Event related potential (ERP) P300 after 6 months residence at 4115 meter

Similar documents
Effect of intensity increment on P300 amplitude

P300 A cognitive evaluation tool in acute ischemic stroke A Narrative review

MENTAL WORKLOAD AS A FUNCTION OF TRAFFIC DENSITY: COMPARISON OF PHYSIOLOGICAL, BEHAVIORAL, AND SUBJECTIVE INDICES

THRESHOLD PREDICTION USING THE ASSR AND THE TONE BURST CONFIGURATIONS

Evoked Potenital Reading Session: BAEPs

The Verification of ABR Response by Using the Chirp Stimulus in Moderate Sensorineural Hearing Loss

Evoked Potenital Reading Session: BAEPs

ABR assesses the integrity of the peripheral auditory system and auditory brainstem pathway.

Electrophysiological Substrates of Auditory Temporal Assimilation Between Two Neighboring Time Intervals

EE 4BD4 Lecture 11. The Brain and EEG

Comparison of Binaural Interaction Component (BIC) in Symmetrical and Asymmetrical Hearing Loss: Pilot Study

BME 701 Examples of Biomedical Instrumentation. Hubert de Bruin Ph D, P Eng

AUDITORY EVOKED POTENTIAL RESPONSES IN MENOPAUSAL WOMEN: A NORMATIVE STUDY

Figure 1. Source localization results for the No Go N2 component. (a) Dipole modeling

Study of brainstem evoked response audiometry in sensorineural hearing deafness- A hospital based study

Auditory P300: Selective Attention to 2 KHZ Tone-Bursts in Patients with Idiopathic Subjective Tinnitus

AccuScreen ABR Screener

1. Department of clinical neurology, Tbilisi State Medical University, Tbilisi, Georgia.

Biomedical Research 2013; 24 (3): ISSN X

Event-Related Potentials Recorded during Human-Computer Interaction

But, what about ASSR in AN?? Is it a reliable tool to estimate the auditory thresholds in those category of patients??

Final Summary Project Title: Cognitive Workload During Prosthetic Use: A quantitative EEG outcome measure

Differentiation of conversive sensory loss and malingering by P300 in a modified oddball task

BRAINSTEM AUDITORY EVOKED POTENTIALS IN EPILEPTICS ON DIFFERENT ANTI-EPILEPTIC DRUGS

FUNCTIONAL STATUS OF AUDITORY PATHWAYS IN HYPOTHYROIDISM : EVOKED POTENTIAL STUDY

Perceptual and cognitive task difficulty has differential effects on auditory distraction

Effects of Sub-Motor-Threshold Transcranial Magnetic Stimulation on. Event-Related Potentials and Motor-Evoked Potentials

The auditory P3 from passive and active three-stimulus oddball paradigm

Simultaneous multiple stimulation of the auditory steadystate response (ASSR)

C ritical Review: Do we see auditory system acclimatization with hearing instrument use, using electrophysiological measures?

International Journal of Biological & Medical Research

EFFECTS OF NITROUS OXIDE ON AUDITORY CORTICAL EVOKED POTENTIALS AND SUBJECTIVE THRESHOLDS

The Nervous System. Neuron 01/12/2011. The Synapse: The Processor

TASK RELATED CHANGES IN CONTINGENT NEGATIVE VARIATION (CNV) RESPONSE OF ENDOGENOUS EVOKED POTENTIALS

( Received on February 2, 2010 )

Activation of brain mechanisms of attention switching as a function of auditory frequency change

Chapter 17. Nervous System Nervous systems receive sensory input, interpret it, and send out appropriate commands. !

Processing Interaural Cues in Sound Segregation by Young and Middle-Aged Brains DOI: /jaaa

Reward prediction error signals associated with a modified time estimation task

Cortical Auditory Evoked Potentials in Children with Developmental Dysphasia

Neural Communication. Central Nervous System Peripheral Nervous System. Communication in the Nervous System. 4 Common Components of a Neuron

Physiology Unit 2 CONSCIOUSNESS, THE BRAIN AND BEHAVIOR

Unit 3: The Biological Bases of Behaviour

ELECTROPHYSIOLOGY OF UNIMODAL AND AUDIOVISUAL SPEECH PERCEPTION

Background. Electrophysical tests. HearLab Instrument. - Developed by National Acoustic Laboratories (NAL) - NAL- (Australian population)

Audiological Diagnosis after Newborn Screening

Nervous System and Brain Review. Bio 3201

Physiology Unit 2 CONSCIOUSNESS, THE BRAIN AND BEHAVIOR

Prediction of Loudness Growth in Subjects with Sensorineural Hearing Loss Using Auditory Steady State Response. Afaf A. Emara

James W. Hall III, Ph.D.

