Glycosylation: A Phenomenon Shared by All Domains of Life

Similar documents
Significance and Functions of Carbohydrates. Bacterial Cell Walls

What sort of Science is Glycoscience? (Introductory lecture)

Chapter 11. Learning objectives: Structure and function of monosaccharides, polysaccharide, glycoproteins lectins.

Biochemistry: A Short Course

The addition of sugar moiety determines the blood group

Biosynthesis of N and O Glycans

189,311, , ,561, ,639, ,679, Ch13; , Carbohydrates

Glycosaminoglycans: Anionic polysaccharide chains made of repeating disaccharide units

clude all protists, fungi, plants, and animals. Protists are organisms like

Content. Course (LV 21246): Fr. 12:00-14:00 16 Lectures

Protein Trafficking in the Secretory and Endocytic Pathways

Fungal Mannoproteins: the Sweet Path to Immunodominance

Glycosaminoglycans, Proteoglycans, and Glycoproteins

Cell Membranes Valencia college

Determination of a Second Substitution, [alpha]-glycerophosphate, Common to C311 Pilins

TECHNICAL BULLETIN. R 2 GlcNAcβ1 4GlcNAcβ1 Asn

Protein regulation Protein motion

Prentice Hall. Biology: Concepts and Connections, 6th Edition (Campbell, et al) High School

Summary of Endomembrane-system

An aldose contains an aldehyde functionality A ketose contains a ketone functionality

Study Guide for Biology Chapter 5

ME 411 / ME 511. Biological Frameworks for Engineers

Cell Structure and Function

COR 011 Lecture 9: ell membrane structure ept 19, 2005

Glycolysis. Cellular Respiration

Membrane transport. Pharmacy Dr. Szilvia Barkó

Dr. Ahmed K. Ali Attachment and entry of viruses into cells

UNIVERSITY OF YORK BIOLOGY. Glycobiology

Membrane Structure and Membrane Transport of Small Molecules. Assist. Prof. Pinar Tulay Faculty of Medicine

Molecular Organization of the Cell Membrane

Glycoproteins and Mucins. B.Sopko

RNA Processing in Eukaryotes *

The Effect of Cranberry Juice and Cranberry Derivatives on the Hemagglutination Activity of P-Fimbriated Escherichia coli

Lipid raft-a gateway for passing through the cell membrane for pathogens

Chapter 7 Conclusions

Glycan Standards. For microarrays and the identification/ quantification of glycans. Cambridge Isotope Laboratories, Inc. isotope.

GLYCAN STRUCTURES, CLUES TO THE ORIGIN OF SACCHARIDES

BCH 445 Biochemistry of nutrition Dr. Mohamed Saad Daoud

Complexity DNA. Genome RNA. Transcriptome. Protein. Proteome. Metabolites. Metabolome

Glycoprotein Deglycosylation Kit Cat. No

Chemical Composition of the Cell. B. Balen

Cell Membranes. Dr. Diala Abu-Hassan School of Medicine Cell and Molecular Biology

History. Chapter 13. Complement Components. Complement Pathways

Cellular membranes are fluid mosaics of lipids and proteins.

Carbohydrates are aldehyde or ketone compounds with multiple hydroxyl groups Have multiple roles in all forms of life

Chapter 3, Part A (Pages 37-45): Leukocyte Migration into Tissues

Proteins are sometimes only produced in one cell type or cell compartment (brain has 15,000 expressed proteins, gut has 2,000).

Transcriptional control in Eukaryotes: (chapter 13 pp276) Chromatin structure affects gene expression. Chromatin Array of nuc

Lipids are macromolecules, but NOT polymers. They are amphipathic composed of a phosphate head and two fatty acid tails attached to a glycerol

Application Note. Abstract. Author. Biotherapeutics & Biosimilars. Sonja Schneider Agilent Technologies, Inc. Waldbronn, Germany

New Tools to Study and Perturb the Glycocalyx

Rama Abbady. Odai Bani-Monia. Diala Abu-Hassan

DEPARTMENT: Chemistry

Biology 350: Microbial Diversity

Cell Communication. Chapter 11. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

Biology 4410 First Examination Version B

Chapter 19: The Genetics of Viruses and Bacteria

Homework Hanson section MCB Course, Fall 2014

A. Incorrect! No, this is not the description of this type of molecule. B. Incorrect! No, this is not the description of this type of molecule.

Biology. Chapter 3. Molecules of Life. Concepts and Applications 9e Starr Evers Starr

7.06 Cell Biology EXAM #3 April 24, 2003

Cell Walls, the Extracellular Matrix, and Cell Interactions (part 1)

Membrane Structure and Function - 1

TECHNICAL BULLETIN. Enzymatic Protein Deglycosylation Kit. Catalog Number EDEGLY Storage Temperature 2 8 C

Abdullah zurayqat. Bahaa Najjar. Mamoun Ahram

Research in the Division of Cell Signalling and Immunology

Introduction. Biochemistry: It is the chemistry of living things (matters).

