Effects of Vitamin D treatment on thyroid autoimmunity

Similar documents
HASHIMOTO S THYROIDITIS NOT ASSOCIATED WITH VITAMIN-D DEFICIENCY

Study of Correlation between Vitamin D Deficiency and Anti-Thyroperoxidase Antibodies in Autoimmune Thyroid Diseases

Correspondence should be addressed to Wei He; and Tao Yang;

Antithyroid drugs in Graves disease: Are we stretching it too far?

Vitamin D and thyroid autoimmunity

ASSOCIATION BETWEEN THYROID FUNCTION TESTS, LIVER ENZYMES AND VITAMIN D IN HEALTHY CHILDREN

IJBCP International Journal of Basic & Clinical Pharmacology. Statin therapy and Vitamin D

Research Article Low Serum Vitamin D Is Associated with Anti-Thyroid-Globulin Antibody in Female Individuals

Association of vitamin D insufficiency/deficiency with thyroid artery Doppler ultrasonography in patients with Hashimoto thyroiditis

(Leven and Tomer, 3002). González et al, 3002). Reffubat et al, 7002). (ISPAD) 3000

Early stages of thyroid autoimmunity: follow-up studies in the Amsterdam AITD cohort Effraimidis, G.

Discontinuation of Smoking Increases the Risk for Developing Thyroid Peroxidase Antibodies and/or Thyroglobulin Antibodies: A Prospective Study

Characteristics of allergy in autoimmune thyroid diseases. Ildikó Molnár MD, PhD, EndoMed, Hungary

JMSCR Vol 07 Issue 03 Page March 2019

Integrity of the Lactotroph Axis and Antithyroid Antibodies in Patients with Hypopituitarism

PLACE OF SELENIUM IN THE TREATMENT OF THYROID DISEASES

Decoding Your Thyroid Tests and Results

None. Thyroid Potpourri for the Primary Care Physician. Evaluating Thyroid Function. Disclosures. Learning Objectives

Clinical, Endocrinological and Immunological Characteristics of Japanese Patients With Autoimmune Polyglandular Syndrome Type 3a

Thyroid Function. Thyroid Antibodies. Analyte Information

Early stages of thyroid autoimmunity: follow-up studies in the Amsterdam AITD cohort Effraimidis, G.

Vaitsa Giannouli Bulgarian Academy of Sciences, Bulgaria Nikolaos Syrmos Aristotle University of Thessaloniki, Greece

Clinical Study Thyroid Autoimmunity and Behçet s Disease: Is There a Significant Association?

Physiological serum 25-hydroxyvitamin D concentrations are associated with improved thyroid function observations from a community-based program

Research Article Thyroid Autoimmunity in the Context of Type 2 Diabetes Mellitus: Implications for Vitamin D

Clinical efficacy of therapeutic intervention for subclinical hypothyroidism during pregnancy

Thyroid Autoantibodies as a Marker of Immunologic Disorder in Women with Unexplained Recurrent Spontaneous Abortion

ORIGINAL INVESTIGATION. Prediction of Progression to Overt Hypothyroidism. or hyperthyroidism in female relatives of patients

Study of the Association between Serum Vitamin D 25(OH) D levels, Muscle Strength and fall among Elderly.

Correlation Analysis of Thyroid Function and Autoantibody in Healthy Population Living in the Area of Water-Source-Originated High Level Iodine

JMSCR Vol 06 Issue 12 Page December 2018

Correlation between Thyroid Function and Bone Mineral Density in Elderly People

A Clinical Study on Patients Presenting with Thyroid Swelling and Its Correlation with TFT, USG, FNAC and Anti TPO Antibodies

Analysis of Lag Behind Thyrotropin State After Radioiodine Therapy in Hyperthyroid Patients

Chapter I.A.1: Thyroid Evaluation Laboratory Testing

ON: STUDY OF THE PREVALENCE OF AUTOIMMUNE THYROID DISEASE IN WOMEN WITH BREAST CANCER. Giovanni Sisti MD, Mariarosaria Di Tommaso MD

Original Article. 106

Thyroid Dysfunction And Anti-Thyroid Peroxidase Antibody In Patients With Vitiligo

Immunoprotective Steroids and SHBG in Non-Treated Hypothyroidism and their Relationship to Autoimmune Thyroid Disorders

THE PHARMA INNOVATION - JOURNAL Assessment of Antithyroperoxidase Antibodies and Thyroid Hormones Among Sudanese Pregnant Women

Immunoprotective Steroids and SHBG in Non-Treated. Hypothyroidism and their Relationship to Autoimmune Thyroid

Evaluation of the analytical performances of six measurands for thyroid functions of Mindray CL-2000i system

Thyroid. Dr Jessica Triay November 2018

The Presence of Thyroid Autoantibodies in Pregnancy

Case Report Recurrent Episodes of Thyrotoxicosis in a Man following Pregnancies of his Spouse with Hashimoto s Thyroiditis

Psychotic Symptoms in a Patient with Hashimoto s Thyroditis

Thyroid function after assisted reproductive technology in women free of thyroid disease

Limits of Liability/Disclaimer of Warranty

Disclosures. Learning objectives. Case 1A. Autoimmune Thyroid Disease: Medical and Surgical Issues. I have nothing to disclose.

