HETEROZYGOUS BETA THALASSEMIA IN PARENTS OF CHILDREN WITH BETA THALASSEMIA MAJOR

Similar documents
DETECTION OF HETEROZYGOUS BETA THALASSAEMIA IN THE SIBLINGS OF KNOWN BETA THALASSAEMIA MAJOR CHILDREN

Evaluation of M/H Ratio for Screening of B Thalassaemia Trait

Beta thalassaemia traits in Nigerian patients with sickle cell anaemia

High Prevalence of Sickle Haemoglobin in Mehra Caste of District Betul, Madhya Pradesh

Original Paper. Inherited Haemoglobin Disorders Among Apparently Healthy Individuals- An Analysis of 105 Cases. Abstract

6.1 Extended family screening

Genetic Diversity of 3-thalassemia Mutations in Pakistani Population

Report of Beta Thalassemia in Newar Ethnicity

Genetics of Thalassemia

HEMOGLOBIN ELECTROPHORESIS DR ARASH ALGHASI SHAFA HOSPITAL-AHWAZ

Orignal Article. Neeraja Pethe, Anil Munemane*, Suryakant Dongre ABSTRACT

Screening for haemoglobinopathies in pregnancy

Haemoglobinopathies case studies 11 th Annual Sickle Cell and Thalassaemia Conference October 2017

Clinical, haematological, and genetic studies of type 2

The pros and cons of the fourth revision of thalassaemia screening programme in Iran

HEMOLYTIC ANEMIA DUE TO ABNORMAL HEMOGLOBIN SYNTHESIS

Thalassaemia and haemoglobinopathies in Brunei Darussalam

BLOOD RESEARCH ORIGINAL ARTICLE INTRODUCTION. Pakistan

Prevalence of Beta Thalassaemia in Jenin Area in Palestine

Perspective. Genetic Haemoglobin Disorders in Pakistan. Suhaib Ahmed *

S-Beta Thalassemia leading to avascular necrosis of left hip joint in a young male - A rare case report

H aemoglobin A2 can be measured by several laboratory

Type and frequency of hemoglobinopathies, diagnosed in the area of Karachi, in Pakistan

Jamal I., J. Harmoniz. Res. Med. and Hlth. Sci. 2015, 2(3), PREVALENCE OF BETA-THALASSEMIA TRAIT IN AND AROUND PATNA, BIHAR. Dr.

Research Article Pattern of β-thalassemia and Other Haemoglobinopathies: A Cross-Sectional Study in Bangladesh

Epidemiological Study among Thalassemia Intermedia Pediatric Patients

Pitfalls in the premarital testing for thalassaemia

Prof Sanath P Lamabadusuriya

Haemoglobin Lepore in a Malay family: a case report

Relative Protection from Ischaemic Heart Disease in Beta-Thalassaemia Carriers

sickle haemoglobin, G6PD deficiency, and a and thalassaemia

Expression of Hb β-t and Hb β-e genes in Eastern India Family studies

HAEMOGLOBINOPATHIES. Editing file. References: 436 girls & boys slides 435 teamwork slides. Color code: Important. Extra.

Thalassaemia and Abnormal Haemoglobins in Pregnancy

UTILITY OF ERYTHROCYTE INDICES FOR SCREENING OF β THALASSEMIA TRAIT IN PREGNANT WOMEN ATTENDING ANTENATAL CLINIC

Dr B Lal Clinical Laboratory Pvt Ltd. Jaipur, Rajasthan, India

JMSCR Vol 06 Issue 01 Page January 2018

Thalassemias:general aspects and molecular pathology

Joanne Mallon, Nora O Neill, Dr D Hull Antenatal midwife coordinator, Consultant Haematologist

Thalassemias. Emanuela Veras, M.D. 01/08/2006

Laboratory for diagnosis of THALASSEMIA

Prevalence of Thalassemia in Patients With Microcytosis Referred for Hemoglobinopathy Investigation in Ontario A Prospective Cohort Study

In adults, the predominant Hb (HbA) molecule has four chains: two α and two β chains. In thalassemias, the synthesis of either the α or the β chains

