Bayesian random-effects meta-analysis made simple

Similar documents
Meta-analysis of few small studies in small populations and rare diseases

Meta-analysis of two studies in the presence of heterogeneity with applications in rare diseases

HIERARCHICAL MODELS A framework for evidence synthesis

Applications of Bayesian methods in health technology assessment

Historical controls in clinical trials: the meta-analytic predictive approach applied to over-dispersed count data

Sensitivity of heterogeneity priors in meta-analysis

CLINICAL REGISTRIES Use and Emerging Best Practices

Dynamic borrowing of historical data: Performance and comparison of existing methods based on a case study

Phase I dose-escalation trials with more than one dosing regimen

Methods for evidence synthesis in the case of very few studies. Guido Skipka IQWiG, Cologne, Germany

Using mixture priors for robust inference: application in Bayesian dose escalation trials

How to use prior knowledge and still give new data a chance?

A FRAMEWORK FOR SIMULATIONS IN CLINICAL RESEARCH

ST440/550: Applied Bayesian Statistics. (10) Frequentist Properties of Bayesian Methods

Sample-size re-estimation in Multiple Sclerosis trials

A Case Study: Two-sample categorical data

Evidence synthesis with limited studies

A Re-Analysis of the Cochrane Library Data: The Dangers of Unobserved Heterogeneity in Meta-Analyses

Designing a Bayesian randomised controlled trial in osteosarcoma. How to incorporate historical data?

Bayesian Tolerance Intervals for Sparse Data Margin Assessment

Introduction to Bayesian Analysis 1

Bayesian meta-analysis of Papanicolaou smear accuracy

Bayesian Meta-Analysis in Drug Safety Evaluation

An adaptive phase II basket trial design

Index. Springer International Publishing Switzerland 2017 T.J. Cleophas, A.H. Zwinderman, Modern Meta-Analysis, DOI /

Fundamental Clinical Trial Design

No Large Differences Among Centers in a Multi-Center Neurosurgical Clinical Trial

Bayesian hierarchical modelling

A Brief Introduction to Bayesian Statistics

Treatment effect estimates adjusted for small-study effects via a limit meta-analysis

Kernel Density Estimation for Random-effects Meta-analysis

Changing EDSS progression in placebo cohorts in relapsing MS:

Comparing treatments evaluated in studies forming disconnected networks of evidence: A review of methods

Bayesian and Frequentist Approaches

Practical Bayesian Design and Analysis for Drug and Device Clinical Trials

Modelling heterogeneity variances in multiple treatment comparison meta-analysis Are informative priors the better solution?

Performance of the Trim and Fill Method in Adjusting for the Publication Bias in Meta-Analysis of Continuous Data

Bayesian growth mixture models to distinguish hemoglobin value trajectories in blood donors

A re-evaluation of random-effects meta-analysis

Quantitative challenges of extrapolation

Bayesian approaches to analysing studies and summarizing evidences

Bayes-Verfahren in klinischen Studien

Methods for assessing consistency in Mixed Treatment Comparison Meta-analysis

Bayesian Statistics Estimation of a Single Mean and Variance MCMC Diagnostics and Missing Data

Bayesian Mediation Analysis

Bayesian Confidence Intervals for Means and Variances of Lognormal and Bivariate Lognormal Distributions

Choice of axis, tests for funnel plot asymmetry, and methods to adjust for publication bias

Decision Making in Confirmatory Multipopulation Tailoring Trials

Bayesian Models for Combining Data Across Subjects and Studies in Predictive fmri Data Analysis

Using Statistical Principles to Implement FDA Guidance on Cardiovascular Risk Assessment for Diabetes Drugs

Empirical assessment of univariate and bivariate meta-analyses for comparing the accuracy of diagnostic tests

Meta-analysis to compare combination therapies: A case study in kidney transplantation

Quantifying and Mitigating the Effect of Preferential Sampling on Phylodynamic Inference

For general queries, contact

Comparison of Meta-Analytic Results of Indirect, Direct, and Combined Comparisons of Drugs for Chronic Insomnia in Adults: A Case Study