ASSOCIATIONS BETWEEN THYROID DYSFUNCTION AND CHRONIC KIDNEY DISEASE

Abstract. Prevalence of Vitamin D Deficiency in Children and Adolescents Referred to Pediatric Orthopedic Clinic

Clinical Study Procoagulant and Anticoagulant Factors in Childhood Hypothyroidism

Belgian Thyroid Club

Esther Briganti. Fetal And Maternal Health Beyond the Womb: hot topics in endocrinology and pregnancy. Endocrinologist and Clinician Researcher

Biomed Environ Sci, 2017; 30(6):

LABORATORY TESTS FOR EVALUATION OF THYROID DISORDERS

Update on vitamin D. J Chris Gallagher Professor of Medicine and Endocrinology Creighton University Omaha,Nebraska USA

Submitted 11 May 2013: Final revision received 25 July 2014: Accepted 3 August 2014

Correlation analyses of thyroid-stimulating hormone and thyroid autoantibodies with differentiated thyroid cancer

Prevalence of Thyroid Disease In Malaysia

JMSCR Vol 04 Issue 03 Page March 2016

Antithyroid Peroxidase Antibodies in Women with Polycystic Ovary Syndrome

Vitamin D supplementation of professionally active adults

Understanding thyroid function tests. Dr. Colette George

A retrospective cohort study: do patients with graves disease need to be euthyroid prior to surgery?

The interpretation and management of thyroid disorders

Association of Thyroid Hormone Levels Among Type 2 Diabetic Patients Attending a Tertiary Care Hospital

Slide notes: This presentation provides information on Graves disease, a systemic autoimmune disease. Epidemiology, pathology, complications,

Thyroglobulin Interference in the Determination of Thyroglobulin Antibody in Wash-Out Fluid from Fine Needle Aspiration Biopsy of Lymph Node

Lecture title. Name Family name Country

Should every pregnant woman be screened for thyroid disease?

Table 1: Thyroid panel. Result (reference interval) TSH 89.5 miu/l ( ) Total T4 5.2 µg/dl ( ) T3 uptake 39% (22-35)

Thyroid Disorders Towards a Healthy Endocrine System

Vitamin D Status and Autoimmune Disease (Hashimoto s Thyroiditis) in Saudi Arabian Women

ORIGINAL PAPERS. Assessment of Vitamin D Level in Autoimmune Thyroiditis Patients and a Control Group in the Polish Population*

Comparison between two automated chemiluminescence immunoassays for quantifying 25 (OH) vitamin D

Sample Type - Serum Result Reference Range Units. Central Thyroid Regulation Surrey & Activity KT3 4Q. Peripheral Thyroid D Function mark

Recurrent Painless Thyroiditis in Patients with History of Postpartum Thyroiditis

Thyroid Dysfunction Associated with Administration of the Long-Acting Gonadotropin-Releasing Hormone Agonist

Chapter 3. Autoimmunity and Hypothyroidism: Anti-TPO antibodies in Hypothyroid Patients in Gujarat Population

Thyroid Screen (Serum)

Requesting and Management of abnormal TFTs.

Serum vitamin D3 levels are not associated with thyroid cancer prevalence in euthyroid subjects without autoimmune thyroid disease

Vitamin D: Is it a superhero??

J of Evolution of Med and Dent Sci/ eissn , pissn / Vol. 3/ Issue 16/Apr 21, 2014 Page 4160

Vitamin D Deficiency in Patients presented in Medical OPD with Fibromyalgia Muhammad Arif Mahmood, Muhammad Arshad Qureshi, Ijaz-Ul-Haque Taseer

Thyroid abnormality in hilly children with vitiligo: A case control study

Thyroid Hot Topics. AACE Atlanta, GA January 26-27, 2018

Vitamin D and Calcium

Thyroid Disease in Pregnancy: The Essentials. Elizabeth N. Pearce, MD, MSc

Citation for published version (APA): Strieder, T. G. A. (2008). The Amsterdam autoimmune thyroid disease cohort

International Journal of Research and Review E-ISSN: ; P-ISSN:

