Aloe-emodin Induces Cell Death through S-Phase Arrest and Caspase-dependent Pathways in Human Tongue Squamous Cancer SCC-4 Cells

Similar documents
Impact factor: Reporter:4A1H0019 Chen Zi Hao 4A1H0023 Huang Wan ting 4A1H0039 Sue Yi Zhu 4A1H0070 Lin Guan cheng 4A1H0077 Chen Bo xuan

Proteomic profiling of small-molecule inhibitors reveals dispensability of MTH1 for cancer cell survival

C-Phycocyanin (C-PC) is a n«sjfc&c- waefc-jduble phycobiliprotein. pigment isolated from Spirulina platensis. This water- soluble protein pigment is

Crude Extracts of Solanum lyratum Induced Cytotoxicity and Apoptosis in a Human Colon Adenocarcinoma Cell Line (Colo 205)

CANCER GENOMICS & PROTEOMICS 4: (2007)

http / / cjbmb. bjmu. edu. cn Chinese Journal of Biochemistry and Molecular Biology COX-2 NTera-2 NTera-2 RT-PCR FasL caspase-8 caspase-3 PARP.

INTERNATIONAL JOURNAL OF ONCOLOGY 39: , 2011

SUPPLEMENTARY INFORMATION

Crude Extract of Garlic Induced Caspase-3 Gene Expression Leading to Apoptosis in Human Colon Cancer Cells

INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE 34: , 2014

Introduction: 年 Fas signal-mediated apoptosis. PI3K/Akt

Key words: apoptosis, beta-amyrin, cell cycle, liver cancer, tritepenoids

Li et al. Journal of Experimental & Clinical Cancer Research (2018) 37:108

Montri Punyatong 1, Puntipa Pongpiachan 2 *, Petai Pongpiachan 2 Dumnern Karladee 3 and Samlee Mankhetkorn 4 ABSTRACT

ANTICANCER RESEARCH 31: (2011)

Berberine Sensitizes Human Ovarian Cancer Cells to Cisplatin Through mir-93/ PTEN/Akt Signaling Pathway

ab65311 Cytochrome c Releasing Apoptosis Assay Kit

CD14 + S100A9 + Monocytic Myeloid-Derived Suppressor Cells and Their Clinical Relevance in Non-Small Cell Lung Cancer

Sodium selenite induces apoptosis in colon cancer cells via Bax-dependent mitochondrial pathway

The Biochemistry of apoptosis

Supplementary Materials

Glycyrrhizic acid induces apoptosis in WEHI-3 mouse leukemia cells through the caspase- and mitochondria-dependent pathways

ANTICANCER RESEARCH 31: (2011)

Apoptosis Mediated Cytotoxicity of Curcumin Analogues PGV-0 and PGV-1 in WiDr Cell Line

Berberine Induced Apoptosis via

IMMP8-1. Different Mechanisms of Androg and IPAD on Apoptosis Induction in Cervical Cancer Cells

Supporting Information

Berberine Induces G1 Arrest and Apoptosis in Human Glioblastoma T98G Cells through Mitochondrial/Caspases Pathway

Supporting Information. Non-thermal plasma with 2-deoxy-D-glucose synergistically induces cell death by targeting glycolysis in blood cancer cells

Supplementary Information

PUMA gene transfection can enhance the sensitivity of epirubicin-induced apoptosis of MCF-7 breast cancer cells

Supplementary figure legends

Apoptosis of Human Leukemia HL-60 Cells and Murine Leukemia WEHI-3 Cells Induced by Berberine through the Activation of Caspase-3

Part-4. Cell cycle regulatory protein 5 (Cdk5) A novel target of ERK in Carb induced cell death

The Roles of Endoplasmic Reticulum Stress and Ca 2+ on Rhein-induced apoptosis in A-549 Human Lung Cancer cells

In vivo prediction of anti-tumor effect of 3- bromopyruvate in Hepatocellular Carcinoma using Tc-99m labeled annexin-v imaging

Wei-Chung Cheng ( 鄭維中 )

Supplementary Materials and Methods

Research Article LED Light-Activated Hypocrellin B Induces Mitochondrial Damage of Ovarian Cancer Cells

Cinnamomum Essential Oil Prevents DNA Damage- Induced by Doxorubicin on CHO-K1 Cells

The effect of insulin on chemotherapeutic drug sensitivity in human esophageal and lung cancer cells

Research Article Ginseng Extract Enhances Anti-cancer Effect of Cytarabine on Human Acute Leukemia Cells