ANALYZING EVENT-RELATED POTENTIALS

Extraversion-Related Differences in Stimulus Analysis: Effectiveness of the Lateralized. Readiness Potential. Dianna Monteith. Saint Thomas University

The Nervous System. Biological School. Neuroanatomy. How does a Neuron fire? Acetylcholine (ACH) TYPES OF NEUROTRANSMITTERS

Circadian rhythm and Sleep. Radwan Banimustafa MD

Title change detection system in the visu

The AASM Manual for the Scoring of Sleep and Associated Events

A review of the scientific studies on cyclic meditation

THE NERVOUS SYSTEM CONCEPT 2: THE VERTEBRATE BRAIN IS REGIONALLY SPECIALIZED

Readiness Potentials Related to Self-Initiated Movement and to Movement Preceded by Time Estimation: A Comparison

Provisional guidelines for using Auditory Steady State Responses (ASSR) in babies. July 2009

Event-related potentials as an index of similarity between words and pictures

Quick Guide - eabr with Eclipse

biological psychology, p. 40 The study of the nervous system, especially the brain. neuroscience, p. 40

AUTOCORRELATION AND CROSS-CORRELARION ANALYSES OF ALPHA WAVES IN RELATION TO SUBJECTIVE PREFERENCE OF A FLICKERING LIGHT

A NORMATIVE STUDY ON AIR AND BONE CONDUCTION OCULAR VESTIBULAR EVOKED MYOGENIC POTENTIALS. Ho Sen Kee

Do P1 and N1 evoked by the ERP task reflect primary visual processing in Parkinson s disease?

Warm-up. Warm-up. Warm-up. Chapter 48. Why do animals need a nervous system? 3/9/2012. Nervous System

Electroencephalographic Study of Essential Oils for Stress Relief

Brainpotentialsassociatedwithoutcome expectation and outcome evaluation

Acetylcholine (ACh) Action potential. Agonists. Drugs that enhance the actions of neurotransmitters.

영유아에서청성뇌간반응과청성지속반응의역치비교

Neural correlates of perceptual separation-induced enhancement of prepulse inhibition of startle in humans

Neural Recording Methods

Neuroimaging Correlates of Human Auditory Behavior

Ear and Hearing (In press, 2005)

Running head: HEARING-AIDS INDUCE PLASTICITY IN THE AUDITORY SYSTEM 1

Early Occurrence Of Auditory Change Detection In The Human Brain

UPDATE ON ELECTROPHYSIOLOGIC MEASURES OF HEARING SENSITIVITY IN INFANTS

III. Studying The Brain and Other Structures

The relationship between cortical auditory evoked potential (CAEP) detection and

Neural correlates of short-term perceptual learning in orientation discrimination indexed by event-related potentials

synapse neurotransmitters Extension of a neuron, ending in branching terminal fibers, through which messages pass to other neurons, muscles, or glands

Shirley Y. Hill, Stuart Steinhauer, Lisa Lowers, and Jeannette Locke. ERP Procedure

Rhythm and Rate: Perception and Physiology HST November Jennifer Melcher

Analysis Of Effect Of Stimulation On Trasient VEP Using Spectral Components

Title of Thesis. Study on Audiovisual Integration in Young and Elderly Adults by Event-Related Potential

Infant Hearing Aid Evaluation Using Cortical Auditory Evoked Potentials

What do you notice? Woodman, Atten. Percept. Psychophys., 2010

Psychology in Your Life

EEG Electrode Placement

The impact of numeration on visual attention during a psychophysical task; An ERP study

Electrophysiological Techniques for Sea Lion Population-level Audiometry

Neural Correlates of Human Cognitive Function:

D. Debatisse, E. Fornari, E. Pralong, P. Maeder, H Foroglou, M.H Tetreault, J.G Villemure. NCH-UNN and Neuroradiology Dpt. CHUV Lausanne Switzerland

ERP Correlates of Identity Negative Priming

Manuscript under review for Psychological Science. Direct Electrophysiological Measurement of Attentional Templates in Visual Working Memory

Behavioral and electrophysiological effects of task-irrelevant sound change: a new distraction paradigm

Takwa Adly Gabr Assistant lecturer of Audiology

Mental representation of number in different numerical forms

The overlap of neural selectivity between faces and words: evidences

Transcription:

