CHAPTER 4 - HOW CELLS WORK. 4.2 The Central Dogma (p. 105) see figure 4.1 (p.106) DNA transcription RNA translation proteins

Similar documents
CELLS. Cells. Basic unit of life (except virus)

BIOL 158: BIOLOGICAL CHEMISTRY II

Review Quizzes Chapters 1-5

Chemical Energy. Valencia College

Chapter 2 Transport Systems

An Introduction to Carbohydrates

Mitochondria and ATP Synthesis

Bio 103 Section A02 Summer 2003 Exam #2 Study Guide Dr. Largen

1- Which of the following statements is TRUE in regards to eukaryotic and prokaryotic cells?

Name: Date: Block: Biology 12

Foundations in Microbiology Seventh Edition

Chapter 5 Microbial Metabolism: The Chemical Crossroads of Life

MITOCHONDRIA LECTURES OVERVIEW

An Introduction to Carbohydrates

About This Chapter. Hormones The classification of hormones Control of hormone release Hormone interactions Endocrine pathologies Hormone evolution

Physiological Adaptation. Microbial Physiology Module 4

7 Pathways That Harvest Chemical Energy

Respiration. Respiration. How Cells Harvest Energy. Chapter 7

Transport Across Membranes: Energetics and Pumps/Channels

Membrane Structure and Function

Respiration. Respiration. Respiration. How Cells Harvest Energy. Chapter 7

Molecular Cell Biology Problem Drill 16: Intracellular Compartment and Protein Sorting

Name Class Date. 1. Cellular respiration is the process by which the of "food"

How Cells Harvest Energy. Chapter 7. Respiration

How Cells Release Chemical Energy. Chapter 7

1. (a. Homeostasis / b. Feedback) is a state of constancy of conditions inside the human body

Biology 12 Cell Structure and Function. Typical Animal Cell

Endocrine System. Chapter 7

Ch 07. Microbial Metabolism

3.7.1 Define cell respiration [Cell respiration is the controlled release of energy from organic compounds in cells to form ATP]

WHY IS THIS IMPORTANT?

Chapter 5: Major Metabolic Pathways

Human Anatomy & Physiology

Regulation. 1. Short term control 8-1

/ The following functional group is a. Aldehyde c. Carboxyl b. Ketone d. Amino

DEPARTMENT: Chemistry

Energy Production In A Cell (Chapter 25 Metabolism)

Cellular Respiration

Comprehensive and Easy Course Notes for BIOL1040 Exams and Assessment

4. Which step shows a split of one molecule into two smaller molecules? a. 2. d. 5

Glucose is the only source of energy in red blood cells. Under starvation conditions ketone bodies become a source of energy for the brain

Adenosine triphosphate (ATP)

Topic 1 (Old Curriculum) Past Exam Questions Extended Response SOLUTIONS

Metabolism Energy Pathways Biosynthesis. Catabolism Anabolism Enzymes

Molecular Cell Biology. Prof. D. Karunagaran. Department of Biotechnology. Indian Institute of Technology Madras

Chapter 8. Metabolism. Topics in lectures 15 and 16. Chemical foundations Catabolism Biosynthesis

Cellular Respiration Harvesting Chemical Energy ATP

Fall Name Student ID

A) Choose the correct answer: 1) Reduction of a substance can mostly occur in the living cells by:

BIOLOGY - CLUTCH CH.9 - RESPIRATION.

Enzymes what are they?

Higher Biology. Unit 2: Metabolism and Survival Topic 2: Respiration. Page 1 of 25

Ch. 9 Cell Respiration. Title: Oct 15 3:24 PM (1 of 53)

3.2 Aerobic Respiration

Metabolism. Chapter 8 Microbial Metabolism. Metabolic balancing act. Catabolism Anabolism Enzymes. Topics. Metabolism Energy Pathways Biosynthesis

Chapter 9 Notes. Cellular Respiration and Fermentation

Electron Transport Chain and Oxidative phosphorylation

Syllabus for BASIC METABOLIC PRINCIPLES

What is Glycolysis? Breaking down glucose: glyco lysis (splitting sugar)

Metabolism. Metabolism. Energy. Metabolism. Energy. Energy 5/22/2016

Metabolic engineering some basic considerations. Lecture 9

Membrane transport. Pharmacy Dr. Szilvia Barkó

Explain that each trna molecule is recognised by a trna-activating enzyme that binds a specific amino acid to the trna, using ATP for energy

Bell Work. b. is wrong because combining two glucose molecules requires energy, it does not release energy

Lipids and Membranes

Cell Structure. Morphology of Prokaryotic Cell. Cytoplasmic Membrane 4/6/2011. Chapter 3. Cytoplasmic membrane

Glycolysis. BCH 340 lecture 3 Chapter 8 in Lippincott 5 th edition

Cellular Metabolism 6/20/2015. Metabolism. Summary of Cellular Respiration. Consists of all the chemical reactions that take place in a cell!