Institutional Ranking. VHA Study

Models for potentially biased evidence in meta-analysis using empirically based priors

5/10/2010. ISPOR Good Research Practices for Comparative Effectiveness Research: Indirect Treatment Comparisons Task Force

An Introduction to Bayesian Statistics

heterogeneity in meta-analysis stats methodologists meeting 3 September 2015

Package EpiEstim. R topics documented: February 19, Version Date 2013/03/08

Att vara eller inte vara (en Bayesian)?... Sherlock-conundrum

Bayesian Joint Modelling of Benefit and Risk in Drug Development

Case Studies in Bayesian Augmented Control Design. Nathan Enas Ji Lin Eli Lilly and Company

Analysis of left-censored multiplex immunoassay data: A unified approach

Design for Targeted Therapies: Statistical Considerations

Meta-analysis of external validation studies

An Empirical Assessment of Bivariate Methods for Meta-analysis of Test Accuracy

Supplementary Material Estimating the Distribution of Sensorimotor Synchronization Data: A Bayesian Hierarchical Modeling Approach Rasmus Bååth

PSYCH-GA.2211/NEURL-GA.2201 Fall 2016 Mathematical Tools for Cognitive and Neural Science. Homework 5

Bayesian Logistic Regression Modelling via Markov Chain Monte Carlo Algorithm

Advanced IPD meta-analysis methods for observational studies

Meta-analysis using individual participant data: one-stage and two-stage approaches, and why they may differ

Bayesian Dose Escalation Study Design with Consideration of Late Onset Toxicity. Li Liu, Glen Laird, Lei Gao Biostatistics Sanofi

Chapter 1: Exploring Data

BAYESIAN HYPOTHESIS TESTING WITH SPSS AMOS

Introduction to Meta-analysis of Accuracy Data

Bayesian Analysis of Between-Group Differences in Variance Components in Hierarchical Generalized Linear Models

WinBUGS : part 1. Bruno Boulanger Jonathan Jaeger Astrid Jullion Philippe Lambert. Gabriele, living with rheumatoid arthritis

SWITCH Trial. A Sequential Multiple Adaptive Randomization Trial

Project Funded under FP7 - HEALTH Grant Agreement no Funded under FP7 - HEALTH Grant Agreement no

Package SAMURAI. February 19, 2015

Bayesian Joint Modelling of Longitudinal and Survival Data of HIV/AIDS Patients: A Case Study at Bale Robe General Hospital, Ethiopia

Bayes Factors for t tests and one way Analysis of Variance; in R

Evidence Based Medicine

NEW METHODS FOR SENSITIVITY TESTS OF EXPLOSIVE DEVICES

Hierarchical Meta-Analysis: A Simulation Study Comparing Classical Random Effects and Fully Bayesian Methods

Bayesian Estimation of a Meta-analysis model using Gibbs sampler

WDHS Curriculum Map Probability and Statistics. What is Statistics and how does it relate to you?

Bayesian and Classical Approaches to Inference and Model Averaging

Evaluating the Quality of Evidence from a Network Meta- Analysis

Explicit Bayes: Working Concrete Examples to Introduce the Bayesian Perspective.

Methods Research Report. An Empirical Assessment of Bivariate Methods for Meta-Analysis of Test Accuracy

Bayesian methods in health economics

Effective Implementation of Bayesian Adaptive Randomization in Early Phase Clinical Development. Pantelis Vlachos.

Risk-prediction modelling in cancer with multiple genomic data sets: a Bayesian variable selection approach

Bayesian Methods p.3/29. data and output management- by David Spiegalhalter. WinBUGS - result from MRC funded project with David

Estimation of effect sizes in the presence of publication bias: a comparison of meta-analysis methods

Meta-analysis: Advanced methods using the STATA software

Bayesian Inference Bayes Laplace

Transcription:

Bayesian random-effects meta-analysis made simple Christian Röver 1, Beat Neuenschwander 2, Simon Wandel 2, Tim Friede 1 1 Department of Medical Statistics, University Medical Center Göttingen, Göttingen, Germany 2 Novartis Pharma AG, Basel, Switzerland May 24, 2016 This project has received funding from the European Union s Seventh Framework Programme for research, technological development and demonstration under grant agreement number FP HEALTH 2013-602144. C. Röver et al. Bayesian meta-analysis made simple May 24, 2016 1 / 22

