RISK FACTORS. Cancer type. Cancer stage

Similar documents
THROMBOPROPHYLAXIS IN CANCER PATIENTS

PROGNOSIS AND SURVIVAL

VTE Risk Assessment. Challenges of Hemostasis in Cancer Patients. Cihan Ay, MD Associate Professor

PRIMARY THROMBOPROPHYLAXIS IN AMBULATORY CANCER PATIENTS: CURRENT GUIDELINES

Is There a Role for Prophylaxis in Cancer Patients During Therapy?

Venous Thrombo-Embolism. John de Vos Consultant Haematologist RSCH

CANCER ASSOCIATED THROMBOSIS. Pankaj Handa Department of General Medicine Tan Tock Seng Hospital

New Hope for VTE Burden in Ambulatory Cancer Patients

The risk of venous thromboembolism is four to seven times as

Cancer Associated Thrombosis: six months and beyond. Farzana Haque Hull York Medical School

Frequency, demographics and risk (according to tumour type or site) of cancer-associated thrombosis among patients seen at outpatient DVT clinics

Epidemiology of Thrombosis in Patients with Malignancy. Cancer and Venous Thromboembolism. Chew HK, Arch Int Med, Feb Blom et al, JAMA, Feb 2005

Management of Cancer Associated Thrombosis (CAT) where data is lacking. Tim Nokes Haematologist, Derriford Hospital, Plymouth

In the Clinic: Annals Sweta Kakaraparthi 1/23/15

Tissue Factor-positive Microparticles in Cancerassociated

British Journal of Haematology. Risk factors for cancer-associated venous thromboembolism in outpatient DVT clinics

VTE Management in Surgical Patients: Optimizing Prophylaxis Strategies

Results from RE-COVER RE-COVER II RE-MEDY RE-SONATE EXECUTIVE SUMMARY

Prophylaxie primaire sur le patient ambulatoire. Marc Carrier

Cancer Associated Thrombosis

Duration of Anticoagulant Therapy. Linda R. Kelly PharmD, PhC, CACP September 17, 2016

P-Selectin as Predictor Venous Thromboembolism in Cancer Patients Undergoing Chemotherapy

Venous thrombosis in the patient with cancer

Cancer and Thrombosis

How long to continue anticoagulation after DVT?

Frequently Asked Questions about Cancer Associated Thrombosis

Thromboembolism and cancer: New practices. Marc Carrier

GLIOMA - VENOUS THROMBOEMBOLISM. Miguel Navarro. Hospital Universitario de Salamanca-IBSAL

Cancer associated thrombosis. 17 th November 2016 Simon Noble Clinical Professor Palliative Medicine Cardiff University Wales, UK

Cancer Associated Thrombosis An update.

VENOUS THROMBOEMBOLISM: DURATION OF TREATMENT

DVT Pathophysiology and Prophylaxis in Medically Hospitalized Patients. David Liff MD Oklahoma Heart Institute Vascular Center

Cancer Associated Thrombosis

Novel oral anticoagulants in the treatment of cancer patients

Catheter-Related Thrombosis A Catalyst of Complications

CHAPTER 2 VENOUS THROMBOEMBOLISM

Oncologist. The. Venous Thrombosis in Cancer Patients: Insights from the FRONTLINE Survey ABSTRACT

incidence of cancer-associated thrombosis (CAT) is further increased by additional risk factors such as chemotherapeutic 2

DVT PROPHYLAXIS IN HOSPITALIZED MEDICAL PATIENTS SAURABH MAJI SR (PULMONARY,MEDICINE)

Novità dall EHA >> [ Trombosi e cancro ]

Cancer and blood clots

Cancer and the Heparins

Menopausal Hormone Therapy & Haemostasis

New oral anticoagulants and Palliative Care.

Thrombosis and Cancer: A Major Complication of Cancer Care

High risk of venous thrombosis in patients with pancreatic cancer: A cohort study of 202 patients

Dr. Pierpaolo Di Micco Internal Medicine and Emergency Room Fatebenefratelli Hospital of Naples, Italy

Venous Thromboembolism (VTE) in Myeloma. Christine Chen May 2017

Thromboprophylaxis for medical patients with cancer: what do the guidelines say?