Hypochromic Anaemias

THALASSEMIA IN THE OUTPATIENT DEPARTMENT OF THE YANGON CHILDREN'S HOSPITAL IN MYANMAR: BASIC HEMATOLOGICAL VALUES OF THALASSEMIA TRAITS

db-thalassemia Patients With Homozygous Xmn-1 Polymorphism That Are Characterized By A Milder Phenotype

The Thalassemias in Clinical Practice. Ashutosh Lal, MD Director Comprehensive Thalassemia Program UCSF Benioff Children s Hospital Oakland

Line Probe Assay for Detection of Alpha Thalassemia: A Pilot Study

HPLC profile of sickle cell disease in central India

Neonatal Screening for Genetic Blood Diseases. Shaikha Al-Arayyed, PhD* A Aziz Hamza, MD** Bema Sultan*** D. K. Shome, MRCPath**** J. P.

Anaemia in Pregnancy

BRITISH BIOMEDICAL BULLETIN

Seroprevalence of Sickle Cell Anemia And Thalassemia in Suspected Case of Genetic Disorders in Tribal Predominant Population, Ranchi,India

The LaboratoryMatters

Homozygous delta-beta Thalassemia in a Child: a Rare Cause of Elevated Fetal Hemoglobin

Antenatal Detection of Hemoglobinopathies using Red Blood Cells Indices for Screening

When do you have to perform the molecular biology in the hemoglobinopathies diagnosis

Utility of hemoglobin electrophoresis to detect hemoglobinopathies in adults not presenting with hematological problems

Haematological and Genetic Characterization of Thalassemia Intermedia in Tank and South Waziristan Agency of Khyber Pakhtun Khwa

Hematology Unit Lab 1 Review Material

The Beats of Natural Sciences Issue 3-4 (September-December) Vol. 3 (2016)

O- thalassaemia in Sardinian infants

Morphological classification of anaemia among first-time blood donors in Northwest Nigeria and the implication of empirical haematinics therapy

Thalassemia intermedia in HbH-CS disease with compound heterozygosity for β-thalassemia: Challenges in hemoglobin analysis and clinical diagnosis

Microcytic Hypochromic Anemia An Approach to Diagnosis

International Journal of Health Sciences and Research ISSN:

KAP STUDY GENETIC DISORDER

An overview of Thalassaemias and Complications

JMSCR Vol 04 Issue 12 Page December 2016

The Nucleated Red Blood Cell (NRBC) Count in Thalassaemia Syndromes Paolo Danise and Giovanni Amendola

Evaluation of five discriminating indexes to distinguish Beta-Thalassemia Trait from Iron Deficiency Anaemia

Diagnostic Significance of Haemogram Parameters and RBC Indices in Haemoglobin E Trait

SICKLE CELL DISEASE. Dr. MUBARAK ABDELRAHMAN MD PEDIATRICS AND CHILD HEALTH. Assistant Professor FACULTY OF MEDICINE -JAZAN

National Haemoglobinopathy Reference Laboratory. Information for Users

Epidemiology, Care and Prevention of Hemoglobinopathies

Proposed low-cost premarital screening program for prevention of sickle cell and thalassemia in Yemen Hafiz Al-Nood 1 Abdulrahman Al-Hadi 2

Thalassemia Maria Luz Uy del Rosario, M.D.

Survey of blood transfusion-induced malaria and other diseases in Thalassemia patients from Solapur District (M.S.) India.

a-thalassemia in the American Negro

Case scenarios in Pediatric Hematology and Oncology. Dr. Zainul Aabideen Consultant, Pediatric Hematology and Oncology Burjeel Hospital

ESM Table 2 Data extraction form and key data from included studies

The influence of sickle cell and beta thalassaemia traits on type 2 diabetes mellitus

Hematologic Features of Alpha Thalassemia Carriers

Red Cell Indices and Functions Differentiating Patients with the β-thalassaemia Trait from those with Iron Deficiency Anaemia

Spectrum of -thalassemia mutations in Qazvin Province, Iran

Thalassaemia trait and pregnancy

BETA THALASSEMIA TRAIT; DIAGNOSTIC IMPORTANCE OF HAEMATOLOGICAL INDICES IN DETECTING BETA THALASSEMIA TRAIT PATIENTS

Alpha_Zero_Thalas_07:1 24/4/07 11:14 Page 1. Alpha Zero

Spectrum of Haemoglobinopathies in a Suburb of Indore (India): A Two Year Study

Anemia s. Troy Lund MSMS PhD MD

HAEMOGLOBIN ESTIMATION

Haemoglobinopathy Case Studies. Dr Jill Finlayson Department of Haematology Pathwest Laboratory Medicine

Levels of Haemoglobins A, A2, and F*

Dr Banu Kaya Consultant Haematologist Barts Health NHS Trust Royal London Hospital, London, UK SICKLE CELL AND THALASSAEMIA OVERVIEW

Is Mentzer Index A Reliable Diagnostic Screening Tool For Beta Thalassemia Trait?