Association between thyroid autoimmunity and Helicobacter pylori infection

Avidity of thyroglobulin antibody in sera from patients with Hashimoto s thyroiditis with different thyroid functional statuscei_

Clinical Features of Patients with Basedow s Disease and High Serum IgG4 Levels

Sanjay B. Dixit, M.D. BHS Endocrinology Associates November 11, 2017

Analysis of regulatory T cell subsets in the peripheral blood of immunoglobulin A nephropathy (IgAN) patients

Monitoring of Thyroid Replacement Therapy

European Journal of Medical Research. Open Access RESEARCH

25 OH Vitamin D Rapid Test

Transcription:

Original Article Effects of Vitamin D treatment on thyroid autoimmunity Yasin Simsek, Ilkay Cakır 1, Mikail Yetmis 1, Oguzhan Sitki Dizdar 2, Osman Baspinar 2, Ferhat Gokay Departments of Endocrinology and Metabolism and 2 Internal Medicine, Kayseri Training and Research Hospital, Kayseri, 1 Department of Internal Medicine, Bagcilar Training and Research Hospital, Istanbul, Turkey Background: Vitamin D was shown to be related to autoimmune thyroid diseases (AITDs) in the previous studies. We aimed to investigate the relationship between Vitamin D and thyroid autoimmunity. Materials and Methods: Eighty two patients, diagnosed with AITD by the endocrinology outpatient clinic, were included in this prospective study. All of the patients had both AITD and Vitamin D deficiency, defined as serum values <20 ng/ml. They were randomly assigned into two s. The first included 46 patients and the second one included 36 patients. The first was treated with Vitamin D for 1 month at 1000 IU/day. The second served as the control and was not treated with Vitamin D replacement. Serum thyroid stimulating hormone, free T4 (ft4), thyroid peroxidase antibody (TPO Ab), thyroglobulin antibody (TgAb), and Vitamin D levels were measured at the initiation of the study and again at 1 month in all patients. Results: Two s were similar with regard to age, sex, and type of thyroid disease. Whereas TPO Ab (before; 278.3 ± 218.4 IU/ml and after; 267.9 ± 200.7 IU/ml) and TgAb (before; 331.9 ± 268.1 IU/ml and after; 275.4 ± 187.3 IU/ml) levels were significantly decreased by the Vitamin D replacement therapy in 1 (P = 0.02, P = 0.03, respectively), the evaluated parameters in the control did not significantly change (P = 0.869, P = 0.530, respectively). In addition, thyroid function tests did not significantly change with Vitamin D replacement in two s. Conclusion: Vitamin D deficiency may contribute to the pathogenesis of AITDs. Since supplementation of the Vitamin D decreased thyroid antibody titers in this study in Vitamin D deficient subjects, in the future Vitamin D may become a part of AITDs treatment, especially in those with Vitamin D insufficiency. Further clinical and experimental studies are required to understand the effect of Vitamin D on AITD. Key words: Autoimmune thyroid diseases, thyroid antibodies, Vitamin D How to cite this article: Simsek Y, Cakır I, Yetmis M, Dizdar OS, Baspinar O, Gokay F. Effects of Vitamin D treatment on thyroid autoimmunity. J Res Med Sci 2016;21:85. INTRODUCTION Vitamin D has a role in calcium and phosphorus homeostasis, and thereby, is essential for the preservation of bone health. [1] In addition, Vitamin D insufficiency has been linked to autoimmune disorders including autoimmune encephalomyelitis, rheumatoid arthritis (RA), systemic lupus erythematosus, type 1 diabetes, and inflammatory bowel disease (IBD). [2 7] Vitamin D receptors have been found in the immune system, reproductive system, endocrine system, muscle, brain, skin, and liver as well as the bone, kidney, and intestine; [8] supporting the idea of the role of Vitamin D is not limited to the skeletal system. Access this article online Quick Response Code: Website: www.jmsjournal.net DOI: 10.4103/1735-1995.192501 Many studies have shown that low Vitamin D levels contribute to the development of autoimmune thyroid diseases (AITDs) such as Hashimoto s thyroiditis (HT) and Graves disease (GD). Moreover, replacement of Vitamin D has useful effects on treatment of the AITDs by reducing levels of thyroid antibodies and suppressing the autoimmune reaction. [9] A number of the previous studies have shown various relationships among Vitamin D and AITDs. [10 12] A study observed that increased prevalence of Vitamin D deficiency and insufficiency in thyroid peroxidase antibody (TPO Ab) or thyroglobulin antibody (TgAb) positive patients when compared to those with negative antibody status. [13] A cross sectional study documented increased the prevalence of TPO Ab positivity in women with Vitamin D deficiency and insufficiency as compared This is an open access article distributed under the terms of the Creative Commons Attribution NonCommercial ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non commercially, as long as the author is credited and the new creations are licensed under the identical terms. For reprints contact: reprints@medknow.com Address for correspondence: Dr. Oguzhan Sitki Dizdar, Department of Internal Medicine, Kayseri Training and Research Hospital, Atatürk Avenue, Hastane Street, No: 78, Kocasinan, Kayseri, Turkey. E mail: osdizdar@gmail.com Received: 18 02 2016; Revised: 14 05 2016; Accepted: 15-06-2016 1 2016 Journal of Research in Medical Sciences Published by Wolters Kluwer - Medknow 2016

