The Effects of Glibenclamide on Serum Lipids and Lipoproteins in Type II Non-Insulin Dependent Diabetes Mellitus

Similar documents
THE EFFECT OF VITAMIN-C THERAPY ON HYPERGLYCEMIA, HYPERLIPIDEMIA AND NON HIGH DENSITY LIPOPROTEIN LEVEL IN TYPE 2 DIABETES

Keywords: Type 2 DM, lipid profile, metformin, glimepiride ABSTRACT

Chapter (5) Etiology of Low HDL- Cholesterol

The Many Faces of T2DM in Long-term Care Facilities

Nutritional Recommendations for the Diabetes Managements

Metformin should be considered in all patients with type 2 diabetes unless contra-indicated

Plasma fibrinogen level, BMI and lipid profile in type 2 diabetes mellitus with hypertension

JMSCR Vol 05 Issue 05 Page May 2017

Subject Index. postprandial glycemia and suppression in serum 51 recommendations 119, 120 supplementation pros and cons 118, 119

Lipid profile in Diabetes Mellitus

Disclosures. Diabetes and Cardiovascular Risk Management. Learning Objectives. Atherosclerotic Cardiovascular Disease

associated with serious complications, but reduce occurrences with preventive measures

Diabetes mellitus. Treatment

HEALTH SERVICES POLICY & PROCEDURE MANUAL

Lipid profile in Diabetes Mellitus

Effects of Two Different Oral Anti Diabetic Drugs in Type 2 Diabetes Mellitus Patients

Impact of Physical Activity on Metabolic Change in Type 2 Diabetes Mellitus Patients

Metformin Hydrochloride

ASSESSMENT OF INSULIN RESISTANCE AND Apo B / Apo A1 RATIO IN TYPE II DIABETES PATIENTS

Clinical Recommendations: Patients with Periodontitis

HBA1C: PREDICTOR OF DYSLIPIDEMIA AND ATHEROGENICITY IN DIABETES MELLITUS

A Study to Show Postprandial Hypertriglyceridemia as a Risk Factor for Macrovascular Complications in Type 2 Diabetis Mellitus

Oral Hypoglycemics and Risk of Adverse Cardiac Events: A Summary of the Controversy

Non-insulin treatment in Type 1 DM Sang Yong Kim

Hyperlipidemia. Prepared by : Muhannad Mohammed Supervisor professor : Dr. Ahmed Yahya Dallalbashi

SCIENTIFIC STUDY REPORT

Fish Oils and Diabetes

DYSLIPIDEMIA RECOMMENDATIONS

Comparison of a Homogeneous Assay With a Precipitation Method for the Measurement of HDL Cholesterol in Diabetic Patients

ORIGINAL ARTICLE. Introduction

Diabetes Mellitus Type 2 Evidence-Based Drivers

Nutritional Recommendations and Principles

ASSOCIATION BETWEEN BODY MASS INDEX, LIPID PEROXIDATION AND CORONARY LIPID RISK FACTORS IN HYPOTHYROID SUBJECTS

Altered concentrations of blood plasma

بسم اهلل الرمحن الرحيم فمن شهد منكم الشهر

New York State Medicaid Prescriber Education Program

Friedewald formula. ATP Adult Treatment Panel III L D L Friedewald formula L D L = T- C H O - H D L - T G / 5. Friedewald formula. Friedewald formula

Pathophysiology of Lipid Disorders

A comparative study on the fasting and post prandial lipid levels as a cardiovascular risk factor in patients with type 2 diabetes mellitus

Challenges in type 2 diabetes control: slipping control and weight gain

Diabetes Mellitus. Raja Nursing Instructor. Acknowledgement: Badil 09/03/2016

Eugene Barrett M.D., Ph.D. University of Virginia 6/18/2007. Diagnosis and what is it Glucose Tolerance Categories FPG

1Why lipids cannot be transported in blood alone? 2How we transport Fatty acids and steroid hormones?