Overview Meta analysis example the random-effects model the Bayesian approach the bayesmeta package parameter estimation prediction Conclusions C. Röver et al. Bayesian meta-analysis made simple May 24, 2016 2 / 22

Meta analysis Example Steroid resistant graft rejection (Crins et al., 2014) Heffron (2003) Ganschow (2005) Gras (2008) 2.00 [ 3.78, 0.21 ] 0.45 [ 1.77, 0.88 ] 1.88 [ 4.11, 0.36 ] combined estimate 1.21 [ 2.35, 0.09 ] 5.00 3.00 1.00 1.00 log odds ratio C. Röver et al. Bayesian meta-analysis made simple May 24, 2016 3 / 22

Meta analysis The random effects model assume 1,2 : y i Normal(θ i, s 2 i ), θ i Normal(µ, τ 2 ) y i Normal(µ, s 2 i +τ 2 ) model components: Data: estimates y i standard errors s i Parameters: true parameter value µ heterogeneity τ 1 L. V. Hedges, I. Olkin. Statistical methods for meta-analysis. Academic Press, 1985. 2 J. Hartung, G. Knapp, B. K. Sinha. Statistical meta-analysis with applications. Wiley, 2008. C. Röver et al. Bayesian meta-analysis made simple May 24, 2016 4 / 22

Meta analysis The random effects model assume 1,2 : y i Normal(θ i, s 2 i ), θ i Normal(µ, τ 2 ) y i Normal(µ, s 2 i +τ 2 ) model components: Data: estimates y i standard errors s i Parameters: true parameter value µ heterogeneity τ µ Rof primary interest ( effect ) τ R + nuisance parameter ( between-trial heterogeneity ) 1 L. V. Hedges, I. Olkin. Statistical methods for meta-analysis. Academic Press, 1985. 2 J. Hartung, G. Knapp, B. K. Sinha. Statistical meta-analysis with applications. Wiley, 2008. C. Röver et al. Bayesian meta-analysis made simple May 24, 2016 4 / 22

Meta analysis The random effects model normal-normal hierarchical model (NNHM) applicable for many endpoints follow Bayesian approach here 3 suitable also for few studies (small k) consideration of prior information propagation of uncertainty straightforward interpretation computationally more involved, usually done via simulation (MCMC, BUGS) 3 A. J. Sutton, K. R. Abrams. Bayesian methods in meta-analysis and evidence synthesis. Statistical Methods in Medical Research, 10(4):277, 2001. C. Röver et al. Bayesian meta-analysis made simple May 24, 2016 5 / 22

Meta analysis Prior, posterior have: likelihood p( y, σ µ,τ) prior density p(µ,τ) = p(µ) p(τ) note: Normal likelihood Normal or (improper) uniform p(µ) p(µ) and p(τ) independent posterior p(µ,τ y, σ) p( y, σ µ,τ) p(µ,τ) integrate out marginal posteriors effect p(µ y, σ) = p(µ,τ y, σ) dτ heterogeneity p(τ y, σ) = p(µ,τ y, σ) dµ inference: marginal distributions, posterior expectations, medians, quantiles,... C. Röver et al. Bayesian meta-analysis made simple May 24, 2016 6 / 22

Meta analysis Semi-analytical implementation integrals in NNHM may be solved semi-analytically heterogeneity posterior (τ): analytical effect posterior (µ): conditionally normal marginal = normal mixture approximation via finite number of mixture components 4 method is implemented in bayesmeta R package 5 provides direct access to posterior densities, cumulative distribution functions, quantiles,... numerical accuracy is under control 4 C. Röver, T. Friede. Discrete approximation of a mixture distribution via restricted divergence. arxiv preprint 1602.04060 (http://arxiv.org/abs/1602.04060) 5 http://cran.r-project.org/package=bayesmeta C. Röver et al. Bayesian meta-analysis made simple May 24, 2016 7 / 22

