test results using standardized quantitative controls. Arch Pathol Lab Med 2008;132:211-216. [12] Cell Markers and Cytogenetic Committees, College of American Pathologists. Clinical laboratory assays for HER-2/neu amplification and overexpression - quality assurance, standardization, and proficiency testing. Arch Pathol Lab Med 2002;126:803-808. [13] Goldstein NS, Ferkowicz M, Odish E, Mani A and Hastah F. Minimum formalin fixation time for consistent estrogen receptor immunohistochemical staining of invasive breast carcinoma. Am J Clin Pathol 2003;120: 86-92. [14] Werner M, Chott A, Fabiano A and Battifora H. Effect of formalin tissue fixation and processing on immunohistochemistry. Am J Surg Pathol 2000;24:1016-1019. [15] Dabbs DJ. Immunohistochemical protocols. Am J Clin Pathol 2008;129:355-356. [16] Nassiri M, Ramos S, Zohourian H, Vincek V, Morales AR and Nadji M. Preservation of biomolecules in breast cancer tissue by a formalin-free histology system. BMC Clin Pathol 2008;8:1-10. [17] Folkvord JM, Viders D, Coleman-Smith A and Clark RAF. Optimization of immunohistochemical techniques to detect extracellular matrix proteins in fixed skin specimens. J Histochem Cytochem 1989;37: 105-113. [18] Fox C, Johnson FB, Whiting J and Roller PP. Formaldehyde fixation. J Histochem Cytochem 1985;33:845-853. 480 Int J Clin Exp Pathol (2009) 2, 476-480