Sponsor / Company: Sanofi Drug substance(s): Insulin Glargine. Study Identifiers: NCT

Welcome and Introduction

Kidney and heart: dangerous liaisons. Luis M. RUILOPE (Madrid, Spain)

Management of Post-transplant hyperlipidemia

Diabetes Mellitus Case Study

Comprehensive Treatment for Dyslipidemias. Eric L. Pacini, MD Oregon Cardiology 2012 Cardiovascular Symposium

Cardiovascular Risk Factors among Diabetic Patients Attending a Nigerian Teaching Hospital. O Alao, S Adebisi, G Jombo, D Joseph, O Damulak, F Puepet

2.5% of all deaths globally each year. 7th leading cause of death by % of people with diabetes live in low and middle income countries

SUMMARY. Introduction. Study design. Summary

Obesity, Insulin Resistance, Metabolic Syndrome, and the Natural History of Type 2 Diabetes

The Second Report of the Expert Panel on Detection,

PIEDMONT ACCESS TO HEALTH SERVICES, INC. Guidelines for Screening and Management of Dyslipidemia

André J. Tremblay, 1 Benoît Lamarche, 1 Jean-Charles Hogue, 1 and Patrick Couture 1,2. 1. Introduction. 2. Methods

Diabetes Overview. How Food is Digested

Metabolic Syndrome. Bill Roberts, M.D., Ph.D. Professor of Pathology University of Utah

Obesity Management in Patients with Diabetes Jamy D. Ard, MD Sunday, February 11, :15 a.m. 11:00 a.m.

Metabolic Syndrome and Chronic Kidney Disease

International Journal of Health Sciences and Research ISSN:

Multiple Factors Should Be Considered When Setting a Glycemic Goal

Clinical Trial Synopsis TL-OPI-518, NCT#

Clinical Study Synopsis

Frequency of Dyslipidemia and IHD in IGT Patients

Effects of a dietary intervention to reduce saturated fat on markers of inflammation and cardiovascular disease.

Management of DM in Older Adults: It s not all about sugar! Who needs treatment for DM? Peggy Odegard, Pharm.D., BCPS, CDE

Chapter 18. Diet and Health

Soo LIM, MD, PHD Internal Medicine Seoul National University Bundang Hospital

IMPROVED DIAGNOSIS OF TYPE 2 DIABETES AND TAILORING MEDICATIONS

DIABETES AND RAMADAN FASTING

Diabesity. Metabolic dysfunction that ranges from mild blood glucose imbalance to full fledged Type 2 DM Signs

ROLE OF DIPEPTIDYL PEPTIDASE-4 INHIBITOR IN GLYCEMIC CONTROL AND CARDIOVASCULAR MORTALITY AND MORBIDITY

EFFECT OF NICARDIPINE ON FASTING PLASMA LIPIDS AND APOLIPOPROTEINS IN MALE NEW ZEALAND WHITE RABBITS. Kamsiah Jaarin, Nafeeza MI*

The Compelling Case for Chromium Supplementation SIE

Effect of dietary omega-3 fatty acids on high-density lipoprotein apolipoprotein AI kinetics in type II diabetes mellitus

Katsuyuki Nakajima, PhD. Member of JCCLS International Committee

(For National Authority Use Only) Name of Study Drug: to Part of Dossier:

The promise of the thiazolidinediones in the management of type 2 diabetes-associated cardiovascular disease

Investigators, study sites Multicenter, 35 US sites. Coordinating Investigator: Richard Bergenstal, MD

第十五章. Diabetes Mellitus

Diabetes in Pregnancy

ASSESSMENT OF SERUM LIPIDS IN NIGERIANS WITH TYPE 2 DIABETES MELLITUS COMPLICATIONS

B. Patient has not reached the percentage reduction goal with statin therapy

Medical Nutrition Therapy Options for Adults Living with Diabetes. Jane Eyre Schuster, RD, LD, CDE Legacy Health Diabetes and Nutrition Services

Diabetes Day for Primary Care Clinicians Advances in Diabetes Care

Choosing a Diabetes Strategy Where to Start and Where to Go

Lipoatrophic Diabetes: What can zebras teach us about horses? Ranganath Muniyappa, MD, PhD Diabetes, Endocrinology, and Obesity Branch NIDDK, NIH