Meta analysis Semi-analytical implementation previously investigated general performance and compared to common frequentist methods (bias, coverage,... ) 6 τ 2 0 0.01 0.02 0.05 0.1 0.2 0.5 1 2 τ 2 0 0.01 0.02 0.05 0.1 0.2 0.5 1 2 τ 2 0 0.01 0.02 0.05 0.1 0.2 0.5 1 2 bias (heterogeneity τ) 0.2 0.0 0.2 0.4 0.6 k = 3 Unif [0,4] HNorm (1.0) HNorm (0.5) DL REML MP BM coverage (effect Θ, 95% interval) 0.80 0.85 0.90 0.95 1.00 Unif [0,4] HNorm (1.0) HNorm (0.5) DL normal DL KnHa REML normal REML KnHa MP normal MP KnHa BM normal BM KnHa k = 3 mean 95% interval length (effect Θ) 0 1 2 3 4 5 6 Unif [0,4] HNorm (1.0) HNorm (0.5) DL normal DL KnHa REML normal REML KnHa MP normal MP KnHa BM normal BM KnHa k = 3 0 0.1 0.2 0.5 1 τ 0 0.1 0.2 0.5 1 τ 0 0.1 0.2 0.5 1 τ 6 T. Friede, C. Röver, S. Wandel, B. Neuenschwander. Meta-analysis of few small studies in orphan diseases. Research Synthesis Methods (in press; http://arxiv.org/abs/1601.06533). C. Röver et al. Bayesian meta-analysis made simple May 24, 2016 8 / 22

Meta analysis Semi-analytical implementation previously investigated general performance and compared to common frequentist methods (bias, coverage,... ) 6 τ 2 0 0.01 0.02 0.05 0.1 0.2 0.5 1 2 τ 2 0 0.01 0.02 0.05 0.1 0.2 0.5 1 2 τ 2 0 0.01 0.02 0.05 0.1 0.2 0.5 1 2 bias (heterogeneity τ) 0.2 0.0 0.2 0.4 0.6 k = 3 Unif [0,4] HNorm (1.0) HNorm (0.5) DL REML MP BM coverage (effect Θ, 95% interval) 0.80 0.85 0.90 0.95 1.00 Unif [0,4] HNorm (1.0) HNorm (0.5) DL normal DL KnHa REML normal REML KnHa MP normal MP KnHa BM normal BM KnHa k = 3 mean 95% interval length (effect Θ) 0 1 2 3 4 5 6 Unif [0,4] HNorm (1.0) HNorm (0.5) DL normal DL KnHa REML normal REML KnHa MP normal MP KnHa BM normal BM KnHa k = 3 0 0.1 0.2 0.5 1 τ 0 0.1 0.2 0.5 1 τ 0 0.1 0.2 0.5 1 τ how to carry out analysis in practice? 6 T. Friede, C. Röver, S. Wandel, B. Neuenschwander. Meta-analysis of few small studies in orphan diseases. Research Synthesis Methods (in press; http://arxiv.org/abs/1601.06533). C. Röver et al. Bayesian meta-analysis made simple May 24, 2016 8 / 22

Crins et al. (2014) data Example data set: studies on steroid-resistant graft rejection in pediatric liver transplantation 7. k = 3 estimates (log-ors) and standard errors treatment control effect size (log-or) study (events/total) (events/total) estimate (y i ) std.err. (σ i ) Heffron (2003) 2 / 61 4 / 20-1.998 0.911 Ganschow (2005) 4 / 54 6 / 54-0.446 0.676 Gras (2008) 1 / 50 4 / 34-1.877 1.142 7 N.D. Crins et al. Interleukin-2 receptor antagonists for pediatric liver transplant recipients: A systematic review and meta-analysis of controlled studies. Pediatric Transplantation 18(8):839 850, 2014. 8 R.M. Turner et al. Predicting the extent of heterogeneity in meta-analysis, using empirical data from the Cochrane Database of Systematic Reviews. International Journal of Epidemiology 41(3):818 827, 2012. E. Kontopantelis et al. A re-analysis of the Cochrane Library data: The dangers of unobserved heterogeneity in meta-analyses. PLoS ONE 8(7):e69930, 2013. C. Röver et al. Bayesian meta-analysis made simple May 24, 2016 9 / 22