to Vitamin D sufficient persons. [14] Inversely, some studies have proposed that Vitamin D deficiency does not increase the risk of AITDs. [15,16] Euthyroid thyroid levels together with TPO Ab positivity were not associated with Vitamin D deficiency in a study. [16] In this study, we aimed to investigate the relationship between Vitamin D and thyroid autoimmunity by assessing the effects of Vitamin D treatment on both serum levels of TPO Ab and anti TgAb. MATERIALS AND METHODS Simsek, et al.: Vitamın D treatment and thyroid autoimmunity Study design and participants Eighty two patients, diagnosed with AITD and Vitamin D deficiency by the Endocrinology outpatient clinics between April 2015 and June 2015, were included in this prospective study. The AITD patients with a history of Vitamin D replacement therapy in the last 12 months and patients taking medications that affect thyroid function such as steroid and L thyroxine were excluded from the study. HT was diagnosed by high serum thyroid stimulating hormone (TSH) levels and in the presence of low or normal ft4 levels with positive TPO Ab and/or TgAb. GD was diagnosed by low TSH levels and normal or high ft3 and/or ft4 levels with positive TPO Ab and/or TgAb. All of the patients had one of the AITD (GD or HT) and Vitamin D deficiencies defined as serum values <20 ng/ml. [17 19] A preliminary study was planned by considering our primary objective, and we have received five patients per. We have made an intermediate evaluation considering the obtained findings and power analysis had performed. We have decided that should be taken minimum 35 patients per by considering the power analysis and study running time. Analyses were conducted using PASS 11.0 (Power Analysis Statistical System, NCSS Inc. USA) software. This study was approved by the local Ethics Committee, and informed consent forms in accordance with the Declaration of Helsinki 2013 Brasil version were obtained from all the patients who had volunteered to be included in the study. Procedures and variables assessment All participants were randomly assigned into two s [Figure 1]. The first was included 46 patients who were treated with Vitamin D for 1 month at 1000 IU/day. The second included 36 patients who followed without Vitamin D replacement but had been instructed to expose themselves to sunshine and monitor their diet. Serum TSH, ft4, ft3, TPO Ab, TgAb, and Vitamin D of the patients were assayed initially and subsequent 1 month. Any patients with symptoms of Vitamin D deficiency such as myalgia, sweating, and weakness were monitored. These symptoms are not specific for Vitamin D deficiency. However, if any patient had at least one of these symptoms, Figure 1: Flow diagram of patients recruitment we would have started Vitamin D replacement due to ethical reasons and excluded these patients from the study. Serum 25 hydroxyvitamin D (25[OH] D) levels were quantified by liquid chromatography mass spectrometry (LC MS/MS) on waters analyzers (Acquity UPLC and Quattro Premier XE Micromass spectrometry, USA). TSH, ft4, ft3, TPO Ab, TgAb levels were determined using a chemiluminescent immunoassay (Cobas E6000, Roche Diagnostic, Germany). Statistical analysis Data were analyzed with SPSS (Version 22.0, SPSS Inc., Chicago, IL, USA; License, University of Hitit, Turkey). The suitability of the normal distribution of the data was performed with Shapiro Wilk test. Comparisons between the s for quantitative variables were evaluated using two independent samples t test in case of normally distributed data, and Mann Whitney U tests in case of not normally distributed data. Chi square tests were used for qualitative variables. Descriptive statistics with a normal distribution are presented as mean ± standard deviation and not normally distribution is presented as median (minimum maximum). Nominal variables are presented as number of cases and percentage (%). The significances of the difference between the two related s were evaluated using paired sample t test in case of normally distributed data, and Wilcoxon test in case of not normally distributed data. P < 0.05 was considered statistically significant. RESULTS The demographic and clinical data of the s are presented in Table 1. The two s were similar with Journal of Research in Medical Sciences 2016 2