Cover Page. The handle holds various files of this Leiden University dissertation.

The Pattern for Common Anaemia among Saudi Children

The diagnosis of Hemoglobinopathies

Routine screening for a-thalassaemia using an immunochromatographic strip assay for haemoglobin Bart s

Prevalence of Alpha Thalassemia Type II in Gond Tribe of Shahdol District of Madhya Pradesh, India.

Transcription:

ORIGINAL ARTICLE Heterozygous Beta Thalassemia in Parents of Thalassemics HETEROZYGOUS BETA THALASSEMIA IN PARENTS OF CHILDREN WITH BETA THALASSEMIA MAJOR ABSTRACT Imran-ud-din Khattak 1, Sania Tanweer Khattak 1, Jehanzeb Khan 2 1 Saidu Medical College, Swat and 2 Postgraduate Medical Institute, Lady Reading Hospital Peshawar, Pakistan Background: Beta thalassemia is the most common single gene disorder causing a major genetic health problem in the world. Beta thalassemia is common in Pakistan. This study was conducted to find out the pattern of transmission of beta thalassemia in the affected families. Material and Methods: One hundred families having children with beta thalassemia major were analyzed at Postgraduate Medical Institute, Lady Reading Hospital Peshawar, Pakistan, for detection of beta thalassaemia trait. Screening was performed in both maternal and paternal parents and grandparents. Results: Four hundred and fifteen (69.2%) cases of heterozygous beta thalassaemia were detected in the survey of 100 families (600 subjects), having beta thalassaemia major children. Altered red cell morphology such as hypochromia, microcytosis and aniso-poikilocytosis were seen in all these cases. Haemoglobin A 2 level ranged 4.0-6.9%, MCV of less than 77 fl and MCH of less than 26.4 pg were found in all the subjects with beta thalassaemia trait. The frequency of consanguineous marriages in parents was first cousin 72%, second cousin 5%, distant cousin 4% and un-related 19%. Conclusion: Consanguinity was found to be present in most of the parents of patients with beta thalassaemia major. This can be minimized by health education, nation-wide screening and provision of genetic counseling to the affected families. Key words: Beta thalassemia, Parents, Consanguinity. INTRODUCTION Thalassemias are a heterogeneous group of genetic heritable disorders of haemoglobin synthesis. 1 Beta thalassemia probably is the most common single gene disorder causing a major genetic health problem in the world. 2 Pakistan lies in the thalassemia belt and b-thalassemia is common here. 3 If an average of 5.4% is taken as the national carrier rate, 3-4 there would be approximately 5-6 million carriers in Pakistan. The average cost of treating one thalassaemic patient is Pakistani Rupees 10,000 per annum in addition to blood requirements which is not affordable with our limited resources. 5 An alternative long term approach would be to reduce the number of these patients through parental screening and genetic counseling. 6 Identification of b-thalassaemia carriers and provision of prenatal diagnosis of homozygous conception using oligonucleotide probes and restriction enzyme analysis, 7,8 followed by termination of pregnancy will allow couples at risk to avoid having children with b-thalassemia. 9,10 Presence of hereditary haemoglobin disorders in Pakistan is well known, though the data is not so extensive. 10 This study was conducted to find out the overall pattern of transmission of the disease in the affected families. MATERIAL AND METHODS A total of 100 families of known thalassemia major children were selected whose parents and grand parents (both maternal and paternal) were alive. They belonged to district Peshawar. All were thoroughly interviewed and clinically examined for jaundice, hepatosplenomegaly and lymphadenopathy. The relevant information regarding age, sex, ethnic origin (caste /tribe) and place of birth / inhabitance, family history and consanguinity were recorded. 7.0 ml of venous blood was collected from each of the subjects and distributed in the following manner: i. 2.0 ml blood was mixed with potassium EDTA to a final concentration of 1.5 mg/ml and used for blood counts, red cell indices and reticulocyte count. ii. 2.0 ml blood was mixed with potassium EDTA to a final concentration of 1.5 mg/ml and used for preparation of haemolysate for Gomal Journal of Medical Sciences July Dec 2006, Vol. 4, No. 2 52