Challenges in Anticoagulation and Thromboembolism

CURRENT & FUTURE THERAPEUTIC MANAGEMENT OF VENOUS THROMBOEMBOLISM. Gordon Lowe Professor of Vascular Medicine University of Glasgow

Inferior Venacaval Filters Valuable vs. Dangerous Valuable Annie Kulungowski. Department of Surgery Grand Rounds March 24, 2008

Anticoagulation in Special populations. Ng Heng Joo Department of Haematology Singapore General Hospital

8,9,10. Deep venous thrombosis (DVT) is clotting of blood in a deep vein of Pulmonary embolism

Risk Assessment for Thrombosis in Cancer

VTE in Children: Practical Issues

IRB protocol Yair Lev, MD 11/25/08

Duration of Therapy for Venous Thromboembolism

Comparison of Venothromboembolism Prophylaxis Practices in a Winnipeg Tertiary Care Hospital to Chest Guidelines: A Quality Improvement Project

NKCP in Cancer Management (removing cancer s camouflage)

Cancer Associated Thrombosis Review and Update. Family Practice Oncology CME Day November 21 st 2015 Erica Peterson

1. SCOPE of GUIDELINE:

La terapia del TEV nel paziente oncologico nell'era dei DOAC

Venous Thrombosis in Asia

Venous Thromboembolism Prophylaxis - Why Should We Care? Harry Gibbs FRACP FCSANZ Vascular Physician The Alfred Hospital

EXTENDING VTE PROPHYLAXIS IN ACUTELY ILL MEDICAL PATIENTS

Anticoagulation in Special populations. Ng Heng Joo Department of Haematology Singapore General Hospital

Cover Page. The handle holds various files of this Leiden University dissertation.

Management of Acute Pulmonary Embolism. Judith Hurdman Consultant Respiratory Physician

Top Ten Reasons For Failure To Prevent Postoperative Thrombosis

Cancer-associated thrombosis: prevention and treatment

Duration anticoagulation VTE. Clinical case WGA april 2017 Dr Borgoens

Causative factors of deep vein thrombosis of lower limb in Indian population

Treatment of cancer-associated venous thromboembolism by new oral anticoagulants: a meta-analysis

Is thromboprophylaxis effective in reducing the pulmonary thromboembolism?

Disclosures. DVT: Diagnosis and Treatment. Questions To Ask. Dr. Susanna Shin - DVT: Diagnosis and Treatment. Acute Venous Thromboembolism (VTE) None

Mabel Labrada, MD Miami VA Medical Center

AN AUDIT: THROMBOPROPHYLAXIS FOR TOTAL HIP REPLACEMENT PATIENTS AT NORTHWICK PARK AND CENTRAL MIDDLESEX HOSPITALS

Venous Thromboembolism and Cancer: In Brief

Epidemiologia e clinica del tromboembolismo venoso. Maria Ciccone Sezione di Ematologia e Fisiopatologia della Coagulazione

Asymptomatic deep vein thrombosis and superficial vein thrombosis in ambulatory cancer patients: impact on short-term survival Clinical Studies

PREVENTION AND TREATMENT OF VENOUS THROMBOEMBOLISM

Misunderstandings of Venous thromboembolism prophylaxis

Venous Thromboembolism. Prevention

Low-Molecular-Weight Heparin

Boston Experience: Benchmark for the Nation

Patients with cancer are at a greater risk of developing venous thromboembolism than non-cancer patients, partly due to the 1

Low Molecular Weight Heparin for Prevention and Treatment of Venous Thromboembolic Disorders

Medical Patients: A Population at Risk

Once-Daily, Oral LIXIANA (edoxaban) Met Primary Endpoint in Investigational Hokusai-VTE CANCER Study

Canadian Society of Internal Medicine Annual Meeting 2016 Montreal, QC

Thrombosis in ovarian cancer: a case control study

Cancer and Venous Thromboembolism: Scope of the Problem

Mutidisciplinary cooperation on VTE prevention and managment

UC SF. Division of General Internal Medicine UNIVERSITY OF CALIFORNIA SAN FRANCISCO, DIVISION OF HOSPITAL MEDICINE

Semuloparin for Thromboprophylaxis in Patients Receiving Chemotherapy for Cancer

ARTEMIS. ARixtra (fondaparinux) for ThromboEmbolism prevention in. a Medical Indications Study. NV Organon Protocol 63129

DVT - initial management NSCCG

Bleeding Rates and Risk Factors among Cancer and Non-Cancer Patients: A Comparison of Several Anticoagulants