Structural Elucidation of N-glycans Originating From Ovarian Cancer Cells Using High-Vacuum MALDI Mass Spectrometry

Enzymatic Removal of N- and O-glycans using PNGase F or the Protein Deglycosylation Mix

An Introduction to Carbohydrates

Complement. History. Chapter 7. Complement Components. Complement Pathways. Pathways of complement activation

BIOL 158: BIOLOGICAL CHEMISTRY II

C) You find that the Raf kinase is not constitutively active. What was necessary in the previous assay to show any Raf kinase activity?

High fidelity glycan sequencing using a combination of capillary electrophoresis and exoglycosidase digestion

BIOLOGY 111. CHAPTER 3: The Cell: The Fundamental Unit of Life

Innate immunity. Abul K. Abbas University of California San Francisco. FOCiS

Stable isotope labeled Media products

Name Section Problem Set 6

PLASMA MEMBRANE. Submitted by:- DR.Madhurima Sharma PGGCG-II,Chandigarh

Page 32 AP Biology: 2013 Exam Review CONCEPT 6 REGULATION

Stable Isotope Probing of gut bacteria RNA. Wayne Young. Identifying gut bacteria that can use sialic acid using an RNA-SIP approach

The recruitment of leukocytes and plasma proteins from the blood to sites of infection and tissue injury is called inflammation

Test Bank for Basic Immunology Functions and Disorders of the Immune System 4th Edition by Abbas

3. When he discovered enzymes in 1897, Eduard Buchner was investigating the causes of. disease antisepsis spontaneous generation fermentation

Session Date Instructors Topic

Carbohydrates. Learning Objective

Chapter 13: Vesicular Traffic

I. Bacteria II. Viruses including HIV. Domain Bacteria Characteristics. 5. Cell wall present in many species. 6. Reproduction by binary fission

What is Life? Project PART 6: The molecules of life

All cells are assembled from four building blocks: nucleic acids, proteins, lipids and carbohydrates or GLYCANS.

COMMON ASSESSMENT

Introduction to biomembranes

Dr Mahmood S Choudhery, PhD, Postdoc (USA) Assistant Professor Tissue Engineering and Regenerative Medicine King Edward Medical University/Mayo

Diffusion, Osmosis and Active Transport

MEMBRANE STRUCTURE & FUNCTION

Biology for a Changing World, 2nd edition - DRIVING QUESTIONS

Gene Regulation Part 2

Supporting Information for MassyTools-assisted data analysis of total serum N-glycome changes associated with pregnancy

What are the molecules of life?

Chapter 3 The Induced Responses of Innate Immunity

Transcription:

Glycosylation: A Phenomenon Shared by All Domains of Life Anne Dell and Federico Sastre Abstract This chapter provides insights into why proteins are glycosylated and how their glycosylation can be characterized by mass spectrometry. The covalent attachment of carbohydrates to proteins during their biosynthesis is a phenomenon shared by all domains of life. Indeed the majority of proteins in living systems are glycosylated. Their carbohydrates play critical roles in a myriad of biological processes especially those involving recognition. They do this via engagement with carbohydrate binding proteins called lectins. For example mammalian sperm-egg engagement in the first step of fertilization involves carbohydrate-lectin recognition, and the human egg is coated with a carbohydrate sequence called sialyl Lewisx which also plays important recognition roles in the immune system. Keywords Biological recognition Carbohydrates Glycoproteins Lectins Mass spectrometry Sialyl Lewisx 1AnOverview The genome sequencing projects of the past two decades have yielded many surprises, the most startling of which is unquestionably the revelation that the total number of genes in humans is not very different from many model organisms such as worms, fruit flies and simple plants. This discovery has cast a spotlight on the correlate that biological complexity is not linearly related to the number of genes among species. Why might this be the case? A variety of explanations can be offered, arising from different fields of biological research. For example, molecular biologists might suggest transcriptional regulation or epigenetic modifications as key factors. Others A. Dell (B) F. Sastre Division of Molecular Biosciences, Faculty of Natural Sciences, Centre for Integrative Systems Biology, Imperial College London, London SW7 2AZ, UK e-mail: a.dell@imperial.ac.uk M. Delitala and G. Ajmone Marsan (eds.), Managing Complexity, Reducing Perplexity, 65 Springer Proceedings in Mathematics & Statistics 67, DOI: 10.1007/978-3-319-03759-2_7, Springer International Publishing Switzerland 2014