regard to age, sex, and type of thyroid disease. Laboratory findings of the two s are summarized in Table 2. As expected, the mean serum Vitamin D level in the replacement was significantly increased (P = 0.001), and TPO Ab and TgAb levels were significantly decreased by the replacement therapy (P = 0.02 and P = 0.03, respectively). After 1 month, Vitamin D, TgAb, and TPO Ab levels did not significantly vary in Group 2, who did not receive Vitamin D replacement (P > 0.05). The two s were similar in terms of number of GD and HT (P > 0.05). L thyroxine replacement therapy was initiated if the patients had hypothyroidic symptoms (overt hypothyroid or subclinical), and TSH levels above the normal range (0.27 4.2 miu/l). Only five patients were administered L thyroxine replacement (four of them in Group 1 and 1 in the control Group 2). Other patients with HT were diagnosed with subclinical hypothyroidism. At the same time, methimazole was started if patients exhibited hyperthyroidic symptoms and had TSH levels under the normal range. Eight patients with GD were administered methimazole (five in Group 1 and 3 in the control Group 2). The remaining patients had subclinical GD. TSH levels were not significantly different in either and any thyroid disease (P > 0.05). There was no statistically significant difference between mean Vitamin D levels (P > 0.05) at baseline, although Table 1: Demographic and clinical data and autoimmune thyroid disease distribution of the s Vitamin D replacement Nonreplacement P (n=46) (n=36) Age a 35.8±12.0 39.7±12.6 0.171 Male/female b (%) 9 (19.6)/37 (80.4) 5 (13.9)/31 (86.1) 0.702 HT/GD b 37 (80.4)/9 (19.6) 31 (86.1)/5 (13.9) 0.702 a Independent sample t test was used for statistical analysis; b Chi square test was used for statistical analysis. Data are expressed as the mean±sd or noun (percentage). HT = Hashimoto s thyroiditis; GD = Graves disease; SD = Standard deviation Table 2: Comparison of the laboratory findings of the each s a Nonreplacement Replacement Laboratory parameters Initial values After 1 month values TSH 4.0±2.5 3.5±2.2 0.120 ft4 1.1±0.4 1.4±1.3 0.010 Vitamin D 8.6±4.2 10.9±6.0 0.160 TPOAb 201 (593) 166 (592) 0.860 TgAb 273 (566) 237 (592) 0.530 TSH 4.1±4.0 3.5±2.5 0.980 ft4 1.5±1.1 1.2±0.4 0.500 Vitamin D 11.5±5.9 21.4±9.9 <0.001 TPOAb 223 (591) 210 (592) 0.020 TgAb 312 (1612) 244 (915) 0.030 Data are expressed as mean±sd or median (range). Normal range of laboratory parameters: TSH = 0.27-4.2 uiu/ml, ft4 = 0.8-2.7 ng/dl, Vitamin D = 19-57.6 ng/ml, TPOAb = 0-4 IU/ml, TgAb = 0-9 IU/ml. a The significances of the difference between the two related s were evaluated using Wilcoxon test; TPOAb = Thyroid peroxidase antibody; TgAb = Thyroglobulin antibody; TSH = Thyroid stimulating hormone; ft4 = Free T4; SD = Standard deviation P Group 1 had a higher mean Vitamin D level following treatment than Group 2 at the second visit (P < 0.001). All of the patients were analyzed in terms of their AITD diagnosis and Vitamin D levels at baseline; there was no statistically difference between GD and HT in terms of Vitamin D levels (10.1 ± 2.2 ng/dl, 10.8 ± 3.5 ng/dl, respectively). The patients with GD or HT were not compared separately due to a statistically low number of patients with GD. Two s were compared in terms of TSH, ft4, ft3, TPO Ab, TgAb, and Vitamin D levels before and after 1 month [Table 3]. There was only statistically significant difference between Vitamin D levels after assaying 1 month (nonreplacement Vitamin D = 11.5 ± 5.9; replacement Vitamin D = 21.4 ± 9.9; P < 0.001). Other parameters were similar between s. Furthermore, mean differences of laboratory findings after and before Vitamin D treatment between two s were shown in Table 4. Change of Vitamin D and ft4 levels after treatment were significantly different between two s. Table 3: Comparison of the laboratory findings between the s a Nonreplacement Replacement Initial values Vitamin D 8.6±4.2 11.5±5.9 0.052 TSH 4.0±2.5 4.1±4.0 0.290 ft4 1.1±0.4 1.5±1.1 0.050 TPOAb 201 (7-600) 223 (8.8-600) 0.263 TgAb 273 (10-576) 312 (5.0-1617) 0.944 Values after 1 month Vitamin D 10.9±6.0 21.4±9.9 0.005 TSH 3.5±2.2 3.5±2.5 0.265 ft4 1.4±1.3 1.2±0.4 0.329 TPOAb 166 (7.9-534) 210 (7.6-600) 0.236 TgAb 237 (13-605) 244 (8-923) 0.977 Data are expressed as mean±sd or median (minimum maximum). Normal range of laboratory parameters: TSH=0.27-4.2 uiu/ml, ft4=0.8-2.7 ng/dl, Vitamin D=19-57.6 ng/ml, TPOAb=0-4 IU/ml, TgAb=0-9 IU/ml. a Independent sample s t test was used for comparisons between the s for all variables. TPOAb = Thyroid peroxidase antibody; TgAb = Thyroglobulin antibody; TSH = Thyroid stimulating hormone; ft4 = Free T4; SD = Standard deviation Table 4: Mean differences of laboratory findings after and before Vitamin D treatment between two s a Variables Nonreplacement Replacement TSH 1.1±19.3 0.5±3.4 0.433 ft4 2.5±14.7 0.3±1.1 0.016 Vitamin D 2.1±3.5 15.8±30 <0.001 TPOAb 15.0±63.4 15.8±75.2 0.060 TGAb 62.4±340 56.7±257.6 0.377 Data are expressed as mean±sd. a Mann Whitney U test was used for comparisons between the s for all variables. TPOAb = Thyroid peroxidase antibody; TgAb = Thyroglobulin antibody; TSH = Thyroid stimulating hormone; SD = Standard deviation; ft4 = Free T4 P P 3 Journal of Research in Medical Sciences 2016