School of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, , People s Republic of China; 2

8. CHAPTER IV. ANTICANCER ACTIVITY OF BIOSYNTHESIZED SILVER NANOPARTICLES

Anti-Apoptotic Effects of Cellular Therapy

The effect of elemene reversing the multidurg resistance of A549/DDP lung cancer cells

SUPPLEMENT. Materials and methods

Emodin, Aloe-emodin and Rhein Induced DNA Damage and Inhibited DNA Repair Gene Expression in SCC-4 Human Tongue Cancer Cells

Apoptosis Oncogenes. Srbová Martina

Effects of COX-2 Inhibitor on the Proliferation of MCF-7 and LTED MCF-7 Cells

- 1 - Cell types Monocytes THP-1 cells Macrophages. LPS Treatment time (Hour) IL-6 level (pg/ml)

Original Article Cantharidin exhibits promising inhibitory effect on cell viability in oral cancer cells through mitochondrial pathway

Novel Quinazolinone MJ-29 Triggers Endoplasmic Reticulum Stress and Intrinsic Apoptosis in Murine Leukemia WEHI-3 Cells and Inhibits Leukemic Mice

Doctoral Degree Program in Marine Biotechnology, College of Marine Sciences, Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei,

Department of General Surgery, The Third People s Hospital of Dalian, Dalian Medical University, Dalian, Liaoning, China,

A549 and A549-fLuc cells were maintained in high glucose Dulbecco modified

Table S1. New colony formation 7 days after stimulation with doxo and VCR in JURKAT cells

Supplementary Information POLO-LIKE KINASE 1 FACILITATES LOSS OF PTEN-INDUCED PROSTATE CANCER FORMATION

Silibinin i activates p53-caspase-2 pathway and causes caspase-mediated cleavage of Cip1/p21 in apoptosis

ANTICANCER RESEARCH 33: (2013) Materials and Methods

PROFESSIONAL EXPERIENCE

was determined by MTT assay. Fluorescent probes DCFH-DA, Indo 1/AM, DiOC 6 were used to determine ROS, Ca 2+, mitochondrial membrane potential (ΔΨ m

Journal of Chinese Medicine. Vol.20, No.1, Vol.20, No.3,

Introduction to pathology lecture 5/ Cell injury apoptosis. Dr H Awad 2017/18

The Annexin V Apoptosis Assay

Instructions for Use. APO-AB Annexin V-Biotin Apoptosis Detection Kit 100 tests

Capsaicin-induced Apoptosis in Human Hepatoma HepG2 Cells

Supporting Information. FADD regulates NF-кB activation and promotes ubiquitination of cflip L to induce. apoptosis

Supporting Information

Muse Assays for Cell Analysis

Annals of RSCB Vol. XVI, Issue 1

Curcumin Triggers DNA Damage and Inhibits Expression of DNA Repair Proteins in Human Lung Cancer Cells

CURRICULUM VITAE China Medical College, College of Medicine, Taichung, Taiwan, R.O.C.

Molecular biology :- Cancer genetics lecture 11

Fluorescence Microscopy

Marine Streptomyces sp. derived antimycin analogues. suppress HeLa cells via depletion HPV E6/E7 mediated by

Expression of decoy receptor 3 in kidneys is associated with allograft

Annals of Oncology Advance Access published January 10, 2005

Potential antitumor effects of panaxatriol against

Bakuchiol inhibits cell proliferation and induces apoptosis and cell cycle arrest in SGC-7901 human gastric cancer cells.

Introduction NEOPLASIA. Qun Liu and Yair Gazitt

Bone marrow-derived mesenchymal stem cells improve diabetes-induced cognitive impairment by

Department of Thoracic Surgery, Binzhou People s Hospital, Binzhou, Shandong, China 2

Bile acids initiate cholestatic liver injury by triggering a hepatic specific inflammatory response. Supplementary Results

Chlorogenic acid induced apoptosis and inhibition of proliferation in human acute promyelocytic leukemia HL 60 cells

Effects of Ellagic Acid on Chemosensitivity to 5-Fluorouracil in Colorectal Carcinoma Cells