Indian J Med Res 134, July 2011, pp 113-117 Event related potential (ERP) P300 after 6 months residence at 4115 meter Lalan Thakur, Koushik Ray, J.p. Anand & Usha Panjwani Department of Physiology, Defence Institute of Physiology & Allied Sciences, (Defence Research & Development Organisation) Delhi, India Received December 7, 2009 Background & objectives: The P300 wave is an event related potential (ERP) elicited by infrequent, task-relevant stimuli and appeared at about 300 ms, represents higher cognitive function of information processing, working memory or stimulus categorization. Hypobaric hypoxia deteriorates the cognitive function during the short term stay (days to few weeks) at high altitude. The present study was carried out to evaluate the P300 responses during long duration stay (1 month and 6 months) at high altitude (HA, 4115 m) in a sample of Indian lowlanders. Methods: The study was carried out on 18 healthy male volunteers at sea level (SL). The volunteers were stage inducted to 4115 m altitude in the Eastern Himalayas. The P300 was recorded after 1 and 6 months of their stay at HA. Results: The latencies of peaks N100, P200 and N200 waves did not show any significant changes after 1 and 6 months of stay at HA as compared to SL. The P300 latency was significantly delayed after 1 month and further delayed after 6 month of residence at 4115 m. The P200 and P300 amplitudes did not show any changes. Interpretation & conclusions: The increase in P300 latency indicated that long duration of stay at high altitude slows the stimulus evaluation processes. The observations suggest that hypoxia causes slowing of the signal processing at HA. The magnitude of the effects of hypobaric hypoxia may be dependent upon the duration of residence at high altitude. Key words Cognition - ERP - high altitude - hypobaric hypoxia - P300 Event related potentials (ERPs) are objective tools for detecting cognitive impairment 1. The P300 event related potential is a positive potential that occurs approximately 300 miliseconds (ms) after presentation of a stimulus, requiring detection, counting or cognitive processing by the participant 2,3. Researchers often rely on measurement of the P300 to examine event related potentials, especially with regard to decision making. The waveform can be used as a measure for the efficacy of various treatments on cognitive function because cognitive impairment is often correlated with modification in the P300. Some researchers have suggested its use as a clinical marker for precisely this reason. There is a broad range of uses for the P300 in scientific research, ranging from study of depression and drug addiction to anxiety disorders 4. 113