DISCUSSION In this study, thyroid antibody titers were significantly decreased following Vitamin D replacement therapy. However, there were no differences in Vitamin D level associated with thyroid function. In addition, we found no difference between GD and HT in terms of Vitamin D levels in this study. In literature, the majority of autoimmune diseases with different pathophysiologies were demonstrated to be associated with low Vitamin D levels such as RA, IBD, and AITD. [10,20,21] Thyroid diseases, particularly the AITDs, are nearly the most common endocrine abnormality in clinical practice. [22] The pathogenesis of AITD has been suggested to be multifactorial, including genetic, environmental, and hormonal factors such as Vitamin D deficiency. [23] Although not yet clear, numerous associations among Vitamin D and AITD have been shown. Wang et al. showed that the serum Vitamin D levels were lower in AITD patients when compared to healthy control individuals. In addition, the patients who had Vitamin D deficiency were more likely to develop AITD. Tamer et al. revealed that Vitamin D insufficiency (<30 ng/dl) was more commonly found in patients with HT than in controls. [24] In another study, Vitamin D levels were detected to be lower in patients with AITDs than in healthy volunteers. [12] Inversely, another study revealed a poor relationship between Vitamin D and AITDs. [10] In this study, Vitamin D levels of the patients with AITD were below normal reference ranges. We evaluated HT and GD together in concordance with the literature due to an insufficient number of patients. When the s were compared in their own, we found that TPO Ab and TgAb levels were significantly decreased by the replacement therapy in the statistical analysis of two related s with Wilcoxon test. However, we did not find any difference between s in terms of antibody levels in two different analysis with independent samples t test. However, we think that this situation is not a true contradiction. Because we made two measurements including before and after treatment for each patient, two related analysis in Table 2 have more accurate results. Finally, we can claim the existence of a relationship between Vitamin D and AITDs. There are several studies regarding the effects of Vitamin D replacement therapy on autoimmunity with many of them focusing on thyroid autoimmunity. Agmon Levin et al. revealed that in patients with systemic and organ specific autoimmune diseases, Vitamin D levels were found to be lower when compared to healthy subjects and that Vitamin D supplementation had beneficial effects on autoimmune diseases. [25] The positive effect of Vitamin D supplementation on the treatment or prevention of AITDs has also been shown in experimental animal studies. In a recent study, mice that had developed experimental autoimmune thyroiditis recovered by 44.4% after administration of low dose Vitamin D. In addition, that study revealed that following Vitamin D replacement therapy, the severity of histological lesions was reduced up to 26% in mice that had experimentally AITD. [26] Our study design was the first study in literature that evaluated the effect of Vitamin D on thyroid antibodies in humans. We suggest administration of Vitamin D in patients with AITDs and Vitamin D deficiency as it has beneficial effects on thyroid autoimmunity. For this reason, Vitamin D replacement may be suggested as an auxiliary treatment for AITDs. The role of Vitamin D as an immunemodulator has been reported in recent studies, and low levels of Vitamin D have been observed in several autoimmune diseases such as RA, IBD, and AITDs. [10,20,21,27] One recent study reported an association between Vitamin D deficiency and the presence of antithyroid antibodies. [10] Shin et al. revealed a negative association between 25(OH) D3 and TPO Ab levels and further demonstrated that low 25(OH) D3 may be a possible risk factor for TPO Ab positivity. [28] Kivity et al. reported that Vitamin D deficiency was associated with high levels of TgAb. [10] We revealed that Vitamin D deficiency may be a potential risk factor in terms of TgAb and TPO Ab positivity. The relationship between inflammatory cytokines and AITDs is well known. [29] Taking into consideration the immunemodulator effect of Vitamin D on inflammatory responses and autoimmunity, such reports support the possible relationship between AITDs and Vitamin D deficiency. [30,31] This study has not demonstrated a relationship between Vitamin D levels and thyroid function. This result has two possible explanations: First, the study time was relatively short. If we could follow up with the patients for a longer duration, TSH levels may be assayed differently. Second, Vitamin D deficiency is more closely associated with antithyroid antibody titer rather than thyroid function. This study could be performed for only a limited time (1 month) due to ethical reasons. Therefore, results indicated only changes in thyroid antibodies. Studies with longer durations are necessary to reflect TSH half times to determine thyroid hormone levels. Finally, Vitamin D seems to play a potential immunemodulator role in autoimmune thyroiditis according to the data gathered during the present study. A major limitation of our study is a very short period of intervention. Other limitations were small sample size, the short study period, and having participants from the same geographical region with similar dressing habits and ethnicity, which may have affected Vitamin D levels. Journal of Research in Medical Sciences 2016 4