Crins et al. (2014) data Example data set: studies on steroid-resistant graft rejection in pediatric liver transplantation 7. k = 3 estimates (log-ors) and standard errors treatment control effect size (log-or) study (events/total) (events/total) estimate (y i ) std.err. (σ i ) Heffron (2003) 2 / 61 4 / 20-1.998 0.911 Ganschow (2005) 4 / 54 6 / 54-0.446 0.676 Gras (2008) 1 / 50 4 / 34-1.877 1.142 k = 2 to 3 studies is a common scenario (majority of meta analyses in Cochrane Database 8 ) 7 N.D. Crins et al. Interleukin-2 receptor antagonists for pediatric liver transplant recipients: A systematic review and meta-analysis of controlled studies. Pediatric Transplantation 18(8):839 850, 2014. 8 R.M. Turner et al. Predicting the extent of heterogeneity in meta-analysis, using empirical data from the Cochrane Database of Systematic Reviews. International Journal of Epidemiology 41(3):818 827, 2012. E. Kontopantelis et al. A re-analysis of the Cochrane Library data: The dangers of unobserved heterogeneity in meta-analyses. PLoS ONE 8(7):e69930, 2013. C. Röver et al. Bayesian meta-analysis made simple May 24, 2016 9 / 22

Crins et al. (2014) data Liver transplant example: steroid resistant rejection Heffron (2003) Ganschow (2005) Gras (2008) 2.00 [ 3.78, 0.21 ] 0.45 [ 1.77, 0.88 ] 1.88 [ 4.11, 0.36 ] 5.00 3.00 1.00 1.00 log odds ratio C. Röver et al. Bayesian meta-analysis made simple May 24, 2016 10 / 22

Prior specification prior specification - - two unknowns; for example: effect: µ Normal(µ = 0,σ = 10) (vague prior) heterogeneity τ half-normal(σ = 0.5) prior distribution: quantile heterogeneity τ exp(τ) 2.5 % 0.016 1.016 50.0 % 0.337 1.401 97.5 % 1.121 3.067 (spans range from homogeneity to substantial heterogeneity 9 ) 9 D.J. Spiegelhalter, K.R. Abrams, J.P. Myles. Bayesian approaches to clinical trials and health-care evaluation. Wiley, 2004. C. Röver et al. Bayesian meta-analysis made simple May 24, 2016 11 / 22

Data preparation data (counts): > CrinsEtAl2014[c(1,4,6),c(1,11,12,14,15)] publication exp.srr.events exp.total cont.srr.events cont.total 1 Heffron (2003) 2 61 4 20 4 Ganschow (2005) 4 54 6 54 6 Gras (2008) 1 50 4 34 C. Röver et al. Bayesian meta-analysis made simple May 24, 2016 12 / 22

Data preparation data (counts): > CrinsEtAl2014[c(1,4,6),c(1,11,12,14,15)] publication exp.srr.events exp.total cont.srr.events cont.total 1 Heffron (2003) 2 61 4 20 4 Ganschow (2005) 4 54 6 54 6 Gras (2008) 1 50 4 34 compute effect sizes (log-ors): > library("metafor") > effsize <- escalc(measure="or", ai=exp.srr.events, n1i=exp.total, ci=cont.srr.events, n2i=cont.total, slab=publication, data=crinsetal2014[c(1,4,6),]) > effsize[,c(1,16,17)] publication yi vi 1 Heffron (2003) -1.9981 0.8294 2 Ganschow (2005) -0.4463 0.4575 3 Gras (2008) -1.8769 1.3037 C. Röver et al. Bayesian meta-analysis made simple May 24, 2016 12 / 22

Computation perform analysis: > library("bayesmeta") > bm01 <- bayesmeta(effsize, mu.prior.mean=0.0, mu.prior.sd=10.0, tau.prior=function(x){dhalfnormal(x,scale=0.5)}) (specify effect prior via moments, heterogeneity prior via density) C. Röver et al. Bayesian meta-analysis made simple May 24, 2016 13 / 22