Supplementary Figures

Multi-Parameter Apoptosis Assay Kit

OPTIMIZATION OF EXTRACTION PROCESS FOR TOTAL POLYPHENOLS FROM ADLAY

Under the Radar Screen: How Bugs Trick Our Immune Defenses

Antibodies for Unfolded Protein Response

Electronic Supplementary Information

Journal of Chemical and Pharmaceutical Research, 2017, 9(12): Research Article

Argininosuccinate synthetase 1 suppression and arginine restriction inhibit cell

Data Sheet TIGIT / NFAT Reporter - Jurkat Cell Line Catalog #60538

IN VITRO HORMESIS EFFECTS OF SODIUM FLUORIDE ON KIDNEY CELLS OF THREE-DAY-OLD MALE RATS

Relative SOD1 activity. Relative SOD2 activity. Relative SOD activity (Infected:Mock) + CP + DDC

Tanshinone IIA inhibits the growth of pancreatic cancer BxPC 3 cells by decreasing protein expression of TCTP, MCL 1 and Bcl xl

Linderalactone inhibits human lung cancer growth b

ONCOLOGY LETTERS 7: , 2014

Transcription:

Aloe-emodin Induces Cell Death through S-Phase Arrest and Caspase-dependent Pathways in Human Tongue Squamous Cancer SCC-4 Cells TSAN-HUNG CHIU 1*, WAN-WEN LAI 2*, TE-CHUN HSIA 3, JAI-SING YANG 4, TUNG-YUAN LAI 5,6, PING-PING WU 7, CHIA-YU MA 8, CHIN-CHUNG YEH 9, CHIN-CHIN HO 10, HSU-FENG LU 11, W. GIBSON WOOD 12 and JING-GUNG CHUNG 2 Departments of 1 OBS/GYN, 3 Internal Medicine, 5 Chinese Internal Medicine and 9 Urology, China Medical University Hospital, Taichung 404; Departments of 2 Biological Science and Technology and 4 Pharmacology, 6 School of Post-Baccalaureate Chinese Medicine, and 7 Pharmacy, China Medical University, Taichung 404; 8 Department of Food and Beverage Management, Technology and Science Institute of Northern Taiwan, Peitou, 112 Taipei; 10 Department of Nursing, Central Taiwan University of Science and Technology, Taichung 406; 11 Department of Clinical Pathology, Cheng Hsin Rehabilitation Medical Center, Taipei 112, Taiwan, R.O.C.; 12 Department of Pharmacology, University of Minnesota, School of Medicine, Geriatric Research, Education and Clinical Center, VA Medical Center, Minneapolis, MN 55455, U.S.A. Abstract. Aloe-emodin, one of the anthraquinones, has been shown to have anticancer activity in different kinds of human cancer cell lines. Therefore, the purpose of this study was to investigate the anti-cancer effect of aloe-emodin on human tongue squamous carcinoma SCC-4 cells. The results indicated that aloe-emodin induced cell death through S-phase arrest and apoptosis in a dose- and time-dependent manner. Treatment with 30 μm of aloe-emodin led to S-phase arrest through promoted p53, p21 and p27, but inhibited cyclin A, E, thymidylate synthase and Cdc25A levels. Aloe-emodin promoted the release of apoptosis-inducing factor (AIF), endonuclease G (Endo G), pro-caspase-9 and cytochrome c from the mitochondria via a loss of the mitochondrial membrane potential (ΔΨ m ) which was associated with a increase in the ratio of B-cell lymphoma 2-associated X protein (Bax)/B cell lymphoma/leukemia-2 (Bcl-2) and activation of caspase-9 and -3. The free radical scavenger N- acetylcysteine (NAC) and caspase inhibitors markedly blocked *Both authors contributed equally to this work. Correspondence to: Jing-Gung Chung, Department of Biological Science and Technology, China Medical University, No 91, Hsueh- Shih Road, Taichung 404, Taiwan, R.O.C. Tel: +886 4 22053366-2501, Fax: +886 4 22053764, e-mail: jgchung@mail.cmu.edu.tw Key Words: Aloe-emodin, apoptosis, caspase, human tongue cancer SCC-4 cells. aloe-emodin-induced apoptosis. Aloe-emodin thus induced apoptosis in the SCC-4 cells through the Fas/death-receptor, mitochondria and caspase cascade. Aloe-emodin could be a novel chemotherapeutic drug candidate for the treatment of human tongue squamous cancer in the future. Aloe-emodin (1,8-dihydroxy-3-(hydroxymethyl)-anthraquinone) is a natural active compound found in the leaves of Aloe vera (1). Aloe-emodin has antiviral, antimicrobial and hepatoprotective activities (2) and anticancer activity in neuroectodermal tumors (3), lung squamous cell carcinoma (4), hepatoma cells (5) and in a glia cell line (6) and a human glioma cell line (7). It has been reported that aloe-emodin suppressed N-methyl-D-aspartate (NMDA)-induced apoptosis of retinal ganglion cells through regulation of extracellular signal-regulated kinase (ERK) phosphorylation (8) and aloeemodin-induced apoptosis in rat hepatic stellate cells transformed by simian virus 40 (t-hsc/cl-6) involved a mitochondria-mediated pathway (9). Recently, it has been reported that aloe-emodin-induced apoptotic cell death was mediated via oxidative stress and sustained jun N-terminal kinase (JNK) activation (10) and aloe-emodin-induced apoptosis in human gastric carcinoma cells by a reduced phosphorylation of BH3 interacting domain death agonist (Bid), a downstream substrate of casein kinase II and a proapoptotic molecule (11). However, the effect of aloe-emodin on human tongue cancer cells has not been studied. Cell death can be categorized as necrosis or apoptosis with apoptosis being the best focus for anticancer agents. 0250-7005/2009 $2.00+.40 4503