Imran-ud-Din Khattak et al iii. haemoglobin electrophoresis and estimation of HbA 2 and HbF. 3.0 ml blood was transferred into a sterile glass test tube and allowed to clot. Clear serum was separated into a sterile cryotube and preserved at -20 C for estimation of serum ferritin. Complete blood count (CBC) and red cell indices were measured on Micros Cobas-16 Haematology auto-analyzer within two hour of sample collection. The equipment was calibrated daily by using low normal and high commercial controls obtained from Cobas. Quality control was performed by running the same normal specimen after every 25 test specimens. Estimation of HbA 2 was done spectrophotometrically after elution of the haemoglobin bands separated on cellulose acetate strips in Tris/EDTA/borate buffer at ph 8.6. 11 Haemoglobin F was measured by modified Betk method 4 based on its resistance to denaturation at alkaline ph. Serum ferritin was estimated by ELISA method in all the cases having microcytic hypochromic blood picture with low MCV (< 77 fl). Reticulocyte count was performed by brilliant cresyl blue supra-vital staining. The criteria used for the diagnosis of b-thalassaemia trait were Haemoglobin A 2 level of ³ 4.0% supported by MCV < 77fl, MCH < 26 pg, altered red cell morphology and normal or raised serum ferritin level. RESULTS A total of 415 cases (69.2%) of heterozygous beta thalassemia were detected in survey of 100 families of the known beta thalassemia major children. Ninety six families (96%) out of 100 were pathans and only 4 families belonged to miscellaneous group. Three hundred and ninety nine (96.1%) out of 415 subjects with heterozygous beta thalassemia were pathans and 16 (3.9%) belonged to miscellaneous group. (Table-1) Altered red cell morphology such as hypochromia, microcytosis and aniso-poikilocytosis were seen in all the cases. Haemoglobin A 2 level ranged 4.0-6.9%, MCV of less than 77 fl and MCH of 26.4 pg or less in all subjects of beta thalassemia trait. (Table-2) The frequency of consanguineous marriages in parents were first cousin 72%, second cousin 5%, distant cousin 4% and not relative 19%. (Table 3) DISCUSSION The occurrence of hereditary haemoglobin disorders in Pakistan has been known for a long time although the data is limited. 12 The actual magnitude of these hereditary disorders in Pakistan has been masked by infections and nutritional deficiencies. If these acquired diseases are reduced successfully, hereditary disorders including haemoglobinopathies would become important national problem. 13 The prevalence of â-thalassemia carrier state found in the relatives of beta thalassemia major children is more than 50%. 14 The latest study performed on the siblings of beta thalassaemia major children showed that the incidence of beta thalassaemia trait among the siblings was 58% with a male to female ratio of 0.9:1. 15 Consanguineous marriages are quite common in Pakistan, especially in pathans. This social practice may have compounded the problems. 16 All the beta thalassemia heterozygotes showed some degree of hypochromia with MCH ranging between 15.4-26.4 pg (median 20.33). Similarly 100% (415/ 415) of the carriers had MCV value of less than 77 fl. This finding is in concurrence with early study at Armed Forces Institute of Pathology and with the major work done earlier by Italians where MCV value of 77 fl or less was used as the main parameter for preliminary screening for thalassemia trait. 17 (Table-4) The estimation of MCV and MCH by electronic haematology analyzer appears to be a cost effective method of screening for beta thalassemia heterozygotes. Haemoglobin A 2 level of 4% or more appears to be highly significant level for the diagnosis of heterozygous beta thalassemia in the present study. This was supported by low MCV, low MCH and abnormal red cell morphology. Table-1: Distribution pattern of heterozygous beta thalassaemia in population groups. Ethnic Group Number of subjects Families Percentage Pathans 399 96 96.1% Miscellaneous 16 4 3.9% Total 415 100 100% Gomal Journal of Medical Sciences July Dec 2006, Vol. 4, No. 2 53