Transcription:

CANCER ASSOCIATED THROMBOSIS RISK FACTORS The link between cancer and thrombosis is well established, with malignancy recognised as the most important individual risk factor for venous thromboembolism (VTE), especially in the first few months after diagnosis. In fact, the overall risk of venous thrombosis is increased seven-fold in cancer patients 2 compared to persons without malignancy. 1 As cancer-associated thrombosis (CAT) is a complex and multifactorial event, some cancer patients are more at risk for developing deep vein thrombosis (DVT) or pulmonary embolism (PE) than other patients with cancer. A recent meta-analysis quotes the incidence of venous thrombosis in cancer patients ranging from 0.5% to 20%. The absolute risk may depend on several factors including the type of cancer, stage of disease, certain active therapies, hospitalisation, recent surgery, an indwelling central venous catheter, age, plus previous history of VTE. 4 3 CONTENTS Cancer type Cancer stage Active therapy Hormonal therapy and VTE Hospitalisation Other Risk Factors Assessing risk of CAT References Cancer type Some cancers, particularly mucin-secreting adenocarcinoma of the ovary, pancreas, stomach, brain tumours and haematological malignancies, are associated with a higher risk of VTE. A recent UK study investigated the incidence rates of VTE separately for 24 cancer sites. While there was an absolute VTE rate in all cancers of 13.9 per 1,000 person years, this varied greatly by cancer site; from 98 per 1,000 in pancreatic cancer to 3.1 per 1,000 in thyroid cancer. The MEGA study a population-based case-control study involving more than 3,200 patients found that the greatest VTE risk was among patients with haematological malignancies (28- fold increased risk), lung cancer (22-fold), and gastrointestinal cancer (20-fold). Other research also found a widely varied VTE-risk rate among cancer types, ranging from 16 per 10,000 patients with head/neck cancer to 120 per 10,000 patients with ovarian cancer. Cancer stage 5 2 6

Cancer-associated thrombosis also appears to be adversely influenced by the extent of the malignancy, with data indicating that advanced metastatic cancer places the patient at a higher risk for VTE. Risk-adjusted models have shown that metastatic disease at the time of diagnosis is the strongest predictor of VTE within the first year of diagnosis. The MEGA study found that cancer patients with distant metastases had a 19.8-fold increased risk of CAT versus patients without distant metastases. Similarly, the risk for VTE recurrence may be higher in patients with more extensive disease: a nearly fivefold higher recurrence rate has been reported in patients with advanced disease compared with a two- to threefold higher risk in those with more localised tumours. Active therapy 7 Cancer therapy itself has been shown to increase the risk for VTE, including chemotherapy, anti-angiogenic therapy, hormonal therapy, and erythropoietin-stimulating agents. The underlying mechanisms are poorly understood, but it has been suggested that many of these therapeutic agents induce vascular damage. Chemotherapy can increase the risk of thrombosis by at least four mechanisms: Acute damage to vessel walls Non-acute damage to the endothelium A decrease in natural coagulation inhibitors (reduced level of C and S proteins or antithrombin III) Platelet activation 9 8 2 7 4 The annual incidence of venous thrombosis in patients receiving chemotherapy is estimated at 11% climbing to 20% or higher depending on the type of drug or drugs being 10 administered. In a population-based study identifying risk factors for VTE in the general population, the use of chemotherapy was associated with a 6.5-fold greater risk of VTE compared with a 4.1-fold risk in cancer patients not on chemotherapy. Khorana et al found that the overall incidence of VTE was 1.93% in an ambulatory population starting a new chemotherapy (over a median follow-up period of 2.4 months). The rate observed in this study about 0.8% per month was significantly higher than the estimated 0.04% per month for the entire cancer population. 13 11 12 Hormonal therapy Hormonal therapies, particularly tamoxifen and anastrozole, have been linked to an elevated 14,15 risk of VTE among cancer patients. In a large study of over more than 9,000 patients with early-stage breast cancer, the incidence of VTE was 2.1% in the anastrozole group, 3.5% in 14