Apoptosis is an actively regulated process of cell death and occurs via an extrinsic or intrinsic pathway and the intrinsic pathway involves the mitochondria (12). Members of the caspase family that are produced and activated during apoptosis hasten the cell death process involving the caspasedependent apoptotic pathway (13). After cell death stimulation, the mitochondrial outer membrane is permeabilized under the regulation of Bax and Bcl-2 allowing the release of cytochrome c from the mitochondria to the cytoplasm where it initiates apoptosis (13). Another protein named apoptosis-inducing factor (AIF), which is released from the mitochondria into the cytosol and nucleus then also induces apoptosis (14). Here, the human tongue squamous SCC-4 cell line was used to evaluate the anticancer effect of aloe-emodin. Materials and Methods Drugs and reagents. Aloe-emodin, dimethyl sulfoxide (DMSO), N- acetylcysteine (NAC) and ribonuclease A (RNase A) were obtained from Sigma Aldrich Co. (St. Louis, MO, USA). The aloe-emodin was dissolved in 1% DMSO to a concentration of 10.0 mm and stored at 20 C until used. Caspase-3, -8 and -9 activity assay kits were purchased from OncoImmunin, Inc. (Gaithersburg, MD, USA). The caspase-3 inhibitor (z-devd-fmk), caspase-8 inhibitor (z-ietd-fmk) and caspase-9 inhibitor (z-lehd-fmk) were obtained from R&D Systems, Inc (Minneapolis, MN, USA) Cell culture. The human tongue squamous carcinoma cell line (SCC-4), used in all the experiments, was obtained from the Food Industry Research and Development Institute (Hsinchu, Taiwan). The cells were cultured at 37 C under a humidified 5% CO 2 and 95% air atmosphere in RPMI 1640 medium containing 10% fetal calf serum (FCS) (GIBCO /Invitrogen Corp, Carlsbad, CA, USA), in 75 cm 2 tissue culture flasks, 1% penicillin-streptomycin (100 Units/ml penicillin and 100 μg/ml streptomycin) and 2 mm L-glutamine as described elsewhere (15). Assessment of cell morphology and viability. SCC-4 cells at a density of 2 10 5 cells/well were plated onto 12-well plates and incubated at 37 C for 24 h. Different concentrations of aloe-emodin (0, 10, 20, 30, 40 or 50 μm) were added and the cells were incubated for 48 h. DMSO (vehicle) was used as the control. For morphological assessment, the cells were examined under a phasecontrast microscope and were photographed (16). For cell viability, a flow cytometric protocol was used, as previously described (16). Flow cytometry analysis of the cell cycle. SCC-4 cells at a density of 2 10 5 cells/well were plated onto 12-well plates and incubated with different concentrations of aloe-emodin (0, 10, 20, 30, 40 or 50 μm) for 48 h. The cells were then harvested by centrifugation and the percentage of cells in the sub-g1 (apoptosis), G 0 /G 1 -, S- and G 2 /M-phases were determined by flow cytometry, as previously described (17). DAPI staining. DAPI staining was performed as previously described (18). DAPI-positive nuclei were visualized and photographed using an Olympus fluorescence microscope (Olympus, Tokyo, Japan) (17). Detection of reactive oxygen species (ROS), Ca 2+ levels and mitochondrial membrane potential (ΔΨ m ). Cells were plated onto 12- well plates and treated with 30 μm of aloe-emodin for 0, 6, 12, 24, 48 or 72 h. The cells were then harvested, washed twice, and re-suspended in the ROS indicator 2,7-dichlorodihydrofluorescein diacetate (H 2 DCF- DA), calcium probe 1 H-indole-6-carboxylic acid, 2-[4-[bis[2- [(acetyloxy)methoxy]-2-oxoethyl]amino]-3-2-[2-[bis[2- [(acetyloxy)methoxy]-2-oxoethyl]amino]-5-methylphenoxy] ethoxy]phenyl]-, (acetyloxy)methyl ester (Indo 1/AM) or the ΔΨ m indicator 3, 3 -dihexyloxacarbocyanine iodide (DiOC 6 ) and incubated at 37 C for 30 min to flow cytometry was used to detect changes in ROS, Ca 2+ levels and ΔΨ m as previously described (15, 17). The SCC- 4 cells were also treated with 30 μm aloe-emodin in the presence or absence of the ROS inhibitor NAC (1 mm) as previously described (15). Caspase-3, -8 and -9 activity determinations. Cells were plated on 12- well plates and treated with 30 μm of aloe-emodin for various time periods. Then the cells were collected and 50 μl of each 10 μm substrate solution were added each from the assay kits for caspase-3, caspase-8 and caspase-9 activity and the caspase activity was analyzed according to the manufacturer s instructions and flow cytometry as previously described (16, 17). Cells were also treated with 30 μm aloe-emodin in the presence or absence of caspase-9 inhibitor, caspase- 8 inhibitor or caspase-3 inhibitor (50 μm) as previously described (16). Western blotting (total protein preparation and immunoblotting). Cells were treated with 30 μm aloe-emodin for 0, 12, 24, 48 or 72 h. The levels of the following proteins were determined: cell cycle proteins (p53, p21 and p27, Cyclin A, E, thymidylate synthase, Cdk2 and Cdc25A) and apoptosis (Fas, FasL, caspase-8, caspase-9, caspase-3, Bid, cytochrome c, AIF, Poly (ADP-ribose) polymerase (PARP), Bax, Bcl-2, Activating transcription factor 6α (ATF-6α) and glucose-regulated protein 78 (GRP78)). The total proteins were extracted with a protein extraction reagent (Pierce Biotechnology, Inc. Rockford, IL, USA), according to the instructions of the manufacturer. All the samples were separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS- PAGE), as described previously (17, 18). Immuno-staining assay. SCC-4 cells were cultured onto 12-well plates for 24 h, 30 μm of aloe-emodin was added, or only DMSO (solvent) for the control regimen, and the cells were grown at 37 C in a humidified 5% CO 2 for 24 h. The cells were fixed and stained with primary antibodies to Endo G (Monoclonal Antibody Assay; Alexis, San Diego, CA, USA). The cells were washed twice with PBS. The supernatant was removed and 50 μl 1% FITC-conjugated goat antimouse IgG antibody (secondary antibody) was added for 30 min in the dark, following washing with PBS. The cells were examined under a confocal laser scanning fluorescence microscopy (17). Statistical analysis. The unpaired one-way ANOVA was used to identify means that were significantly different between the control and aloe-emodin treatments, p<0.05 was regarded as significant. Results Effects of aloe-emodin on morphology and cell viability. The control cells had a well spread pentagonal shape under a phase-contrast microscopy (Figure 1A). Exposure of the SCC-4 cells to aloe-emodin resulted in a dose-dependent 4504