Ch 9: Cellular Respiration

AP Biology

Microbial Metabolism. PowerPoint Lecture Presentations prepared by Bradley W. Christian, McLennan Community College C H A P T E R

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Section B: The Process of Cellular Respiration

B.4B Cellular Processes


Chapter 10. Cellular Respiration Pearson Education Ltd

1. Prokaryotic (Bacteria) Eukaryotic (all other living things)

Chapter 7 Cellular Respiration and Fermentation*

Chapter 9: Cellular Respiration

Cellular Metabolism 9/24/2013. Metabolism. Cellular Metabolism. Consists of all the chemical reactions that take place in a cell!

Biochemistry: A Short Course

BIOLOGY 103 Spring 2001 MIDTERM LAB SECTION

Reading Assignment: Start reading Chapter 14: Energy Generation in Mitochondria and Cholorplasts See animation 14.

The Cell. Biology 105 Lecture 4 Reading: Chapter 3 (pages 47 62)

BY: RASAQ NURUDEEN OLAJIDE

How Cells Work. Chapter 4

Cellular Respiration Harvesting Chemical Energy ATP

Chapter 5-7, 10. Read P , , and

OVERVIEW OF RESPIRATION AND LOOSE ENDS. What agents? What war?

Unit 2 Cellular Respiration

Cellular Metabolism. Biology 105 Lecture 6 Chapter 3 (pages 56-61)

AP BIOLOGY Chapter 7 Cellular Respiration =

Reading Assignments. A. Energy and Energy Conversions. Lecture Series 9 Cellular Pathways That Harvest Chemical Energy. gasoline) or elevated mass.

BIOL 4374/BCHS 4313 Cell Biology Exam #1 February 13, 2001

Structure of the Mitochondrion. Cell Respiration. Cellular Respiration. Catabolic Pathways. Photosynthesis vs. Cell Respiration ATP 10/14/2014

Metabolism. Topic 11&12 (ch8) Microbial Metabolism. Metabolic Balancing Act. Topics. Catabolism Anabolism Enzymes

CHAPTER 8 MEMBRANE STRUCTURE AND FUNCTION

Concept 9.1: Catabolic pathways yield energy by oxidizing organic fuels Several processes are central to cellular respiration and related pathways

Introductory Biochemistry

7 Cellular Respiration and Fermentation

Transcription:

CHAPTER 4 - HOW CELLS WORK 4.2 The Central Dogma (p. 105) see figure 4.1 (p.106) DNA transcription RNA translation proteins 4.3 DNA Replication (p. 107) 1. Fig 4.2 Initiation of DNA synthesis requires formation of an RNA primer 2. Fig. 4.3 Steps of replication of bacterial chromosome 4.4 Transcription (p. 110) mrna, trna, rrna 4.5 Translation; Message to Product (p.113) 4.5.1 Genetic Code Table 4.1 (p. 114) 1. Code is degenerate more than one codon specifies a particular amino acid 2. Genetic engineering code universal human protein understood by E.coli, yeast 4.5.2 Translation- (1) initiation, (2) elongation, and (3) termination 4.5.3 Posttranslational Processing - 1. Protein secretion through Cytoplasmic Membrane in prcaryotes (p. 117) a. Gm -: outer membrane blocks release into extracellular compartment b. Gm +: proteins readily pass through cell wall into extracellular compartment 2. Protein secretion in eucaryotes; 2 pathways by exocytosis. A bioprocess engineer must be aware that many proteins are subject to extensive processing after the initial polypeptide chain is made. (1) Constitutive exocytosis pathway operates at all times (2) Regulated exocytosis pathway secrete only in response to chemical signals (3) N-linked glycosylation (addition of sugars) pattern targets protein to a compartment or degradation and removal from the organism if not humanlike. Involves both ER and Golgi. (p.117) USE OF PROCARYOTIC CELLS (E. coli) TO SERVE AS HOSTS FOR EXPRESSION OF HUMAN THERAPEUTIC PROTEINS is limited to those proteins where N-linked glycosalyation is NOT present or is UNIMPORTANT. Even mammalian cells will show altered patterns of glycosylation when cultured in BIOREACTORS and patterns can shift upon SCALE-UP. 4.6 (p. 119) Metabolic Regulation HEART OF A LIVING CELL 4.6.1 Genetic-level Control (Which proteins are synthesized?) 1. Transcriptional control most common strategy. Use Repressor Protein a. Feedback Repression by end product (Fig. 4.9, p.120) b. Induction by substrate (Fig. 4.10, p.120). 2. Definition- OPERON set on contiguous genes, encoding proteins with related functions, under the control of a single promoter-operator. 3. Example- lac operon controls synthesis of 3 proteins in lactose use as C&E source. (1) lac z encodes B-galactosidase (lactase); lactose glucose + galactose (2) lac y permease increase rate of uptake of lactose into the cell (3) role of camp increases as energy decreases; camp binds to CAP to form a complex that binds near promoter and enhances RNA polymerase binding to lac prometer