METABOLIC SYNDROME IN TYPE-2 DIABETES MELLITUS

CME/CE QUIZ CME/CE QUESTIONS

The changes of serum BDNF, blood lipid and PCI in the elderly patients with coronary heart disease complicated with diabetes mellitus

Macronutrients and Dietary Patterns for Glucose Control

Comparative Effectiveness, Safety, and Indications of Insulin Analogues in Premixed Formulations for Adults With Type 2 Diabetes Executive Summary

International Journal of Pharma and Bio Sciences

2.0 Synopsis. Choline fenofibrate capsules (ABT-335) M Clinical Study Report R&D/06/772. (For National Authority Use Only) Name of Study Drug:

Ο ρόλος των τριγλυκεριδίων στην παθογένεια των μικροαγγειοπαθητικών επιπλοκών του σακχαρώδη διαβήτη

Diabetes Guidelines in View of Recent Clinical Trials Are They Still Applicable?

REVIEW OF RELATED LITERATURE

Seung-Hwan Lee, M.D., Ph.D.

Transcription:

The Effects of Glibenclamide on Serum Lipids and Lipoproteins in Type II Non-Insulin Dependent Diabetes Mellitus Pages with reference to book, From 89 To 92 Muhammad Azhar Mughal,Kausar Aamir,Mehar Ali ( Departments of Pharmacology, Therapeutics Basic Medical Sciences Institute, Jinnah Postgraduate Medical Centre, Karachi. ) Wali Muhammad Maheri ( Departments of Physiology, Basic Medical Sciences Institute, Jinnah Postgraduate Medical Centre, Karachi. ) Muhammad Jan ( Department of Pharmacology, Khyber Medical College, Peshawar. ) Abstract Objective: To examine the effects of glibenclamide treatment on plasma lipids and lipoprotein levels. Settings: Out patients of Type II diabetics from department of Baqai Diabetes and Endocrine Centre and two other diabetic clinics of Karachi. Methods: The effects of glibenclamide on blood glucose and various aspects of lipoproteins has been studied in 26 (14 male, 12 female) Type II Diapetes patients before and after 12 weeks of glibenclamide therapy. Treatment was initiated with 5 mg oral glibenclamide with diet control. The initial dosage of glibenclamide was 5 mg/day taken half an hour before meal; this was increased to 5 mg per week and was adjusted according to the patient s tolerance to the drug and their glycemic control. Results: The results demonstrated that fasting blood glucose declined from 221.53+7.84 to 165.02+5.12 mg/dl, (P<0.001). There was a statistically significant increase in the plasma high-density lipoprotein cholesterol from 33.60+1.00 to 37.07+1.05 mg/dl, (P<<0.05). Total cholesterol, triglycerides, low-density lipoprotein cholesterol and very-low-density lipoprotein cholesterol did not change significantly. Conclusion: Improved glycaemic control in patients treated with glibenclamide with Type II Diabetes was achieved which lead to changes in lipoprotein metabolism. There was no evidence of changes in lipoproteins in. directions associated with an increased risk for atherosclerosis OPMA 49: 89, 1999). Introduction Subjects with type II diabetes are characterized by a very high cardiovascular morbidity and mortality rate. Plasma lipoprotein abnormalities of concentration, composition, or subfraction distribution are one of the main factors for the enhanced cardiovascular risk 1. The major cause of morbidity and mortality of patients with diabetes is macrovascular disease. The mechanisms by which diabetes accelerates atherosclerosis are not well understood. One of the significant risk factors for atherosclerosis in the diabetic population is dyslipidemia 2. Moreover, it is well known that blood glucose optimization (reached by diet, hypoglycemic drugs, or insulin therapy) influences lipoprotein metabolism positively in Type II diabetic patients, although a complete normalization in plasma lipoprotein concentration and composition abnormalities is seldom obtained with this type of diabetes 1-3. Lipoprotein abnormalities in Type II patients involve all classes of lipoprotein and may consist of chylomicronemia, high levels of very-low density lipoprotein (VLDL) and low-density lipoproteins (LDL) 4. Also elevated triglycerides levels are commonly seen in type II diabetic subjects 5. Low concentrations of High Density Lipoprotein (HDL) cholesterol appear to be an outstanding lipoprotein predictor of cardiovascular diseases. The true nature of the relationship between diabetic conditions and increased Coronary Artery Disease (CAD) still remains unclear and