Computation perform analysis: > library("bayesmeta") > bm01 <- bayesmeta(effsize, mu.prior.mean=0.0, mu.prior.sd=10.0, tau.prior=function(x){dhalfnormal(x,scale=0.5)}) (specify effect prior via moments, heterogeneity prior via density) may also specify data (y, sigma) and labels individually: > bm01 <- bayesmeta(y=as.vector(effsize$yi), sigma=sqrt(effsize$vi), labels=effsize$study, mu.prior.mean=0.0, mu.prior.sd=10.0, tau.prior=function(x){dhalfnormal(x,scale=0.5)}) C. Röver et al. Bayesian meta-analysis made simple May 24, 2016 13 / 22

Results print default output: > bm01 bayesmeta object. 3 estimates: Heffron (2003), Ganschow (2005), Gras (2008) tau prior: function(x){dhalfnormal(x,scale=0.5)} mu prior: normal(mean=0, sd=10) ML and MAP estimates: tau mu ML joint 1.771042e-04-1.160107 ML marginal 5.077174e-01 NA MAP joint 9.862966e-05-1.157224 MAP marginal 0.000000e+00-1.194867 marginal posterior summary: tau mu mode 0.0000000-1.19486744 median 0.3380733-1.20525311 mean 0.3920815-1.21188547 sd 0.2881225 0.57387301 95% lower 0.0000000-2.34756473 95% upper 0.9406362-0.08617254 C. Röver et al. Bayesian meta-analysis made simple May 24, 2016 14 / 22

Results the bayesmeta() function returns the main result (current example: stored in bm01 object). list object; elements:...$dposterior: posterior density function (µ, τ or joint)...$pposterior,...$qposterior: cumulative distribution function, quantile function...$post.interval: function to determine credibility intervals...$summary: table of essential summary statistics... C. Röver et al. Bayesian meta-analysis made simple May 24, 2016 15 / 22

Results show posterior density of effect µ: mu <- seq(from=-3, to=1, length=100) plot(mu, bm01$dposterior(mu=mu), type="l", col="blue", xlab="effect (log-or)", ylab="probability density") C. Röver et al. Bayesian meta-analysis made simple May 24, 2016 16 / 22

Results show posterior density of effect µ: mu <- seq(from=-3, to=1, length=100) plot(mu, bm01$dposterior(mu=mu), type="l", col="blue", xlab="effect (log-or)", ylab="probability density") probability density 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 3 2 1 0 1 effect (log OR) C. Röver et al. Bayesian meta-analysis made simple May 24, 2016 16 / 22

Results show posterior density of effect µ: mu <- seq(from=-3, to=1, length=100) plot(mu, bm01$dposterior(mu=mu), type="l", col="blue", xlab="effect (log-or)", ylab="probability density") lines(mu, bm01$dprior(mu=mu), lty="dashed", col= "blue") abline(h=0, v=0) probability density 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 3 2 1 0 1 effect (log OR) C. Röver et al. Bayesian meta-analysis made simple May 24, 2016 16 / 22

Results what is the probability of a beneficial effect (P(µ 0))? evaluate cumulative distribution function: C. Röver et al. Bayesian meta-analysis made simple May 24, 2016 17 / 22

Results what is the probability of a beneficial effect (P(µ 0))? evaluate cumulative distribution function: > bm01$pposterior(mu=0) [1] 0.9833152 C. Röver et al. Bayesian meta-analysis made simple May 24, 2016 17 / 22

Results what is the probability of a beneficial effect (P(µ 0))? evaluate cumulative distribution function: > bm01$pposterior(mu=0) [1] 0.9833152 what is the 95% upper limit on the log-or? evaluate quantile function: > bm01$qposterior(mu=0.95) [1] -0.2859446 C. Röver et al. Bayesian meta-analysis made simple May 24, 2016 17 / 22

Results what is the probability of a beneficial effect (P(µ 0))? evaluate cumulative distribution function: > bm01$pposterior(mu=0) [1] 0.9833152 what is the 95% upper limit on the log-or? evaluate quantile function: > bm01$qposterior(mu=0.95) [1] -0.2859446 analogous for τ... > bm01$pposterior(tau=1.0) [1] 0.9632259 > bm01$qposterior(tau=0.95) [1] 0.9406362 C. Röver et al. Bayesian meta-analysis made simple May 24, 2016 17 / 22