4. Regulon noncontiguous gene products under control of separate promoters can be coordinately expressed in a regulon. (e.g., N&P starvation, aerobic to anaerobic) 1. Constitutive unregulated genes. Enzymes involved in glycolysis. 2. Example 4.1 Diauxic Growth (see Figure 4.11) and Explain 4.6.2 Enzymatic Level Control Metabolic Pathway Control (p. 123) - Inhibition occurs at the enzyme level (See Figure 4.12). Fermentation Specialist tries to disrupt the cell s control to cause cell to overproduce product of commercial interest. 1. Isozymes - 2 separate enzymes, each sensitive to a different end product. 2. Concerted Feedback Inhibition 1 enzyme with 2 allosteric binding sites, need high levels of P 1 and P 2 for full inhibition. 3. Sequential Feedback Inhibition - P 1 inhibits E 4 ; P 2 inhibits E 5. Need both P 1 and P 2 levels to be high to fully inhibit reaction. 4. Cumulative Feedback Inhibition effector sites for several end products 4.7 (p.124) How the Cell Senses its Extracellular Environment 4.7.1 Mechanisms to Transport Small Molecules across Cellular Membranes A. Energy-Independent mechanisms 1. Passive Diffusion (water, oxygen) 2. Facilitated Diffusion (sugars-eucaryotes, glycerol-procaryotes) B. Energy-Dependent mechanisms 1. Active Transport 2. Group Translocation A1. Passive Diffusion: Concentration gradient: J A = K p (C AE C AI ) (4.1) J = flux across membrane (mol/ cm 2 s) K p = permeability (cm/s); C AE = extracell conc. of species A (mol/cm 3 ) C AI = Intracell conc. of species A (mol/cm 3 ) Hydrophobic compounds high diffusivities (10-8 cm 2 /s) in cell membranes A2. Facilitated Diffusion: protein carrier molecule (embedded in membrane) binds reversibly with target (A), undergoes conformational change to release A on Intracell side of membrane. J A = J A max C AE - C AI (4.2) K MT + C AE K MT + C AI K MT = binding affinity of the substrate (mol/cm 3 ) C AE > C AI net flux INTO cell; C AE < C AI net flux OUT of cell B1. Active Transport: AGAINST a concentration gradient; proteins in membrane Energy Sources: (1) ph gradient of proton-motive force; (2) secondary gradients (e.g., Na +, or other ions) derived from proton-motive force by other transport mechanisms and by hydrolysis of ATP.

(1) Proton-motive force: See Figure 5.6, p. 142. Tendency of protons to return to the inside of the membrane. Hydrogen atoms removed from NADH are carried to outside of membrane. e - are retuned to the cytoplasmic side of the membrane to combine with 0 2 and H + the cytoplasm to form OH - on the inside. A ph gradient is created across the membrane with OH - inside and H + outside (2) Molecules transported without coupling to the ion gradients generated by the proton-motive force. Hydrolysis of ATP to release phosphate bond energy is used DIRECTLY in transport (maltose in E. coli). J A = J A max C AE (4.3) K MT + C AE B2. Group Translocation. Chemical modification of substrate during transport. Example Phosphotransferase System uptake of sugars in bacteria, with source of energy = Phosphoenolpyruvate (PEP). Sugar (SE) + PEP (PI) sugar-p (SPI) + pyruvate (PI) (4.4) By converting sugar to phosphorylated form, sugar is trapped inside the cell. Perferable to active transport (energy to move sugar into cell, then energy to phosphorylate it). 4.7.2 (p. 127) Role of Cell receptors in Metabolism and Cell Differentiation Taxis (Surface Receptors) Response of bacteria involving receptors binding to specific compounds that result in a change in the direction of movement of the flagella. Examples (chemotaxis, aerotaxis, phototaxis), positively, negatively Quorum sensing molecule (Intracellular Receptors) produced by bacteria, whose accumulation is related to cell concentration (biofilms). e.g., acylated homoserine lactone Higher cells differentiation (Surface Receptors) e.g., Steroids NOT act by themselves, but the hormone-receptor complex interacts with gene loci to activate transcription of a target gene. E.g., Cell Adhesion can lead to changes in cell morphology that are critical to animal cell growth and physiological function.