66 A. Dell and F. Sastre Fig. 1 Structure and symbolic representations of common carbohydrates. Glucose is central to carbohydrate biosynthesis because it is made de novo from carbon dioxide and water during photosynthesis would cite alternative splicing. We, too, believe that these phenomena contribute to biological complexity. Nevertheless we would argue that the greatest amplification of genomic information occurs after genes have been translated into proteins when the latter become modified by a myriad of functionalities. Moreover, one type of posttranslational modification, namely glycosylation, results in the greatest diversity of the products of gene expression in all forms of life [1]. Today it has been well-established that protein N- and O-glycosylation (the covalent attachment of carbohydrate sequences to the side-chains of asparagine and serine or threonine, respectively) is a phenomenon shared by all domains of life. In addition, protein glycosylation has been demonstrated to be an essential requirement, rather than just an intriguing decoration. For example, correct glycosylation ensures that the plethora of proteins which eukaryotic cells use to transmit, receive and respond to chemical, electrical and mechanical signals, are expressed in functionally active forms in the right places. The information such glycoproteins mediate is essential for cells to pass through the different stages of development that occur in an organism [1, 2]. Carbohydrates have enough structural diversity to play a pivotal role as informational molecules on cell surfaces Fig. 1. Importantly, they are in the right place to act as such. All eukaryotic cells are coated with a carbohydrate layer, referred to as the glycocalyx. It consists of glycoproteins and glycolipids embedded in the cell membrane, together with proteoglycans,

Glycosylation: A Phenomenon Shared by All Domains of Life 67 another class of carbohydrate biopolymer, which may be loosely associated with the eukaryotic cell surface. Prokaryotes also express glycoproteins on their surfaces. Among the prokaryotic glycoproteins, the best understood are S-layers, pilins and flagellins, plus a selection of cell surface and secreted proteins which are known to be involved in adhesion and/or biofilm formation [3, 4]. Significantly, complex carbohydrates are often highly branched and each residue can be linked to another in any of several positions on each sugar ring. This allows the formation of a large number of oligosaccharide structures from a relatively small repertoire of building blocks. Indeed even greater diversity is often conferred by the addition of functional groups such as sulfates, phosphates, acetyl and methyl groups. How do carbohydrates on cell surfaces fulfil their information roles? This is most often achieved by engagement with partner molecules on other cells thereby triggering adhesive and/or signalling events. These carbohydrate binding partners are called lectins [5]. Thanks largely to the Consortium for Functional Glycomics (CFG) (which was funded by the US National Institutes of Health to provide tools and resources to the international research community to understand the role of carbohydrate-protein interactions), scientists from all disciplines can readily access information pertaining to how surface carbohydrates and complementary lectins on opposing cell surfaces mediate cell-to-cell recognition. Thus the CFG website [2] provides a rich source of information and data which facilitates the engagement of researchers, unfamiliar with carbohydrates, with experts working in the field of glycobiology. Figure 2 illustrates several of the best understood biological interactions where carbohydrate-lectin recognition plays a central role. The meaning of the symbols used in the figure is explained in Fig. 2. The tools of modern mass spectrometry have been crucial for unravelling the carbohydrate mediated processes exemplified in Fig. 2 [6 10]. Mass spectrometry is an enormously powerful tool for high sensitivity sequencing of complex carbohydrates. Its versatility permits the analysis of all families of glycopolymers. Moreover, complex mixtures of glycoproteins are not a problem for mass spectrometric analysis. Indeed, glycomic methodologies are capable of defining the carbohydrate sequences constituting the glycocalyx of tissues or cells without the need for time consuming purifications [11]. Glycomics research of the past decade, much of it supported by the CFG, has yielded substantial quantities of public data which are facilitating worldwide research addressing the roles of carbohydrates and lectins in complex systems [2, 12]. We hope that those reading this article are now stimulated to learn more about glycosylation and biological complexity. If this is the case, the CFG website is an excellent place to start your journey [2]. To whet your appetite we end our article with an introduction to an evolving story in glycobiology which has as its central character a famous carbohydrate moiety called sialyl Lewis x (Fig. 2). First identified in rat brain glycoproteins in the 1970s, this carbohydrate was revealed, by the emerging glycomic strategies of the mid 1980s, to be present on human white blood cells and enriched in cancer cells. A few years later the Selectins were discovered. These constitute a lectin family that recognise sialyl Lewis x as their primary ligand. The Selectins play pivotal roles in lymphocyte trafficking and recruit-

68 A. Dell and F. Sastre Cell surface glycoprotein FimH adhesin of type 1 pili assembled into a fibrillar tip structure of Uropathogenic E. Coli binds a high mannose N-glycan (7) High mannose N-glycan with 7 mannosyl residues. Lewis x O-glycan Haemagglutinin receptor of Influenza virus recognizes specifically a sialyl residue in a sialylated glycan (8) Sialyl Lewis x O-glycan (6) E-selectin recognizes specifically a Sialyl Lewis x motif. (9) Sialylated O-glycan Dendritic Cell-Specific Intercellular adhesion molecule DC-SIGN recognizes specifically a Lewis x motif. (10) Symbols used in Fig. 2 Fig. 2 Glycan lectin recognition is key to cell-to-cell communication