Results posterior density of heterogeneityτ: tau <- seq(from=0, to=2.5, length=100) plot(tau, bm01$dposterior(tau=tau), type="l", col="green", xlab="heterogeneity (tau)", ylab="probability densit abline(h=0, v=0) probability density 0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5 2.0 2.5 heterogeneity (tau) C. Röver et al. Bayesian meta-analysis made simple May 24, 2016 18 / 22

Results posterior density of heterogeneityτ: tau <- seq(from=0, to=2.5, length=100) plot(tau, bm01$dposterior(tau=tau), type="l", col="green", xlab="heterogeneity (tau)", ylab="probability densit abline(h=0, v=0) 95% credibility interval (default: shortest interval): > bm01$post.interval(tau.level=0.95) [1] 0.0000000 0.9406362 > abline(v=bm01$post.interval(tau.level=0.95), col="red", lty=2) probability density 0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5 2.0 2.5 heterogeneity (tau) C. Röver et al. Bayesian meta-analysis made simple May 24, 2016 18 / 22

Results predictive distributions distribution of new study s true effect θ k+1 > bm01$qposterior(mu=c(0.025, 0.975)) [1] -2.3634190-0.1011219 > bm01$qposterior(mu=c(0.025, 0.975), predict=true) [1] -2.7717423 0.2576317 provides meta-analytic-predictive (MAP) prior 10 10 B. Neuenschwander, G. Capkun-Niggli, M. Branson, and D.J. Spiegelhalter. Summarizing historical information on controls in clinical trials. Clinical Trials 7(1):5-18, 2010. H. Schmidli et al. Robust meta-analytic-predictive priors in clinical trials with historical control information. Biometrics 70(4):1023-1032, 2014. C. Röver et al. Bayesian meta-analysis made simple May 24, 2016 19 / 22

Results quick sensitivity checks (uniform effect prior, very wide heterogeneity prior): bm01 <- bayesmeta(effsize, mu.prior.mean=0.0, mu.prior.sd=10.0, tau.prior=function(x){dhalfnormal(x,scale=0.5)}) bm02 <- bayesmeta(effsize, tau.prior=function(x){dhalfnormal(x,scale=1.0)}) C. Röver et al. Bayesian meta-analysis made simple May 24, 2016 20 / 22

Results quick sensitivity checks (uniform effect prior, very wide heterogeneity prior): bm01 <- bayesmeta(effsize, mu.prior.mean=0.0, mu.prior.sd=10.0, tau.prior=function(x){dhalfnormal(x,scale=0.5)}) bm02 <- bayesmeta(effsize, tau.prior=function(x){dhalfnormal(x,scale=1.0)}) probability density 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 bm01 bm02 3 2 1 0 1 effect (log OR) C. Röver et al. Bayesian meta-analysis made simple May 24, 2016 20 / 22

Results forest plot: > forest(bm01, main="steroid-resistant rejection (SRR)") Steroid resistant rejection (SRR) Heffron (2003) Ganschow (2005) Gras (2008) 2.00 [ 3.78, 0.21 ] 0.45 [ 1.77, 0.88 ] 1.88 [ 4.11, 0.36 ] mean effect (µ) prediction (ϑ k+1 ) 1.21 [ 2.35, 0.09 ] 1.20 [ 2.74, 0.28 ] 5.00 3.00 1.00 1.00 effect size C. Röver et al. Bayesian meta-analysis made simple May 24, 2016 21 / 22

Conclusions random-effects meta-analysis model covers wide range of cases semi-analytical integration simplifies Bayesian meta-analysis (esp.: no MCMC sampling necessary) R implementation is straightforward to use flexible prior specification quick sensitivity analyses includes predictive distributions bayesmeta package available on CRAN 11 11 http://cran.r-project.org/package=bayesmeta C. Röver et al. Bayesian meta-analysis made simple May 24, 2016 22 / 22