The use of Chiral Ketones /Aldehydes in the Asymmetric Epoxidation of Olefins. Somnath Bhattacharjee Michigan State University 12th January, 2005

Similar documents
Dr. Pere Romea Department of Organic Chemistry. Rouen Cathedral Claude Monet, Oxidations. Organic Synthesis.

5th International Conference on Advanced Engineering Materials and Technology (AEMT 2015)

Lecture 10. October 18, We are going to spend the first part of today s class going over the test.

A general depiction of olefin metathesis is shown below, where you have two olefins that literally switch partners:

Enediyne Chemistry. Wed. Night Group Meeting 12/5/2012 Chris Johnson

Synthesis of Tamiflu and its Phosphonate Congeners Possessing Potent Anti-Influenza Activity

Chapter 8 Lecture Reactions of Alkenes

Chapter 2. Direct and Enantioselective Conversion of Aliphatic Aldehydes to Terminal Epoxides

Chapter 19: Carboxylic Acid Derivatives: Nucleophilic Acyl Substitution 19.1: Nomenclature of Carboxylic Acid Derivatives (please read)

Catalytic Enantioselective Alkene Epoxidation using Novel Spirocyclic -Carbethoxy- Azabicyclo[3.2.1]Octanones

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007

Genome-wide association study of esophageal squamous cell carcinoma in Chinese subjects identifies susceptibility loci at PLCE1 and C20orf54

CHEM 203 HOMEWORK 4 Chemistry of Alkenes - II. Answer the above questions by writing a detailed mechanism for the conversion of A into lanosterol.

Pre-diagnostic cruciferous vegetables intake and lung cancer survival among Chinese women

Nucleophilic Addition to a p-benzyne Derived from an Enediyne: A New Mechanism for Halide Incorporation into Biomolecules

Chapter 20: Carboxylic Acid Derivatives: Nucleophilic Acyl Substitution

Catalyst Development

Enantioselective synthesis using crude enzymes

A facile synthesis of trans-alkenes in micellar media

Highly enantioselective Kochi Jacobsen Katsuki epoxidation

Nonenzymatic Dynamic Kinetic Resolution of Secondary Alcohols via Enantioselective Acylation: Synthetic and Mechanistic Studies

13. ORGANIC CHEMISTRY

Chapter 15 Alcohols, Diols, and Thiols

Novozymes Protease Products

Organic Chemistry. Chapter 23. Hill, Petrucci, McCreary & Perry 4 th. Ed. Alkane to Substituent Group methane CH 4 methyl CH 3

Electronic Supplementary Information. Quinine/Selectfluor Combination Induced Asymmetric Semipinacol Rearrangement of

Electronic Supplementary Information

Catalytic decarboxylative alkylation of β-keto acids with sulfonamides via the cleavage of carbon nitrogen and carbon carbon bonds

Hydrolyzed Octadecyltrichlorosilane Functionalized with Amino Acid as Heterogeneous Enantioselective Catalaysts

RESEARCH HIGHLIGHTS. Synthesis of Commodity Chemicals from Renewable Fatty Acids

A Little About the Chemistry of Peroxides

Review of literature Previously there is lot of work done on Sertraline hydrochloride a psychotic drugs undesired isomer recycling

Supporting Information for. An approach to hyperolactone C and analogues using late stage conjugate addition on an oxonium ylide-derived spirofuranone

Chapter 20 Carboxylic Acids. Introduction

Chem 105X Friday, Dec. 2, Chapter 10, Kotz Organic Chemistry

10/29/ Stability of Alkenes. Stability of Alkenes. Stability of Alkenes

Metathesis 12:54 PM 1

Chiral Squaramide Derivatives are Excellent Hydrogen Bond Donor Catalysts. Jeremiah P. Malerich, Koji Hagihara, and Viresh H.

Final Exam, Page 1 of 15. Your full signature

Nineteen-step Total Synthesis of (+) - Phorbol

Chemistry 261 Homework 3: Chapters 5, 6 Out: 11/20/17 Due: 11/30/17 Point Value: 9 points (7 EC points possible when combined with part I)

13. Carboxylic Acids (text )

EMPEROR'S COLLEGE MTOM COURSE SYLLABUS HERB FORMULAE II

Tetrahedron 63 (2007)

Gold(I)-Catalysed Dehydrative Formation of Ethers From Benzylic Alcohols and Phenols

Chapter 10. Carboxylic Acids and Derivatives. Naming Carboxylic Acids and Derivatives. Carboxylic Acids: RCOOH (RCO 2 H)

Two chiral centres (diastereoisomers)

Stereoselective C,C-bond formation. Cyclizations of biradicals*

SalenCo(OAc)/chiral ionic liquid catalyzed the asymmetric cycloaddition of CO 2 to epoxides

Novozymes Protease Products. Strem Chemicals, Inc. Storage

Alkenes are very useful in syntheses -they allow us to convert into many of the other types of functional groups.

Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2003 Chem. Eur. J Supporting Information. for

Ruthenium-Catalyzed C H Oxygenation on Aryl Weinreb Amides

This is an addition reaction. (Other types of reaction have been substitution and elimination). Addition reactions are typically exothermic.

Stereochemistry 1.1 INTRODUCTION

Copyright Wiley-VCH Verlag GmbH, D Weinheim, Angew. Chem

6.1 Cis Trans Isomers

Organic Chemistry II KEY February 27, 2017

Chapter 7 Carbohydrates

Rapid Detection of Milk Protein based on Proteolysis Catalyzed by Trypsinase

Ring-Closing Metathesis (RCM) and Ring- Opening Metathesis (ROMP)

From sugar unit A From sugar unit B From sugar unit C

Chapter 7 Structure and Synthesis of Alkenes. Introduction

Tamiflu : still needs

Are all-freeze cycles & frozen-thawed embryo transfers improving IVF outcomes?