114 INDIAN J MED RES, july 2011 Cognitive deterioration during rapid ascent to high altitude (HA) has been investigated using various types of neurophysiological tests 5,6. ERPs are good index which objectively quantify the level of cognitive impairment as compared to other psychometric tests employed for assessing cognitive functions 7-9. The ERPs give an idea about the time course of information processing including expectancy, attention, cognition search, decision making and memorization 10. Previous studies have employed gas breathing mixture to assess the effect of hypoxia on ERP 6. A rapid ascent to simulated 4300 m altitude led to an increase in P300 latency and prolongation of reaction time while the amplitude of P300 decreased 6. A similar experiment using a low oxygen breathing mixture reported an interaction of hypoxia and stimulus intensity for reaction time, N200 latency and P300 latency 5. Our earlier studies carried out after 1 st and 3 rd week of induction to altitude of 3500 m in Western Himalayas revealed a prolongation in latency of P300 11. Another study on days 6 and 8 at 3200 and 4300 m respectively in Eastern Himalayas also showed the same trend 12. However, there is no information on ERP on long term residence at high altitude. The present study was aimed to evaluate changes with long term residence (1 and 6 months) at HA on P300 response. It was hypothesized that changes in P300 response would occur after 1 month and 6 months of residence at 4115 m and these would depend upon the duration of residence at HA. Material & Methods The study was carried out on 18 healthy male volunteers from Indian Army in the age group of 22-30 yr. They were lowlanders from north India with no previous exposure to high altitude and about to be posted to HA [T R Junction (4115 m), Eastern Command, North Sikkim] for the next 2-3 yr. The volunteers were selected from Army Headquarters, Delhi, specially for this study in 2006. They were free from any neurological disorder, sleep-related and cardiac problems and diabetes. All the volunteers had thorough ENT check-up including audiometry to rule out any ear pathology affecting hearing. They were not taking any sort of psychotropic, psychoactive or other drugs during the course of the study. All volunteers were explained the purpose and relevance of the study and written individual informed consent was obtained. The entire protocol was approved by Ethics Committee of the Institute (Defence Institute of Physiology & Allied Sciences, Delhi). In the first trial, the ERPs were recorded at sea level (SL) where the oxygen saturation was found to be 98 ± 1 per cent. The subjects were transported by road from SL to 3200 m altitude in the Eastern Himalayas, where they stayed for six days. Then they were inducted by road to 4115 m (oxygen saturation was 86±2%), where they were stationed for the next 6 months. The second and third trials were carried out at 4115 m after 1 and 6 months of their stay, respectively. Recording of P300: The P300 response was recorded using the standard auditory oddball paradigm (Nicolet, USA). The volunteer was instructed to lie down and relax on a bed in a dimly lit room and instructed to fix the eyes on a particular spot on the roof to avoid any electro-ocular artifacts. The ground electrode was placed at FPz. Two reference electrodes were placed one on the left ear lobe (A1) and the other on right ear lobe (A2). P300 response was recorded from the vertex (Cz & Pz) in response to stimuli presented monaurally through head phones. The input impedance of electrodes was kept below 5 kω. The frequencies of rare and frequent stimulus were 750 Hz and 2 KHz respectively and rate of presentation was 0.9 Hz. Alternating tone bursts with 100 µs duration and 80 db intensity were used randomly. The peak latencies of N100, P200, N200 and P300 and amplitudes of wave P200 and P300 of target stimuli (rare) were calculated. Statistical analyses: Values were expressed as mean ± SE. Analysis for statistical significance of changes during the successive episode (SL, 1 & 6 months) was performed using one way analysis of variance (ANOVA) for repeated measures. If there was any significant change in ANOVA, scheffe s multiple comparison F test 13 was used for post-hoc analysis (SPSS 10.0). Statistical significance was fixed at P<0.05. Results & Discussion The latencies of N100, P200 and N200 wave did not show any significant change after one and six months stay at HA compared to SL values. P300 wave latency recorded a significant delay after one and six months as compared to sea level (SL). The latency of P300 wave at SL was 295.33 ± 3.716 msec, it significantly increased to 307.17 ± 4.329 msec after 1 month (P<0.05) and to 311.83 ± 4.486 msec after six months (P<0.01) at 4115 m. However, there was no significant difference between 1 and 6 months values of P300 latency. The amplitude of P200 (AMP-2) and P300 (AMP-3) peak did not show any significant change (Table, Fig.).

THAKUR et al: P300 RESPONSE AT HIGH ALTITUDE 115 Frequent Table. Effect of high altitude (4115 m) on P300 wave latency N1 (msec) P2 (msec) AMP-2 (µv) N1 (msec) P2 (msec) N2 (msec) P3 (msec) AMP-2 (µv) AMP-3 (µv) Sea Level 85.42±2.723 158.25±1.958 7.86±0.732 85.17±3.554 159.75±5.516 204.25±6.228 295.33±3.716 6.84±0.752 9.33±1.036 After 1 88.00±2.403 160.75±3.394 8.71±0.841 87.50±2.927 151.42±3.600 199.75±4.361 307.17±4.329 * 7.15±0.875 7.21±1.007 month After 6 month 89.42±2.856 165.00±2.477 8.12±0.720 90.83±3.632 157.83±5.616 203.83±6.269 311.83±4.486 ** 6.91±0.686 8.68±1.245 Values are mean± SEM (n =18). P * <0.05, ** < 0.01 compared with sea level. N1, negative peak 100; P2, positive peak 200; N2, negative peak 200; P300, positive peak 300; AMP-2, amplitude 200; AMP-3, amplitude 300; msec, Milisecond; µv, Microvolt Rare In the present study, delay in P300 wave latency was observed after one month and 6 months of stay at 4115 m. A study by Hayashi et al 14 has reported a prolongation in P300 but no change in N100 response latency after two hours of exposure to a simulated high altitude of 4500 m. Our earlier study carried out at altitude in 1 st and 3 rd week after induction to 3500 m showed an increase in latency of P300 11. Another study also showed prolonged P300 latencies at 3200 and 4300 m on day 6 and day 8, respectively 12. Event related potentials give information about the time course of information processing including expectancy, attention, cognition and working memory. The long-latency ERP components are sensitive to the same factors that affect mental performance i.e., attention, task difficulty, memory load. The latency of Fig. Representative waveform depicting the prolongation of P300 latency at 1 and 6 months of residence at 4115 m, whereby indicating towards furthering of deleterious effect of hypoxia with respect to time of stay at high altitude. However, amplitude of P200 and P300 peaks did not show any significant change indicating no compensatory mechanism in force. N1, negative peak 100; P2, positive peak 200; N2, negative peak 200; P300, positive peak 300. the P300 response depends upon the speed by which the information content of relevant stimulus is being evaluated 10. It is these aspects which are ready to be affected by hypobaric hypoxia. Specific cognitive processes are associated with specific components of ERP. The P300 component, occurring approximately 300 msec subsequent to the presentation of a stimulus must be counted, and recognized 15. It reflects a later, rather than earlier, more controlled and voluntary memory and decisionmaking capacity. In the present study, only the P300 component was significantly altered at 1 and 6 months at 4115 m showing a decrement in the mentioned cognitive capacities at HA which not only persisted for the duration of the study i.e., 6 months but also became more severe at 6 months as compared to 1 month. This is an agreement with other studies at HA on various aspects of performance 16,17. The N100 and P200 are considered indices of early attention capacities related to stimulus processing 18, while N200 component is considered an index of stimulus detection 19. The N100, P200 and N200 may reflect the stage of early attention (automatic or obligatory) to the stimuli. Since the latencies and amplitudes of N100, P200 and N200 remained unaltered in the present study, it can be assumed that the capacities reflected by these components are less sensitive to hypobaric hypoxia. There were individual differences in the response recorded at HA in 18 volunteers. Of the 18 participants, there was an increase in P300 wave latency in 12 volunteers after one month and six months of stay at HA, while 6 volunteers recorded no significant changes in P300 wave latency at 1 / 6 months. A previous study 20 reported similar individual differences in performance of a reaction time (RT) task with no change in N100 and N200 components of ERP at simulated HA of 6000 m. The difference in response may be attributed to