Chiu et al: Aloe-emodin Induces Apoptosis in Human Tongue Cancer Cells effect and decrease in cell viability compared to the control cells (Figure 1B). Aloe-emodin-induced 50% cell death at a concentration of 30 μm as shown in Figure 1B and this concentration was used in subsequent experiments. Effects of aloe-emodin on cell cycle arrest and apoptosis. To investigate whether the aloe-emodin-mediated cell death was due to cell cycle arrest and an apoptotic mechanism, the nuclear morphological changes that occurred during aloeemodin treatment were examined. The treatment with 30 μm aloe-emodin for 48 h resulted in S-phase arrest and sub-g 1 phase production as determined by flow cytometric analysis (Figure 2A and B) and changes in the nuclear morphology as evidenced by DAPI staining (Figure 3). Effects of aloe-emodin on ROS and Ca 2+ levels and the mitochondria membrane potential (ΔΨ m ). Aloe-emodin induced ROS production quite early and time-dependently (Figure 4A) up to 12 h of treatment; the ROS levels remained high when compared to the control. Aloe-emodin increased the Ca 2+ levels, which was time-dependent (Figure 4B) up to 48 h of treatment. Then mitochondrial membrane potential was reduced by aloe-emodin in a time-dependent manner (Figure 4C). As shown in Figure 4D, incubation with the free radical scavenger NAC significantly blocked aloeemodin-triggered apoptosis in the SCC-4 cells. Effects of aloe-emodin on caspase-3, -8 and -9 activity. The results shown in Figure 5A, B and C demonstrated that aloeemodin increased the activity of caspase-3, caspase-8 and caspase-9 and these effects were time-dependent. To determine if caspase activation was required for the induction of apoptosis by aloe-emodin, the SCC-4 cells were pre-treated with inhibitors of caspase-3, caspase-8 or caspase-9 and aloeemodin. As shown in Figure 5D, the caspase inhibitors significantly blocked the aloe-emodin-triggered apoptosis. Effects of aloe-emodin on cell cycle and apoptosis associated protein levels. Aloe-emodin increased p53, p21 and p27, but inhibited cyclin A, E, thymidylate synthase, Cdk2 and Cdc25A (Figure 6A). Aloe-emodin treatment also increased the levels of Fas, FasL, caspase-3, -8 and -9, Bid, cytochrome c and AIF, but reduced the levels of PARP and Bcl-2 which was associated with an increase in apoptosis (Figure 6B and C). Figure 6D also shows that aloe-emodin treatment promoted ATF-6α and GRP78 levels which may be indicative that aloe-emodin induced apoptosis involved ER stress and the mitochondria. Effects of aloe-emodin on Endo G release from mitochondria. As shown in Figure 7, the aloe-emodin-treated SCC-4 cells reacted with the Endo G antibodies and PI staining showed that aloe-emodin treatment for 48 h Figure 1. Aloe-emodin effects on cell morphology (A) and cell viability (B) of SCC-4 cells. A) phase-contrast microscopy (200x), indicates apoptotic cells. B) PI-incorporation and flow cytometry analysis of total viable cells. Each point is mean±s.d. of three experiments. ***p<0.001. increased the levels of Endo G; which was released from mitochondria and translocated/moved to the nuclei. Discussion In the present study, aloe-emodin had anticancer effects on the SCC-4 human tongue squamous carcinoma cells and the cytotoxic mechanism involved the induction of apoptosis. The aloe-emodin-induced apoptosis occurred by the release 4505