the tamoxifen group and 4% in patients receiving both therapies. Studies in women with late-stage breast cancer found VTE rates up to 8% in those treated with tamoxifen and up to 6.7% among those treated with anastrozole. Antiangiogenic therapy Antiangiogenic agents such as thalidomide, lenalidomide and bevacizumab have been found to contribute to higher rates of thrombosis in cancer patients an effect that is amplified by the co-administration of chemotherapy and steroids. A recent Italian study found that the combined use of an antiangiogenic plus a cytotoxic agent increased the risk of developing VTE in patients (8.9%) as compared to 3.5% of patients treated with other regimens. Erythropoietin-stimulating agents Erythropoiesis-stimulating agents such as erythropoietin and darbepoetin stimulate red blood cell production and are approved to reduce the number of blood transfusions required during chemotherapy; however, concerns have been raised about the risks of VTE. Hershman and colleagues recently confirmed that the use of erythropoiesis-stimulating agents was associated with an increased risk of VTE but not of mortality. VTE developed in 14.3% (1,796) of the 12,522 patients in the study who received erythropoiesis-stimulating agent, and in 9.8% (3,400) of the 34,820 patients who did not. Hospitalisation Hospitalisation often associated with prolonged immobility is a strong risk factor for cancer-associated thrombosis. In the hospitalised setting, the rate of VTE in cancer patients is twice that of non-cancer patients. Of note, among hospitalised cancer patients, those who develop VTE have a greater than 2-fold increased risk of death during their hospitalisation when compared with patients without VTE. Surgery and thrombosis Thrombosis is also a common complication of cancer-related surgery. The frequency of VTE in patients undergoing cancer surgery is roughly twice that seen in patients without malignancies who have similar operations. Higher rates of postoperative VTE are seen in patients undergoing abdominal surgery in comparison with urologic or gynaecologic surgeries. Postoperative VTE is the most common cause of death at 30 days following surgery, and is often a late complication of surgery, with 40% of events occurring more than 21 days after surgery. 23 In a study analysing the effect of surgery in patients with glioma who underwent invasive neurosurgery or brain biopsy, patients were 70% more likely to develop VTE within three 15 17 18 20 21 22 months compared with cases that did not undergo surgery. In contrast, some studies did not show an increased risk of VTE associated with surgery in patients with cancer. For example, Blom et al did not find an elevated VTE risk associated with surgery in a large cohort of 66,329 16 19 24 19 14 16 25

cancer patients, however, as this data did not include any information about thromboprophylaxis, and it is not clear if this finding reflects aggressive peri-operative prophylaxis. Other Risk Factors Central venous catheters Central venous catheters (CVC), commonly inserted for chemotherapy and hyperalimentation, are also associated with a risk of VTE. The incidence of CVC-related deep vein thrombosis (DVT) assessed by venography has been reported to vary from 30% to 60% but catheterrelated DVT in adult patients is symptomatic in only 5% of cases. The wide variability in the incidence of catheter-related thrombosis may be due to differences in catheter type, position, duration of insertion, type of malignancy, and use of different chemotherapeutic agents. Obesity as a risk factor Obesity is also an important risk factor for DVT/PE in both men and women. Studies have shown that obese individuals have nearly twice the risk of both PE and DVT, and obese patients less than 40 years of age have nearly a fivefold risk than those who are not obese. The risk of development of PE is nearly six times higher among women with a BMI of 35 kg/m2 or more. The thrombotic risk in cancer patients is likely to be further increased because of concomitant non cancer-specific VTE risk factors such as advanced age and the presence of co-morbid conditions such as respiratory failure or congestive heart failure. For example, a UK study found that age significantly increased the risk of thrombosis VTE rate in cancer patients, from 4.9 per 1000 (person-years) for those under 30 years to 16.9 per 1,000 for patients over 80 years. 5 25 28 Assessing risk of CAT The risk of CAT is not equal for all cancer patients or even in the same patient over time. As a result, risk factor assessment is an ongoing process throughout the course of care for the cancer patient. A simple model for predicting chemotherapy-associated VTE in ambulatory cancer patients, based on clinical and laboratory variables, was developed by Khorana et al. They identified five variables based on the site of cancer, pre-chemotherapy platelet and leukocyte count, haemoglobin level and body mass index. This model allows the physician to discriminate between ambulatory patients with low (score 0), intermediate (score 1 or 2) and high risk (score 3) of chemotherapy-associated thrombosis. CAT predictive model. Five variables: Site of cancer - very high risk (stomach, pancreas: risk score (2), high risk (lung, lymphoma, 26 27 29