CONCLUSION Vitamin D deficiency may contribute to the pathogenesis of AITDs. The molecular mechanism should be further investigated to clarify the causal relationship between the Vitamin D level and autoimmune thyroiditis. Since supplementation of the Vitamin D decreased thyroid antibody titers in the present study in Vitamin D deficient subjects, in the future Vitamin D may become a part of AITDs treatment, especially in those with Vitamin D insufficiency. Further clinical and experimental studies are required to understand the mechanisms of AITD and results of Vitamin D replacement treatment on the pathogenesis of AITD and thyroid functions. Acknowledgments This manuscript was published as a poster in European Congress of Endocrinology (2015). Poster No: EP1063 DOI: 10.1530/endoabs. 37.EP1063. Financial support and sponsorship Nil. Conflicts of interest There are no conflicts of interest. AUTHORS CONTRIBUTION YS contributed in the conception of the work, conducting the study, revising the draft, approval of the final version IC contributed in the design of the work, revising the draft, approval of the final version of the manuscript, and agreed for all aspects of the work, MY contributed in the conception of the work, revising the draft, approval of the final version OSD contributed in the conception of the work, conducting the study, revising the draft, approval of the final version OB contributed in the conception and design of the work, drafting and revising the draft, approval of the final version FG contributed in the conception of the work, conducting the study, revising the draft, approval of the final version of the manuscript, and agreed for all aspects of the work. REFERENCES 1. Basit S. Vitamin D in health and disease: A literature review. Br J Biomed Sci 2013;70:161 72. 2. Lemire JM, Adams JS, Sakai R, Jordan SC. 1 alpha, 25 dihydroxyvitamin D3 suppresses proliferation and immunoglobulin production by normal human peripheral blood mononuclear cells. J Clin Invest 1984;74:657 61. 3. Deluca HF, Cantorna MT. Vitamin D: Its role and uses in immunology. Faseb J 2001;15:2579 85. 4. Abou Raya A, Abou Raya S, Helmii M. The effect of Vitamin D supplementation on inflammatory and hemostatic markers and disease activity in patients with systemic lupus erythematosus: A randomized placebo controlled trial. J Rheumatol 2013;40:265 72. 5. Grishkan IV, Fairchild AN, Calabresi PA, Gocke AR. 1,25 Dihydroxyvitamin D3 selectively and reversibly impairs T helper cell CNS localization. Proc Natl Acad Sci U S A 2013;110:21101 6. 6. Ananthakrishnan AN, Cagan A, Gainer VS, Cheng SC, Cai T, Szolovits P, et al. Higher plasma Vitamin D is associated with reduced risk of Clostridium difficile infection in patients with inflammatory bowel diseases. Aliment Pharmacol Ther 2014;39:1136 42. 7. Skaaby T, Husemoen LL, Thuesen BH, Linneberg A. Prospective population based study of the association between Vitamin D status and incidence of autoimmune disease. Endocrine 2015;50:231 8. 8. Verstuyf A, Carmeliet G, Bouillon R, Mathieu C. Vitamin D: A pleiotropic hormone. Kidney Int 2010;78:140 5. 9. Muscogiuri G, Tirabassi G, Bizzaro G, Orio F, Paschou SA, Vryonidou A, et al. Vitamin D and thyroid disease: To D or not to D? Eur J Clin Nutr 2015;69:291 6. 10. Kivity S, Agmon Levin N, Zisappl M, Shapira Y, Nagy EV, Dankó K, et al. Vitamin D and autoimmune thyroid diseases. Cell Mol Immunol 2011;8:243 7. 11. Zhang H, Liang L, Xie Z. Low Vitamin D status is associated with ıncreased thyrotropin receptor antibody titer in graves disease. Endocr Pract 2015;21:258 63. 12. Orbach H, Shoenfeld Y. Vaccination infection and autoimmunity: Myth and reality VIAMR 2005 10 26 28, Beau Rivage Palace Hotel, Lausanne, Switzerland. Autoimmun Rev 2007;6:261 6. 13. Chailurkit LO, Aekplakorn W, Ongphiphadhanakul B. High Vitamin D status in younger individuals is associated with low circulating thyrotropin. Thyroid 2013;23:25 30. 14. Choi YM, Kim WG, Kim TY, Bae SJ, Kim HK, Jang EK, et al. Low levels of serum Vitamin D3 are associated with autoimmune thyroid disease in pre menopausal women. Thyroid 2014;24:655 61. 15. Sezgin G, Ozer ME, Bayramicli OU, Ozel AM, Aksungar F, Nalbant S. Relationship of Vitamin D deficiency and autoimmune thyroid diseases. Eur J Internal Med 2011;22:S87. 16. Effraimidis G, Badenhoop K, Tijssen JG, Wiersinga WM. Vitamin D deficiency is not associated with early stages of thyroid autoimmunity. Eur J Endocrinol 2012;167:43 8. 17. Dunlap A, Rudenko A. Correcting Vitamin D deficiency using over the counter supplements. Consult Pharm 2012;27:286 9. 18. Kuriacose R, Olive KE. Prevalence of Vitamin D deficiency and insufficiency in northeast Tennessee. South Med J 2008;101:906 9. 19. Holick MF, Binkley NC, Bischoff Ferrari HA, Gordon CM, Hanley DA, Heaney RP, et al. Evaluation, treatment, and prevention of Vitamin D deficiency: An endocrine society clinical practice guideline. J Clin Endocrinol Metab 2011;96:1911 30. 20. Goswami R, Marwaha RK, Gupta N, Tandon N, Sreenivas V, Tomar N, et al. Prevalence of Vitamin D deficiency and its relationship with thyroid autoimmunity in Asian Indians: A community based survey. Br J Nutr 2009;102:382 6. 21. O Sullivan M. Vitamin D as a novel therapy in inflammatory bowel disease: New hope or false dawn? Proc Nutr Soc 2015;74:5 12. 22. Shoenfeld Y, Selmi C, Zimlichman E, Gershwin ME. The autoimmunologist: Geoepidemiology, a new center of gravity, and prime time for autoimmunity. J Autoimmun 2008;31:325 30. 23. Weetman AP. The immunopathogenesis of chronic autoimmune thyroiditis one century after hashimoto. Eur Thyroid J 2013;1:243 50. 5 Journal of Research in Medical Sciences 2016