Figure 2. Aloe-emodin effects on the cell cycle and sub-g 1 (apoptosis) population. A) Representative cytometric profiles and B) percentage of each phase Data represents mean±s.d. of three experiments. *p<0.05. 4506

Chiu et al: Aloe-emodin Induces Apoptosis in Human Tongue Cancer Cells Figure 3. Aloe-emodin-induced apoptosis and DNA damage in SCC-4 cells examined by DAPI staining, and photographed by fluorescence microscopy ( 200) as described. Figure 4. Effects of aloe-emodin on the production of reactive oxygen species (ROS) (A), Ca 2+ (B), the mitochondria membrane potential (ΔΨ m ) (C) and ROS inhibitor (N-acetylcysteine; NAC) on aloe-emodin-induced apoptosis (D). Control cells set at 100%. Data represent mean±s.d. of three experiments. *p<0.05, **p<0.01, ***p<0.001. 4507

Figure 5. Effects of aloe-emodin on the activity of caspase-3 (A), caspase-8 (B) and caspase-9 (C) and caspase inhibitors reduced aloe-emodininduced apoptosis (D). Data represents mean±s.d. of three experiments. *p<0.05, **p<0.01, ***p<0.001. of AIF and mitochondrial dysfunction and the release of cytochrome c, activation of caspase-9 and -3 and also reduced the ratio of Bax/Bcl-2 (i.e. increase of the Bax and decrease of Bcl-2 levels). It was previously reported that apoptosis induced by aloe-emodin was associated with changes in the expression of Bcl-2 family members, apoptosis regulators, and that aloe-emodin caused cytochrome c release from mitochondria in a human lung squamous carcinoma cell line CH27 (19). Those findings were similar to the present results which also showed that aloe-emodin promoted the levels of p53 and p21 in the human tongue squamous carcinoma SCC-4 cells. This was in agreement with other reports showing that aloe-emodin induced apoptosis in the human hepatocellular carcinoma cell lines, HepG2 and Hep3B, accompanied by the induction of p53 and p21 expression (5). Additionally, p53-mutant cell lines have been shown to be less sensitive to aloe-emodin than p53 wild-type cell lines (12). The present results demonstrated that aloe-emodininduced apoptosis in the SCC-4 cells involved the Fas receptor, mitochondria and caspase cascade. Aloe-emodin also caused the release of AIF and cytochrome c from the mitochondria, followed by the activation of caspase-3. The present results also showed that aloe-emodin promoted the activation of caspase-8, connecting with the 4508