Glycosylation: A Phenomenon Shared by All Domains of Life 69 ment of neutrophils to sites of inflammation. Their discovery energised the field of glycobiology and spawned numerous biotech companies intent on developing new anti-inflammatories and anti-cancer agents. The high hopes for glyco-therapeutics that prevailed in the early 1990s continue to this day, but are now tempered by realism i.e. it takes a very long time to understand the processes mediated by carbohydrate recognition and even longer to develop effective therapies based on intercepting these processes. Very recently sialyl Lewis x has re-appeared in the headlines of both scientific and lay articles. This is because of exciting discoveries concerning human reproduction [13]. Ultra-high sensitivity mass spectrometric analyses have now provided the first molecular insights into the recognition processes occurring at the very start of human life, when a single sperm first engages with the surface of a human egg. This research has shown that multiple sialyl Lewis x sequences are attached to the proteins constituting the jelly-like coat of the human egg, which is called the zona pellucida. Remarkably the density of sialyl Lewis x moieties on the human egg is orders of magnitude higher than on white blood cells, consistent with it playing a pivotal role in sperm recognition [13]. Interestingly human sperm do not express any of the known Selectins. Hence the race is now on to find the putative Selectin-like molecule on sperm that binds to the sialyl Lewis x sequence on the human egg. References 1. A. Varki, R. Cummings, J. Esko, H. Freeze, P. Stanley, C. Bertozzi, G. Hart, M. Etzler, Essentials of Glycobiology, 2nd edn. (Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 2009) 2. Consortium for Functional Glycomics (CFG) web page, http://www.functionalglycomics. org/fg/ 3. C. Szymanski, B. Wren, Protein glycosylation in bacterial mucosal pathogens. Nature Rev. Microbiol. 3(3), 225 237 (2005) 4. A. Dell, A. Galadari, F. Sastre, P. Hitchen, Similarities and differences in the glycosylation mechanisms in prokaryotes and eukaryotes. Int. J. Microbiol. 2010, 148178 (2010). doi:10. 1155/2010/148178 5. N. Sharon, H. Lis, History of lectins: from hemagglutinins to biological recognition molecules. Glycobiology 14(11), 53 62 (2004) 6. M. Fukuda, E. Spooncer, J. Oates, A. Dell, J. Klock, Structure of sialylated fucosyl lactosaminoglycan isolated from human granulocytes. J. Biol. Chem. 259(17), 10925 10935 (1984) 7. C. Jones, J. Pinkner, R. Rotht, J. Heusert, A. Nicholes, S. Abraham, S. Hultgren, Fimh adhesin of type 1 pili is assembled into a fibrillar tip structure in the enterobacteriacea. Biochemistry. Proc. Natl. Acad. Sci. U.S.A. 92, 2081 2085 (1995) 8. W. Weis, J. Brown, S. Cusack, J. Paulson, J. Skehel, D. Wiley, Structure of the influenza virus haemagglutinin complexed with its receptor, sialic acid. Nature 333, 426 431 (1988) 9. M. Sperandio, C. Gleissner, K. Ley, Glycosylation in immune cell trafficking. Immunol. Rev. 230(1), 97 113 (2009) 10. K. van Gisbergen, M. Sanchez-Hernandez, T. Geijtenbeek, Y. van Kooyk, Neutrophils mediate immune modulation of dendritic cells through glycosylation-dependent interactions between mac-1 and dc-sign. J. Exp. Med. 201(8), 1281 1292 (2005)

70 A. Dell and F. Sastre 11. S.J. North, J. Jang-Lee, R. Harrison, K. Canis, M. Nazri, A. Trollope, A. Antonopoulos, P.C. Pang, P. Grassi, S. Al-Chalabi, T. Etienne, A. Dell, S.M. Haslam, Chapter two-mass spectrometric analysis of mutant mice. Methods Enzymol. 478, 27 77 (2010) 12. A. Antonopoulos, S.J. North, S.M. Haslam, A. Dell, Glycosylation of mouse and human immune cells: insights emerging from n-glycomics analyses. Biochem. Soc. Trans. 39(5), 1334 1340 (2011) 13. P.C. Pang, P. Chiu, C.L. Lee, L.Y. Chang, M. Panico, H.R. Morris, S.M. Haslam, K.H. Khoo, G.F. Clark, W.S. Yeung, A. Dell, Human sperm binding is mediated by the sialyl-lewis x oligosaccharide on the zona pellucida. Science 333(6050), 1761 1764 (2011)