24. Tamer G, Arik S, Tamer I, Coksert D. Relative Vitamin D insufficiency in Hashimoto s thyroiditis. Thyroid 2011;21:891 6. 25. Agmon Levin N, Theodor E, Segal RM, Shoenfeld Y. Vitamin D in systemic and organ specific autoimmune diseases. Clin Rev Allergy Immunol 2013;45:256 66. 26. Chen W, Lin H, Wang M. Immune intervention effects on the induction of experimental autoimmune thyroiditis. J Huazhong Univ Sci Technolog Med Sci 2002;22:343 5, 354. 27. Lin J, Liu J, Davies ML, Chen W. Serum Vitamin D level and rheumatoid arthritis disease activity: Review and meta analysis. PLoS One 2016;11:e0146351. 28. Shin DY, Kim KJ, Kim D, Hwang S, Lee EJ. Low serum Vitamin D is associated with anti thyroid peroxidase antibody in autoimmune thyroiditis. Yonsei Med J 2014;55:476 81. 29. Prummel MF, Laurberg P. Interferon α and autoimmune thyroid disease. Thyroid 2003;13:547 51. 30. Arnson Y, Amital H, Shoenfeld Y. Vitamin D and autoimmunity: New aetiological and therapeutic considerations. Ann Rheum Dis 2007;66:1137 42. 31. van Etten E, Mathieu C. Immunoregulation by 1,25 dihydroxyvitamin D3: Basic concepts. J Steroid Biochem Mol Biol 2005;97:93 101. Journal of Research in Medical Sciences 2016 6