the role of HDL has not been adequately proven 6. However, only a few data are available of the effect of glibenclamide on the changes in lipid and lipoprotein metabolism in patients with non-insulin dependent diabetes mellitus. Sulfonylureas stimulate insulin secretion from pancreatic B-cells and are widely used in the treatment of type 11 diabetes 7. This study investigated the effects of glibenclamide therapy on glycemic control, lipids and lipoprotein concentrations in non-insulin-dependent diabetic patients. Patients and Methods This study was conducted in the department of Pharmacology and Therapeutics, Basic Medical Sciences Institute, Jinnah Postgraduate Medical Centre, Karachi. Thirty NIDDM (type II) patients were initially recruited in the study, from the out-patients department of Baqai Diabetes and Endocrine Centre and two other diabetic Clinics of Karachi. The diagnosis of diabetes was made using World Health Organization criteria 8. Patients having no history of significant ketosis, to whom no previous antidiabetic medication had been given, or previous treatment consisted of diet and an oral hypoglycemic agent (Sulfonylurea) were included. The exclusion criteria were conditions requiring insulin treatment, significant renal, hepatic or thyroid disease by history, physical examination, or by laboratory evidence. Patients with severe diabetic complications, allergies to the sulfonylurea or concurrent medical illness needing immediate treatment were excluded. All hypoglycemic medications were discontinued at least 10 days prior to admission to the study, during that period patients were treated with individualized weight maintaining diets with caloric content adjusted to the patient s age, body weight and physical activity. After the 10 days period, selected patients with NIDDM received glibenclamide (Daonil) orally (each tablet of Daonil contains as active ingredient 5 mg glibenclamide) with diet control for 12 weeks. The initial dosage of glibenclamide was 5 mg/day taken half an hour before meal; this was increased by 5 mg per week and was adjusted according to the patient s tolerance to the drug and glycemic control. Dietary recall information was obtained by the dietitian and the patients were advised isocaloric weight maintaining diet consisting (as percent of calories) or 15-20% protein, 50-55% carbohydrate and 30-40% fat. This dietary programme was followed throughout the study and compliance to the diet was evaluated in the patient s follow-up visits. All patients were advised light exercise four to five times per week for 30-60 minutes. The study period was 12 weeks (90 days) with weekly patient s follow up visits. Alt patients were assessed for glycemic control by estimating 12 hours fasting blood glucose and were questioned on drug compliance, side effects of drug and symptoms related to hyperglycemia or any other unusual symptoms. Patients were also motivated to keep their nutritional habits, physical activity and general life style as constant as possible throughout the study period. Subjects were forbidden to take any other medication during the study. Fasting serum lipids, blood glucose and weight were determined at entrance (day 0) and a similar assessment was taken at day 90. Determination of blood glucose, lipids and lipoproteins Fasting blood glucose was determined by capillary blood with the Accutrend blood glucose analyzer (Boehringer Mannheim, Germany). Serum total cholesterol, triglycerides and high-density lipoprotein cholesterol were measured by the enzymatic colorimetric method by using kits Spinreact, S.A. Spain. Low-density lipoprotein cholesterol was calculated according to the Friedwald et a19 and very-lowdensity lipoprotein cholesterol according to formula proposed by Wilson, cited by DeLong et al 10. VLDL - cholesterol (mg/dl) = 0.20xtriglycerides Statistical Analysis All data are expressed as mean±sem. Groups of data were compared using student s paired t-test. Differences were considered to be significant if P<0.05.