Heterozygous Beta Thalassemia in Parents of Thalassemics Table-2: Haematological data in heterozygous beta thalassemia and healthy subjects. Haematological Parameter Beta Thalassemia minor Healthy Population p-value (n = 415) (n = 185) Hb (g/dl) 12.08 ± 1.34 14.5 ± 0.73 HS (6.1 15.5) (12.5 15.5) TRBC (x 10 12 /L) 5.94 ± 0.64 5.01 ± 0.50 HS (3.95 7.39) (4.05 6.65) PCV (L/L) 0.358 ± 4.21 0.400 ± 0.023 HS (0.211 0.476) (0.370 0.460) MCV (fl) 61.73 ± 4.55 80.2 ± 6.50 HS (48.3 75.6) (78 91) MCH (pg) 20.33 ± 1.76 29.2 ± 2.101 HS (15.4 26.4) (27.2 29.9) MCHC (g/dl) 33.12 ± 1.45 33.5 ± 1.5 S (27.7 38.0) (30.7 36.2) HbF (%) 0.89 ± 0.15 0.9 ± 0.22 NS (0.6 1.4) (0.6 1.3) HbA 2 (%) 5.36 ± 0.57 3.1 ± 0.27 HS (4.0 6.9) (2.5 3.4) Reticulocytes (%) 1.6 ± 0.45 1.8 ± 0.66 S (0.8 4.0) (0.8 2.5) Serum ferritin (ηg/ml) 43.0 ± 18.5 74.0 ± 30.5 HS (2 104) (6 136) Key: HS = Highly significant (P < 0.001), S = Significant (P < 0.05), NS= Non-significant (P > 0.05). n = Number of subjects. Figures in parentheses show the range of values. Table-3: Frequency of consanguineous marriages in 100 families. Relationship No. of families Percentage First cousin marriage 72 72% Second cousin marriage 5 5% Distant cousin marriage 4 4% Not relative marriage 19 19% Total 100 100% Cousin marriages were found to be present in 77% of the parents of subjects in this study. This can be minimized by nation-wide screening, health education and establishing special care centers where facilities for diagnosis and genetic counseling are available. CONCLUSION Consanguinity was found to be present in most of the parents of patients with beta thalassemia major. This can be minimized by health education, nation-wide screening and Gomal Journal of Medical Sciences July Dec 2006, Vol. 4, No. 2 54