BIE/CEE 5810/6810 PROBLEM SET 2 Fall, 2003 Date: 9/16/03 Date Due: 9/26/03 (ABET code from syllabus provided for each problem) 1. (1,3,b,e) Enzyme kinetics. Consider the following enzyme reaction sequence: k 1 k 3 k 5 S + E (ES) 1 (ES) 2 P + E k 2 k 4 Develop a suitable rate expression for product formation [v = k 5 (ES) 2 ] by using: (a) the equilibrium approach, and (b) the quasi-steady-state approach 2. (1, 3, b, c, e) Solve problem 3.3, page 98 of the textbook a. What is the function of fumarase? 3. (1,3,b,c,e) Solve problem 3.6, page 99 of the textbook 4. (1,3,b,c,e) Solve problem 3.9, page 100 of the textbook 5. (1,3,b, c, e) Solve problem 3.16, page 102 of the textbook a. What type of inhibition is this? b. Determine the constants Vm, K m, and K I c. Could you modify the operation of a biochemical reactor in order to minimize the effect of the inhibitor? If so, how? 6. (1, 2, 3, b, e) Serratia marcescens is cultured in a minimal medium reactor. Oxygen consumption is measured at a cell concentration of 22.7 g/l dry weight. Time Oxygen Conc. Time Oxygen Conc. (min) (mmol/l) (min) (mmol/l) 0 0.25 10 0.18 2 0.23 12 0.16 5 0.21 15 0.15 8 0.20 a. Determine the best kinetic model fit to the data b. Determine the rate constant 7. (1, 2, 3, b, 3) An enzyme is immobilized on a flat sheet of polymer and placed in a stirred reactor. The enzyme intrinsic maximum reaction rate is 6x10-6 mol/s-mg enzyme. The amount of enzyme bound to the surface is 1x10-4 mg enzyme/cm 2 of support. The K m value in solution is 2x10-3 mol/l. The mass transfer coefficient is 4.3x10-5. (A) What is the reaction rate when the bulk concentration of substrate is 4x10-3 mol/l? (B) What is the substrate surface concentration? (C) What is the Da value for this system? 2. (1, 2, b,e) Describe simple experiments to determine if the uptake of a nutrient is by (a) passive diffusion, (b) facilitated diffusion, (c) active transport, or (d) group translocation.

Memrbanes - Active Transport Problem: Given: The concentration of chloride ion in blood serum is about 0.10 M. The concentration of chloride ion in urine is about 0.16 M. Find: (1) The energy expended by the kidneys in transporting chloride from plasma to urine; and (2) how many moles of Cl - ions could be transported per mole of ATP hydrolyzed? Solution: (1) G = 2.3 RT log C 2 C 1 = 2.3 (1.987 cal/mol) (298) log 0.16 0.10 = 1362 cal/mol (0.204) = 278 cal/mol (2) ATP Hydrolysis provides 7700 cal/mole: 7700 cal/mole ATP_ ~ 28 Cl - / ATP 278 cal/mole Cl -1 The standard free energy change for the movement of an uncharged molecular from one side of a membrane at concentration C 1 to the other at concentration C 2 under nonequilibrium conditions is: G = 2.3 RT log C 2 C 1

Transfer of Polycyclic Aromatic Hydrocarbons Between Model Membranes: Relation to Carcinogenicity. Plant, A.L., H.J. Pownall, and L. C. Smith. Chem.-Biol. Interactions, 44: 237-246 (1983) Key Concepts and Questions: Metabolism of PAH by cytochrome P-450 is a prerequisite to carcinogenic activity. k off (PAH) mem k on (PAH) aq Molecular Volume of the PAH is a rate-determining factor. Donor vesicles (POPC with PAH) and Acceptor vesicles (POPC without PAH) Question: Rate limiting step is? Thermodynamic parameters determined from a van t Hoff Arrhenius plot (Fig. 3) E a, G, Η, S Table 1 (p.242) Question: Calculate the E a value from Fig. 3. Question: Endoplasmic reticulum what is its role? p. 240. Solvation of a hydrophobic molecule requires reorganization of water structure. Size of cavity formed to accommodate the hydrocarbon molecule is proportional to its molecular area. p.243. Rate of transfer of lipophilic materials out of membranes reflects equilibrium partitioning. If active site of P-450 is within the hydrophobic environment of the membrane, characteristics of partitioning will determine extent of enzyme-substrate complex formation. Dissociation constant for B(a)P from microsomes = 1 micromolar K m for hydroxylation of B(a)P bby microsomes ~ 1 micromolar Question: What is the likely mechanism for the transfer/transport of PAH between membrane and aqueous phase? Explain your answer.