Chiu et al: Aloe-emodin Induces Apoptosis in Human Tongue Cancer Cells Figure 6. Aloe-emodin effect on the levels of cell cycle arrest and apoptosis associated proteins estimated by Western blotting. Fas (CD95) receptor by promoted Fas and FasL levels. It was reported that aloe-emodin can act through Fas to induce apoptosis in cancer cells (20). It is well known that cytochrome c mediates the allosteric activation of apoptotic protease activating factor-1 (Apaf-1) which is required for the proteolytic maturation of caspase-9 and caspase-3 (13, 21). Aloe-emodin also affects casein kinase II activity (11), and in the present study, aloe-emodin was also found to affect casein kinase levels (data not shown). Further studies are needed for more detailed understanding of the relationship between casein kinase II activity and caspase-3 activity. Remarkably, aloe-emodin did not cause any detectable acute or chronic toxic effects in various normal cell lines and in animal model systems (3). A selective uptake of aloeemodin by neuroectodermal tumor cells, but not by other tumor cells tested, was observed (3). Nevertheless, a detailed investigation of the effects of aloe-emodin on normal healthy cells in a human body still needs to be performed. In addition, in order to use aloe-emodin as a chemotherapeutic agent to ameliorate specific types of human carcinoma, it might be a challenge to engineer methods that allow the specific and efficient delivery of aloe-emodin to a given tumor in a human body. In summary, aloe-emodin, isolated from Aloe vera leaves, was demonstrated for the first time to exhibit an anticancer effect against human tongue squamous carcinoma cells in vitro. The proposed molecular mechanism and pathway of aloe-emodin-induced apoptosis in SCC-4 cells is outlined in Figure 8. Aloe-emodin induces ROS and Ca 2+ production, 4509

Figure 7. Aloe-emodin effect on Endo G release from mitochondria. Endo G profile, green fluorescence; nuclei were stained by PI, red fluorescence; areas of co-localization of Endo G expression in the merged panels, yellow. Photographed by confocal laser scanning microscopy ( 500). Figure 8. Proposed model of aloe-emodin-mediated cell cycle arrest and apoptosis in human tongue squamous cancer SCC-4 cells. Aloe-emodin promotes the production of ROS and Ca 2+ and reduces mitochondria membrane potential (ΔΨ m ) leading to cytochrome c release, promotes caspase-8, caspase-9 and caspase-3 activation causing apoptosis. ER stress, dysfunction of mitochondria, cytochrome c release, capspase-9 and -3 activation and it also induces AIF release, finally leading to apoptosis. Aloe-emodin may be a chemotherapeutic drug candidate for the treatment of tongue squamous cancer in the future. Acknowledgements This work was supported by Grants CMU95-127 and CMU96-086 from the China Medical University, Taiwan and NIH grants AG-23524 and AG-18357, U.S.A. 4510