116 INDIAN J MED RES, july 2011 different arousal levels of the participants as measured by EEG in another study 21. AMP-3 did not show any significant change at high altitude. It has been reported that P300 amplitude depends upon the selective attention of the volunteer; it is greater for attended rather than unattended target stimuli, greater with better motivation and task priority 22. It is larger for relevant stimuli; it is reduced in distraction or multi task paradigms where attention of the participant to the relevant stimulus is reduced 23. In a study, the amplitude was reported to increase when participants were told that their performance was being monitored and would be compared to others 24. In the present study possibly the volunteers may have put in an extra effort to attend to the odd-ball paradigm task due to which the amplitude may not have altered significantly, as reported in a recent study following sleep deprivation 25. The central mechanisms responsible for the effect of hypoxia on cognitive performance are not clear. It is likely that the direct effects of mild transient hypoxia on brain causes variations in the level of specific neurotransmitters involved in cognitive processes because the experimental studies on rats showed alterations in synthesis of monoamines under simulated hypoxia 26. Alterations in norepinephrine, serotonin, dopamine and enzyme tyrosine hydroxylase, choline acetyl transferase and glutamine acid decarboxylase were found in our recent studies on exposure to simulated hypobaric hypoxia in rat cerebral cortex, pons, midbrain and hypothalamus (unpublished data). Acetylcholine (Ach) is another neurotransmitter involved in the regulation of learning and memory process 26. The rates of synthesis of serotonin, dopamine and the amino acids are reported to be sensitive to hypoxia by other workers 27. It may be inferred that hypoxia at HA may tantamount to being one of the factor such as decrement of cognitive processing speed and/or sensitivity of the brainstem neurons to auditory input among others to cause disturbance in cognitive function which manifests as prolongation in P300 latency. Acknowledgment The authors express their gratitude to all the volunteers who participated in the study. 1. References Golob EJ, Johnson JK, Starr A. Auditory event-related potentials during target detection are abnormal in mild cognitive impairment. Clin Neurophysiol 2002; 113 : 151-61. 2. Salisbury DF, Rutherford B, Shenton ME, McCarley RW. Button-pressing affects P300 amplitude and scalp topography. Clin Neurophysiol 2001; 112 : 1676-84. 3. Picton TW. The P300 wave of the human event-related potential. J Clin Neurophysiol 1992; 9 : 456-79. 4. Hansenne M. The P300 cognitive event-related potential. II. The Inter individual variability and clinical application in psychopathology. Neurophysiol Clin 2000; 30 : 211-31. 5. Fowler B, Prlic H. A comparison of visual and auditory reaction time and P300 latency threshold to acute hypoxia. Aviat Space Environ Med 1995; 66 : 645-50. 6. Wesensten NJ, Crowley J, Balkin T, Kamimori G, Iwanyk E, Pearson N, et al. Effects of simulated high altitude exposure on long-latency event related brain potentials and performance. Aviat Space Environ Med 1993; 64 : 30-6. 7. Alexander MP, Geschwinal N. Dementia in the elderly. In: ML Albert, editor. Clinical neurology of aging. New York: Oxford University Press; 1984. p. 259-76. 8. Katzman R, Terry RD, Bick KL. Alzheimer s disease: Senile dementia and related disorders. New York: Raven Press; 1978. 9. Tandon OP, Mahajan A. Averaged evoked potentials: event related potentials (ERPs) and their applications. Indian J Physiol Pharmacol 1999; 43 : 425-34. 10. Licht R, Homberg V. An introduction of methodology, Psychophysiological significance and clinical application, In: EJ Colon and SL Visser, editors. Evoked potentials manual. Netharlands: Kluwer; 1990. p. 327-53. 11. Singh SB, Thakur L, Anand JP, Panjwani U, Yadav D, Selvamurthy W. Effect of high altitude (HA) on event related brain potentials. Indian J Physiol Pharmacol 2003; 47 : 52-8. 12. Singh SB, Thakur L, Anand JP, Yadav D, Amitab, Banerjee PK. Effect of chronic hypobaric hypoxia on components of the human event- related potential. Indian J Med Res 2004; 120 : 94-9. 13. Kendall MG, Sturt A. The advanced theory of statistics. vol. III. New York: Hofner Press, 1973. 14. Hayashi R, Matsuzawa Y, Kubo K, Kobayashi T. Effect of simulated high altitude on event-related potential (P300) and auditory brain-stem responses. Clin Neurophysiol 2005; 116 : 1471-6. 15. Fowler B, Kelso B. The effects of hypoxia on components of the human event-related potential and relationship to reaction time. Aviat Space Environ Med 1992; 63 : 510-6. 16. Fulco CS, Cymerman A. Human performance and acute hypoxia. In: Pandolf KB, Sawka MN, Gonzalez RR, editors. Human performance physiology and environmental medicine at terrestrial extremes. Indianapolis: Benchmark Press; 1988. p. 467-95. 17. Hackett PH, Roach RC, Sutton JR. High altitude medicine. In: Auerbach PS, Geehr EC, editors. Management of wilderners and environmental emergencies, 2 nd ed; St Louis: C.V. Mosby Company; 1989. p. 1-34. 18. Naatanen R, Picton T. The N1 wave of the human electric and magnetic response to sound: a review and an analysis of the component structure. Psychophysiology 1987; 24 : 375-425.