gynaecological, genitourinary: risk score (1) and low risk (breast, colorectal, head and neck: risk score (1) Pre-chemotherapy platelet count of 350 109/l (risk score (1) Haemoglobin level <10 g/dl or use of erythropoiesis-stimulating agents, or both (risk score 1) Leukocyte count >11 109/l (risk score 1) Body mass index of 35 kg/m2 (risk score 1). The Vienna Cancer and Thrombosis Study subsequently validated this model in another cohort of cancer patients and expanded it with two additional laboratory markers - soluble P- selectin ( 53.1 ng/ml = VTE risk score 1), and D-dimer ( 1.44 µg/ml = VTE risk score 1) - increasing the predictive value of estimating a patient's risk of CAT. Recurrent CAT risk Research has shown that patients who develop CAT are at higher risk for recurrent thromboembolic disease and death in comparison with non-cancer patients with VTE. In fact, the risk for recurrent thrombotic events is twice as high in cancer patients compared to those without cancer, and four times higher if patients are concurrently receiving chemotherapy. Another study found that the probability of readmission for recurrent VTE within 183 days was 22% for cancer patients compared with 6.5% for those without malignancy. Post-thrombotic syndrome Approximately 30% of patients who develop DVT develop post-thrombotic syndrome (PTS), a chronic, potentially disabling condition with symptoms including debilitating leg pain, painful swelling and fibrosis. Post-thrombotic syndrome occurs between 2 and 10 years after the precipitating event. In severe cases, post-thrombotic syndrome may lead to painful leg ulcers that require long-term nursing care. Risk of death Since the mid-1990s, thrombosis has been a significant cause of death in cancer patients. Patients with both malignancy and cancer have been shown to have a 94% probability of death at six months more than twice the rate of death for patients with malignant disease alone and nearly three times the rate for patients with VTE and non-malignant disease. Pulmonary embolism (PE) is the cause of death in one in every seven hospitalised cancer patients. Of patients who die from a PE, 60% have localised cancer or limited metastatic disease, which would otherwise have allowed for reasonably long survival in the absence of a fatal PE. 35 6 Venous thromboembolism is also responsible for nearly half (46.3%) of all deaths following cancer surgery. 31 23 32 30 31,6 6 33,34