Chiu et al: Aloe-emodin Induces Apoptosis in Human Tongue Cancer Cells References 1 Dutta A, Bandyopadhyay S, Mandal C and Chatterjee M: Aloe vera leaf exudate induces a caspase-independent cell death in Leishmania donovani promastigotes. J Med Microbiol 56: 629-636, 2007. 2 Eshun K and He Q: Aloe vera: a valuable ingredient for the food, pharmaceutical and cosmetic industries a review. Crit Rev Food Sci Nutr 44: 91-96, 2004. 3 Pecere T, Gazzola MV, Mucignat C, Parolin C, Vecchia FD, Cavaggioni A, Basso G, Diaspro A, Salvato B, Carli M and Palu G: Aloe-emodin is a new type of anticancer agent with selective activity against neuroectodermal tumors. Cancer Res 60: 2800-2804, 2000. 4 Lee HZ: Protein kinase C involvement in aloe-emodin- and emodin-induced apoptosis in lung carcinoma cell. Br J Pharmacol 134: 1093-1103, 2001. 5 Kuo PL, Lin TC and Lin CC: The antiproliferative activity of aloe-emodin is through p53-dependent and p21-dependent apoptotic pathway in human hepatoma cell lines. Life Sci 71: 1879-1892, 2002. 6 Yi J, Yang J, He R, Gao F, Sang H, Tang X and Ye RD: Emodin enhances arsenic trioxide-induced apoptosis via generation of reactive oxygen species and inhibition of survival signaling. Cancer Res 64: 108-116, 2004. 7 Acevedo-Duncan M, Russell C, Patel S and Patel R: Aloeemodin modulates PKC isozymes, inhibits proliferation, and induces apoptosis in U-373MG glioma cells. Int Immunopharmacol 4: 1775-1784, 2004. 8 Lin HJ, Chao PD, Huang SY, Wan L, Wu CJ and Tsai FJ: Aloeemodin suppressed NMDA-induced apoptosis of retinal ganglion cells through regulation of ERK phosphorylation. Phytother Res 21: 1007-1014, 2007. 9 Lian LH, Park EJ, Piao HS, Zhao YZ and Sohn DH: Aloe emodin-induced apoptosis in t-hsc/cl-6 cells involves a mitochondria-mediated pathway. Basic Clin Pharmacol Toxicol 96: 495-502, 2005. 10 Lu GD, Shen HM, Chung MC and Ong CN: Critical role of oxidative stress and sustained JNK activation in aloe-emodinmediated apoptotic cell death in human hepatoma cells. Carcinogenesis 28: 1937-1945, 2007. 11 Chen SH, Lin KY, Chang CC, Fang CL and Lin CP: Aloeemodin-induced apoptosis in human gastric carcinoma cells. Food Chem Toxicol 45: 2296-2303, 2007. 12 Pecere T, Sarinella F, Salata C, Gatto B, Bet A, Dalla Vecchia F, Diaspro A, Carli M, Palumbo M and Palu G: Involvement of p53 in specific anti-neuroectodermal tumor activity of aloe-emodin. Int J Cancer 106: 836-847, 2003. 13 Kim R, Emi M and Tanabe K: Role of mitochondria as the gardens of cell death. Cancer Chemother Pharmacol 57: 545-553, 2006. 14 Susin SA, Lorenzo HK, Zamzami N, Marzo I, Snow BE, Brothers GM, Mangion J, Jacotot E, Costantini P, Loeffler M, Larochette N, Goodlett DR, Aebersold R, Siderovski DP, Penninger JM and Kroemer G: Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397: 441-446, 1999. 15 Lin YT, Yang JS, Lin HJ, Tan TW, Tang NY, Chiang JH, Chang YH, Lu HF and Chung JG: Baicalein induces apoptosis in SCC-4 human tongue cancer cells via a Ca 2+ -dependent mitochondrial pathway. In Vivo 21: 1053-1058, 2007. 16 Hsu SC, Lu JH, Kuo CL, Yang JS, Lin MW, Chen GW, Su CC, Lu HF and Chung JG: Crude extracts of Solanum lyratum induced cytotoxicity and apoptosis in a human colon adenocarcinoma cell line (colo 205). Anticancer Res 28: 1045-1054, 2008. 17 Lu HF, Chen YS, Yang JS, Chen JC, Lu KW, Chiu TH, Liu KC, Yeh CC, Chen GW, Lin HJ and Chung JG: Gypenosides induced G 0 /G 1 arrest via inhibition of cyclin E and induction of apoptosis via activation of caspases-3 and -9 in human lung cancer A-549 cells. In Vivo 22: 215-221, 2008. 18 Kuo HM, Chang LS, Lin YL, Lu HF, Yang JS, Lee JH and Chung JG: Morin inhibits the growth of human leukemia HL-60 cells via cell cycle arrest and induction of apoptosis through the mitochondria dependent pathway. Anticancer Res 27: 395-405, 2007. 19 Lee HZ, Hsu SL, Liu MC and Wu CH: Effects and mechanisms of aloe-emodin on cell death in human lung squamous cell carcinoma. Eur J Pharmacol 431: 287-295, 2001. 20 Lin JG, Chen GW, Li TM, Chouh ST, Tan TW and Chung JG: Aloe-emodin induces apoptosis in T24 human bladder cancer cells through the p53-dependent apoptotic pathway. J Urol 175: 343-347, 2006. 21 Garrido C, Galluzzi L, Brunet M, Puig PE, Didelot C and Kroemer G: Mechanisms of cytochrome c release from mitochondria. Cell Death Differ 13: 1423-1433, 2006. Received May 22, 2009 Revised August 11, 2009 Accepted September 1, 2009 4511