THAKUR et al: P300 RESPONSE AT HIGH ALTITUDE 117 19. 20. 21. 22. 23. Naatanen R. Processing negativity- an evoked potential reflection of selective attention. Psychol Bull 1982; 92 : 605-40. Kida M, Imai A. Cognitive performance and event-related brain potentials under simulated high altitudes. J Appl Physiol 1993; 74 : 1735-41. Kraaier V, Van Huffelen AC, Wieneke GH. Quantitative EEG changes due to hypobaric hypoxia in normal subjects. Electroencephalogr Clin Neurophysiol 1988; 69 : 303-12. Kok A. On the utility of P3 amplitude as a measure of processing capacity. Psychophysiology 2001; 38 : 557-77. Nash AJ, Fernandez M. P300 and allocation of attention in dual-task. Int J Psychophysiol 1996; 23 : 171-80. 24. Carrillo-de-la-Pena MT, Cadaveira F. The effect of motivational instructions on P300 amplitude. Neurophysiol Clin 2000; 30 : 232-9. 25. Panjwani U, Ray K, Chatterjee A, Bhaumik S, Kumar S. Electrophysiological correlates of cognition improve with nap during sleep deprivation. Eur J Appl Physiol 2010; 108 : 549-56. 26. Freeman GB, Gibson GF. Dopamine, acetylcholine, and glutamate interactions in aging. behavioral and neurochemical correlates. Ann NY Acad Sci 1988; 515 : 191-202. 27. Freeman GB, Nielsen P, Gibson GE. Monoamine neurotransmitter metabolism and locomotor activity during chemical hypoxia. J Neurochem 1986; 46 : 733-8. Reprint requests: Dr Lalan Thakur, Neurophysiology Division, Department of Physiology, Defence Institute of Physiology & Allied Sciences (DIPAS), Defence Research & Development Organisation Lucknow Road, Timarpur, Delhi 110 054, India e-mail : neurophysiolab_dipas@rediffmail.com