References 1. Mandala M, Falanga A, Roila F. Management of venous thromboembolism (VTE) in cancer patients: ESMO Clinical Practice Guidelines. Ann Oncol 2011;22:(S6):vi85 vi92. 2. Blom JW, et al. Malignancies, prothrombotic mutations and the risk of venous thrombosis. Jama 2005; 293: 715 722. 3. Horsted F, et al. Risk of venous thromboembolism in patients with cancer: A systematic review and meta analysis. PLoS Med 2012; 9(7): e1001275. 4. Falanga A, et al. Deep vein thrombosis in cancer: the scale of the problem and approaches to management. Ann Oncol 2005; 16: 696 701. 5. Walker AJ, et al. Incidence of venous thromboembolism in patients with cancer A cohort study using linked United Kingdom databases. European Journal of Cancer 2013; 49(6): 1404 1413. 6. Levitan N, et al. Rates of initial and recurrent thromboembolic disease among patients with malignancy versus those without malignancy. Risk analysis using Medicare claims data. Medicine (Baltimore) 1999; 78: 285 291. 7. Piatek C, et al. Treating Venous Thromboembolism in Patients With Cancer. Expert Rev Hematol. 2012; 5(2): 201 209. 8. Prandoni P, et al. Recurrent venous thromboembolism and bleeding complications during anticoagulant treatment in patients with cancer and venous thrombosis. Blood 2002; 100: 3484 3488. 9. Bick RL. Cancer Associated Thrombosis. N Engl J Med 2003; 349: 109 111. 10. Haddad TC, Greeno EW. Chemotherapy induced thrombosis. Thromb Res 2006; 118: 555 68. 11. Heit JA, et al. Risk factors for deep vein thrombosis and pulmonary embolism: a population based casecontrol study. Arch Intern Med 2000; 160, 809 815. 12. Khorana AA, Francis CW, Culakova E, Lyman GH. Risk factors for chemotherapy associated venous thromboembolism in a prospective observational study. Cancer. 2005; 104: 2822 2829. 13. Rao MV, Francis CW, Khorana AA. Who's at risk for thrombosis? Approaches to risk stratifying cancer patients. In: Khorana AA, Francis CW, eds: Cancer associated thrombosis: New findings in translational science, prevention and treatment. Informa Healthcare USA. 2008. 14. Baum M, et al. Anastrozole alone or in combination with tamoxifen versus tamoxifen alone for adjuvant treatment of postmenopausal women with early breast cancer: first results of the ATAC randomized trial. Lancet 2002; 359: 2131 2139. 15. Deitcher SR, et al. The risk of venous thromboembolic disease associated with adjuvant hormone therapy for breast carcinoma: A systematic review. Cancer 2004; 101(3): 439 449. 16. Mandalà M, et al. Venous thromboembolism is a relevant and underestimated adverse event in cancer patients treated in phase I studies. British Journal of Cancer (2012) 107, 612 616. 17. Rodriguez Garzotto A, Heine O, Turner M, et al. Erythropoiesis stimulating agents for the treatment of chemotherapy induced anemia: comparisons from real world clinical experience. Journal of Blood Medicine 2014; 5: 43 48. 18. FDA. Erythropoiesis stimulating agents (ESAs): New safety findings. Accessed online 18/11/2014; http://www.fda.gov/aboutfda/centersoffices/officeofmedicalproductsandtobacco/cder/ucm129253.htm 19. Hershman D, et al. Patterns of Use and Risks Associated With Erythropoiesis Stimulating Agents Among Medicare Patients With Cancer. J Natl Cancer Inst (2009) 101(23): 1633 1641. 20. Stein PD, Beemath A, Meyers FA, Skaf E, Sanchez J, Olson RE. Incidence of venous thromboembolism in patients hospitalised with cancer. Am J Med 2006; 119(1), 60 68. 21. Khorana AA, Francis CW, Culakova E, Fisher RI, Kuderer NM, Lyman GH. Thromboembolism in hospitalised neutropenic cancer patients. J. Clin. Oncol 2006; 24, 484 490. 22. Kakkar AK. Prevention of venous thromboembolism in general surgery. In: Colman RW, Clowes AW, George JN, Goldhaber SZ, Marder VJ, eds. Hemostasis and Thrombosis: Basic Principles and Clinical Practice. 5th ed. Philadelphia, PA: Lippincott, Williams & Wilkins; 2006:1361 1367.

23. Agnelli G, Bolis G, Capussotti L et al. A clinical outcome based prospective study on venous thromboembolism after cancer surgery: the @RISTOS Project. Ann Surg 2006; 243, 89 95. 24. Semrad TJ, et al. Epidemiology of venous thromboembolism in 9489 patients with malignant glioma. J Neurosurg 2007; 106: 601 608. 25. Blom JW, et al. Incidence of venous thrombosis in a large cohort of 66,329 cancer patients: results of a record linkage study. J Thromb Haemost. 2006; 4: 529 535. 26. Debourdeau P, et al. [Venous thromboembolism associated with long term use of central venous catheters in cancer patients]. Pathol Biol (Paris) 2008; 56(4): 211 9. 27. Stein PD, Beemath A, Olson RE. Obesity as a risk factor in venous thromboembolism. Am J Med 2005; 118: 978 980. 28. Kabrhel C, et al. Prospective Study of BMI and the Risk of Pulmonary Embolism in Women. Obesity (Silver Spring) 2009; 17(11): 2040 2048. 29. Sud R, Khorana AA. Cancer associated thrombosis: risk factors, candidate biomarkers and a risk model. Thromb Res. 2009; 123(Suppl 4): S18 21. 30. Ay C, et al. Prediction of venous thromboembolism in cancer patients. Blood 2010; 116: 5377 5282. 31. Heit JA, et al. Predictors of recurrence after deep vein thrombosis and pulmonary embolism: A population based cohort study. Arch Intern Med 2000; 160: 761 768. 32. Prandoni P, et al. The long term clinical course of acute deep venous thrombosis. Ann Intern Med. 1996; 125:1 7. 33. Donati MB. Cancer and thrombosis. Haemostasis 1994; 24: 128 131. 34. Johnson MJ. Bleeding, clotting and cancer. Clin Oncol (R Coll Radiol) 1997; 9: 294 301. 35. Shen VS, Pollak EW. Fatal pulmonary embolism in cancer patients: is heparin prophylaxis justified? South Med J 1980; 73: 841 843.