Results Thirty patients were included in the trial, of which four were withdrawn due to non-compliance. The remaining 26 patients (14 male, 12 female) were studied, who had a mean age of 51.77±9.76 years. Their mean duration of diabetes was 2.84±1.41 years, and the body mass index of 27.7±1.7 kg/m2, which remained stable. Their dietary intake during the 12-weeks period of glibenclamide administration was kept constant. In the twenty six patients fasting blood glucose concentration declined from 221.53±7.84 to 165.02±5.12 mg/dl; this reduction was statistically highly significant (P<<0.001). Glibenclamide therapy significantly raised HDL-cholesterol from 33.60±1.00 to 37.07±1.05 mg/dl (P<0.05). While insignificant decrease was observed with glibenclamide therapy in fasting serum total cholesterol, serum total triglycerides, LDL-cholesterol and VLDLcholesterol concentrations, as depicted in Table. Discussion Diabetes is frequently associated with the combination of hypertrigyceridemia and low HDLcholesterol levels a known risk factor for cardiovascular disease 11 The results of Jenkins et al suggested that HDL is more important than the other lipoproteins in influencing atherosclerosis, this finding needs to be interpreted since there is a close metabolic interrelation between lipoprotein species. Recent epidemiological studies have elucidated the importance of individual lipoproteins in predicting future clinical coronary heart disease. High-density lipoproteins (HDLs) appear to exert the greatest influence independently of other lipoproteins, with low-density lipoproteins (LDLs) having a weaker, though still significant, independent relation with coronary heart disease. This correlates negatively

with HDL and positively with LDL, so probably HDL retards while LDL accelerates the development of clinical events 12. However, we attempted to study the effect of glibenclamide on lipids and NIDDM (type II) patients with glibenclamide significantly (P<0.05) increased the HDL cholesterol concentrations, though it remained below the desired level, It is apparent that these patients had unequivocal fasting hyperglycemia before therapy and that this was associated with elevated plasma triglyceride and reduced HDL-cholesterol concentrations. Recently, Frenais et al 13 reported an increased catabolism of HDL apoa-l to be completely responsible for the lower HDL concentrations in NIDDM with a pronounced diabetic dyslipidemia, hypertriglyceridemia and low MDL cholesterol and poor metabolic control when compared with non-diabetic subjects. This was the probable cause of a reduction in HDL-cholesterol in our study and the effects of glibenclamide therapy on niean HDLcholesterol concentrations remained modest in magnitude. The objective of this study was not to look at normlaization of HDL-cholesterol, but was to see any effect of glibenclamide on lipid profile. To gain further insight into the metabolic etiology of low HDL in NIDDM further studies are required. Information available on the effects of sulfonylurea therapy on lipoprotein concentrations in noninsulin-dependent diabetes mellitus is more limited. Greenfield et al 14 found that glipizide therapy significantly lowered total triglycerides. Ratzmann et al 15 showed no significant change in total cholesterol or triglyceride concentrations with glibenclamide therapy from that seen with diet alone. Howard et al also reported a slight trend towards alteration of high-density lipoprotein composition in their study 16. However, the effects on plasma low-density lipoprotein levels are more variable and range from no effect to a modest reduction. Again, in no case was there any tendency for low-density lipoprotein levels to rise during glibenclamide therapy 16-18. Similarly, Tamai et al 19 found no significant change in very-low-density lipoprotein or low-density lipoproteins values but did not report a decrease in high density lipoprotein cholesterol during Glibenclamide therapy. Although we observed a non-significant reduction in low density lipoprotein cholesterol in NIDDM patients. Clinically glibenclamide was well tolerated. No gastrointestinal complaints and no skin rashes or other side effects were noted; or reported in the present study over 12 weeks treatment. The purpose of the present study was to provide insight into the apparent controversy regarding the importance of effects of sulfonylurea drugs in their mediation of biologic effects/or on lipid and lipoprotein metabolism. The magnitude of the changes was small, and it is certainly not our intention to overemphasize the possible beneficial effects of glibenclamide in this regard. However, in view of these observations, we do feel that we can safely say that glibenclamide treatment did not have an adverse effect on either LDL or HDL cholesterol metabolism. However, we could find no evidence that glibenclamide led to changes in lipid metabolism that would be expected to increase the risk of CAD and atherosclerosis. Although the patients group in our study was small and not randomized, however, the results need to be confirmed in future studies. References 1. Romano G, Patti L, Innelli F, et al. Insulin and sulfonylurea therapy in NIDDM patients. Are the effects on lipoprotein metabolism diferent even similar blood glucose control? Diabetes, 1997;46:1601-6. 2. Jenkin AJ, Klein RL, Chassereau CN, et al. LDL from patients with well-controlled IDDM is not more susceptible to in vitro oxidation. Diabetes, 1996;45:662-67. 3. Wu MS. Johnston P, Shen WH, et al. Effect of metformin on carbohydrate and lipoprotein metabolism in NIDDM patients. Diabetes Care, 1990;13:1-8. 4. Howard By. Lipoprotein metabolism in diabetes mellitus. J. Lipid. Res. 1987;28:61 3-28.