Imran-ud-Din Khattak et al Table-4: Haematological data in heterozygous beta thalassemia patients in different studies. Study Race Sex No Hb RBC MCH MCV (g/dl) (10 12 /L) (pg) (fl) Weatherall and British M 32 11.8 + 1.5 5.6 + 0.6 21.5 + 1.3 70.5 + 4.2 Clegg (1981) (8.7-14.7) (4.6-6.6) (18.6-25.6) (63.1-77.1) F 51 10.8 + 0.9 5.1+ 0.5 21.8 + 1.4 70.3 + 4.8 (8.4-12.5) (4.3-6.7) (18.8-25.1) (63.0-82.1) Dincol et al Turkish M 64 11.6 + 1.5 5.2 + 0.7 22 + 2 74 + 5 (1979) (7.8-1.7) (3.9-6.7) (18-25) (66-82) F 81 10.3 + 1.2 4.7 + 0.6 21 + 2 74 + 4 (7.8-13.0) (3.8-6.3) (18-24) (66-81) Galanella et al Sardinian M 43 13.3 + 0.8 6.1 + 0.5 22 + 2 66 + 4 (1979) (11.4-15.3) (5.0-7.4) (14-25) (59-85) F 107 11.8 + 0.9 5.4 + 0.4 22 + 2 66 + 4 (9.1-14.0) (4.0-6.7) (18-26) (55-78) Khattak and Pakistani M 14 13.6 + 1.04 6.7 + 0.67 20.3 + 1.35 63.4 + 5.1 Saleem (1992) (11.6-15.1) (5.1-7.58) (17.9-22.7) (58-78) F 13 11.6 + 1.56 5.24 + 0.75 22.35 + 2.23 71.77 + 6.46 (9.1-13.8) (4.15-6.64) (18.6-25.3) (62-82) Anjum (1999) Pakistani M 26 9.54 + 1.46 4.77 + 0.98 21.15 + 4.67 90.75 + 11.25 (5.7-13.4) (2.5-7.5) (10.1-31.0) (51-120) F 32 9.98 + 1.54 4.82 + 0.85 21.78 + 4.68 87.35 + 13.5 (4.2-13.9) (3.0-6.6) (18.4-26.0) (51-125) Present study Pakistani M 210 13.02 + 1.22 6.3 + 0.66 20.5 + 1.57 62.1 + 4.43 (2000) (9.12-15.5) (4.01-7.39) (17.1-25.0) (51.0-71.6) F 205 11.07 + 0.78 5.63 + 0.62 20.16 + 1.76 61.35 + 4.45 (6.1-13.6) (3.95-6.75) (15.4-26.4) (48.3-75.6) provision of genetic counseling to the affected families. REFERENCES 1. Kumar V, Cotran RS, Robins SL. In: Basic Pathology. 7 th Ed. London: WB Saunders 2005; 227-302. 2. Khattak MF, Saleem M. Prevalence of heterozygous beta thalassaemia in Northern areas of Pakistan. J Pak Med Assoc 1992; 42: 32-4. 3. Saleem M. Haemoglobinopathies. Pak Arm Forc Med J 1974; 25: 9-16. 4. Saleem M, Ahmad PA, Mubarik A, Ahmed SA. Distribution pattern of haemoglobinopathies in Northern areas of Pakistan. J Pak Med Assoc 1985; 35: 106-9. 5. Saleem M, Qureshi FZ, Qureshi TZ, Anwar M, Ahmed S. Evaluation of M/H ratio for screening of beta thalassaemia trait. J Pak Med Assoc 1995; 45: 84-6. 6. Martinez G, Canmizeres ME. Genetic haemoglobin abnormalities in 2363 cases new born. Hum Genet 1982; 60: 250. 7. Rosatelli MC, Turveri T, Seeles MT, et al. Prenatal diagnosis of B-thalassaemia by oligonucleotide analysis in Mediterranean population. J Med Genet 1988; 25: 763. 8. Pirastu M, Ristaldi M, Cao A. Prenatal diagnosis of B-thalassaemia based on restriction endonuclease analysis of amplified fetal DNA. J Med Genet 1989; 26: 542. 9. Old JM, Wainscoat JS. A new DNA polymorphism in the beta globin gene cluster can be used for antenatal diagnosis of Gomal Journal of Medical Sciences July Dec 2006, Vol. 4, No. 2 55

Heterozygous Beta Thalassemia in Parents of Thalassemics beta thalassaemia. Br J Haematol 1983; 53: 337-41. 10. Nienhuis AW, Anagnou NP, Ley TJ. Advances in thalassaemia research. Blood 1984; 63: 738-58. 11. Dacie JV, Lewis SM. In: Practical Haematology. 8 th Ed. London: Churchill Livingstone, 2003: 274-9. 12. Imran M. Hereditary anaemias in North West Frontier Province of Pakistan. J Postgrad Med Inst Peshawar 1986; 1: 104-6. 13. Mehta BC, Pandye BG. Iron status in beta thalassaemia families. Am J Haematol 1987; 25: 137-41. 14. Anjum S, Tayyab M, Shah HS, Chaudry N. Detection of B-thalassaemia Trait in the siblings of beta thalassaemiamajor children. J Ayub Med Coll 2001; 13: 11-3. 15. Khan SN, Zafar AU, Riaz DS. Molecular genetic diagnosis of beta-thalassaemia in Pakistan. J Pak Med Assoc 1995; 45: 66-70. 16. Saleem M. Thalassaemia in Pakistan. One day symposium on Thalassaemia in Pakistan. Lahore, Pakistan. Thalassaemia Welfare Society, 1991: 1-4. 17. Khan AS, Petrou M, Saleem M. Molecular genetics of b-thalassaemia in Pakistan: a basis for prenatal diagnosis. Br J Haematol 1996; 94: 476-82. Address for Correspondence: Dr. Imran-ud-din Khattak Assistant Professor Pathology Saidu Medical College Swat, NWFP, Pakistan Cell: 03018885001 Gomal Journal of Medical Sciences July Dec 2006, Vol. 4, No. 2 56