5. Saltiel AR, Olefsky JM. Perspective in diabetes. Thiazolidinediones in the treatment of insulin resistance and type II diabetes. Diabetes, 1996;45:166669. 6. Pietzsch J, Julin U, Henefeld M. In vivo evidence for increased apolipoprotein A-I catabolism in subejcts with impaired glucose tolerance. Diabetes 1998;47:1928-34. 7. Gribble FM, Tucker Si, Seino S. et al. Tissue specificity of sulfonylureas. Studies on cloned cardiac and B-cell K AlP channels. Diabetes, 1998;47: 14 12-18. 8. World Health Organization. Diabetes mellitus: Report of a WHO study group. Geneva, World Health Organization, 1985, (Tech. Report series. 727). 9. Friedwald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma without use of preparative ultra cnetrifuge. Clin. Chem., 1972;18:490-502. 10. DeLong DM, DeLong ER, Wood PD, et al. A comparison of methods for the estimation of plasma low and very low-density lipoprotein cholesterol. JAMA., 1986,256:2372-77. 11. Okubo M, Murase T. Hypertriglyceridemia and low cholesterol in Japanese patients with NIDDM. Diabetes, 1996;46(Suppl 3):23-25. 12. Jenkins PJ, Harper RW, Nestel PJ. Severity of coronary atherosclerosis related to lipoprotein concentration. Br. Med. J., 1978;II:388-90. 13. Frenais R, Ouguerram K, Maugeais C, et al. High-density lipoprotein apolipoprotein Al kinetics in NIDDM: A stable isotope study. Diabetologia, 1997;40:578-83. 14. Greenfleld MS, Doberne L, Rosnethal M, et al. Lipid metabolism in non- insulin-dependent diabetes mellitus. Arch. Intem. Med., 1982; 142:1498-1500. 15. Ratzmann KP, Witt S, Schulz B. The effect of long-term glibenclamide treatment on glucose tolerance, insulin secretion and serum lipids in subjects with impaired glucose tolerance. Diabetes Metab., 1983;9:87-93. 16. Howard By, Xiaoren P, Harper I, et at. Effect of sulfonyurea therapy on plasma lipids and highdensity lipoprotein compostion in non-insulin dependent diabetes mellitus. Am. J. Med., 1985:79(Suppl.3B):78-85. 17. Falko JM, Osei K. Combination insulin/glyburide therapy in type 11 diabetes mellitus. Effects on lipoprotein metabolism and glucoregulation. Am. J. Med., 1985:79(suppl. 2B):92-101. 18. Hughes TA, Kramer JO, Segrest JP. Effects of glyburide therapy on lipoproteins in non-insulin dependent diabetes mellitus. Am. J. Med. 1985;79(suppl. 3B):86-91. 19. Tamai T, Nakai T, Yarnada S, et al. The effects of glibenclamide and insulin on plasma high-density lipoprotein in diabetes. Artery, (Abstract): 1982;9:477-93.