Appropriate Quality regarde as

Chapter 12 Alkenes & Alkynes. Organic and BioChem

Hydrolytic transformations involving amide-, ester bonds are the easiest to perform

Radical Reduction of Aromatic Azides to Amines. with Triethylsilane

Divergent Construction of Pyrazoles via Michael Addition of N-Aryl Hydrazones to 1,2-Diaza-1,3-dienes

Enzymatic Approaches to Attaining Enantiomerically Pure Amino Acids

Alcohols, Phenols, Ethers And Thiols Lec:3

Total Synthesis of Platencin

Química Orgânica I. Hidrocarbonetos insaturados. Ciências Farmacêuticas Bioquímica Química. Terpenes: antiviral, antiseptic, anti-inflammatory.

Review of Biochemistry

Supporting Information. were prepared from commercially available ethyl acetoacetate by alkylation with the

MCPBA. Conversion of Cyclic Acetals to Hydroxy Esters by MCPBA Oxidation. MCPBA Oxidation, Cyclic Acetals, Hydroxy Esters.

Biotage Microwave Symposium

Supporting Information

Supporting Information

Impact of minor amounts of hydroperoxides on rhodiumcatalyzed hydroformylation of long-chain olefins

3.7A: Compounds with multiple stereocenters

Supplementary Materials for

SUPPORTING INFORMATION FOR. Regioselective Ring-opening and Isomerization Reactions of 3,4-Epoxyesters Catalyzed by Boron Trifluoride

Supporting Information. Excellent activity and selectivity of one-pot synthesized Cu-SSZ-13 catalyst

Oregon State University

Simple copper/tempo catalyzed aerobic dehydrogenation. of benzylic amines and anilines

Alkenes. Isomerism in the alkenes

Supplementary Information

Zn Mediated Regioselective Barbier Reaction of Propargylic Bromides in THF/aq. NH 4 Cl Solution

Student Handout. This experiment allows you to explore the properties of chiral molecules. You have

IR Spectroscopy Part II

SORACHAI SAE-LIM SORACHAI SAE-LIM

Supporting Information. Efficient copper-catalyzed Michael addition of acrylic derivatives with primary alcohols in the presence of base

ESTERS AND RELATED CARBOXYLIC ACID DERIVATIVES. Jack DeRuiter

Methodology for stereochemical control in bioactive natural product synthesis- new methods toward enediyne antitumor antibiotics

Effect of Chronic Aluminum Exposure on PKC, CaMK and Neurogranin in Hippocampus of Rat

Metathesis Reactions. Dr. Mishu Singh Department of Chemistry M.P.Govt P.G.College, Hardoi

Ch. 21: CARBOXYLIC ACID DERIVATIVES AND NUCLEOPHILIC ACYL SUBSTITUTION REACTIONS Nomenclature of Carboxylic Acid Derivatives:

New Catalytic Approaches to Produce Fuels from Algae

Transcription:

The use of Chiral Ketones /Aldehydes in the Asymmetric Epoxidation of lefins Somnath Bhattacharjee Michigan State University 12th January, 2005

Introduction

Sharpless Asymmetric Epoxidation 3 C C 2 (-)-diethyl tartrate Ti(-i-Pr) 4, t Bu (+)-diethyl tartrate Ti(-i-Pr) 4, t Bu 3 C Gao, Y.; anson, R. M.; Klunder, J. M.; Ko, S. Y.; Masamune,.; Sharpless, K. B. J. Am. Chem. Soc. 1987, 109, 5765. Rossiter, B. E.; Katsuki, T.; Sharpless, K. B. J. Am. Chem. Soc. 1981, 103, 464. (2R, 3R) 58% yield, 95% ee 3 C (2S, 3S) 70% yield, 92% ee

Jacobsen Asymmetric Epoxidation C 2 5 2 C Catalyst, 3 mol % C 2 5 2 C NaCl 81% yield, 87% ee. N + Mn PF 6 - N Chang, S.; Lee, N..; Jacobsen, E. N. J. rg. Chem. 1993, 58, 6939.

Dioxirane Catalyzed Epoxidation C 2 Cl 2-2 KS 5 + + Bu 4 NS 4 R 3 R 2 R 4 R 2 1 S 5 R 3 R 2 R 4 4 R 2 S 3 2 R 2 S 4 2 S 3 R 2 3 Schulz, M.; Liebsch, S.; Kluge, R.; Adam, W. J. rg. Chem. 1997, 62, 188. Curci, R.; Fiorentino, M.; Troisi, L.; Edwards, J..; Pater, R.. J. rg. Chem. 1980, 45, 4758.

Activities of Various ketones in Catalyzing in situ Epoxidation of trans-stilbene Catalyst xone/nac 3 C 3 CN/ 2 rt, p 7-7.5 R 2 catalyst 1 Catalyst Entry R 2 reaction time (min) 1. C 3 C 3 300 2. C 3 CF 3 < 4 3. C 3 C 2 F 20 4. CF 3 70 Yang, D.; Yip, Y. C.; Tang, M. W.; Wong, M.; Zheng, J.; Cheung, K. J. Am. Chem. Soc. 1996, 118, 491-492.

First Example of Ketone-Catalyzed Asymmetric Epoxidation Catalyst xone/nac 3 C 3 CN/ 2 rt, p 7-7.5 1 2 Me Entry ketone yield ee config. (equiv) (%) (%) F 3 C C 3 1. 1 (2.0) 60 11 (+)-(1R,2R) 2. 2 (1.0) 85 9.5 (+)-(1R,2R) 3. 3 (1.0) 82 13 (+)-(1R,2R) 4. 4 (1.0) 77 18 (+)-(1R,2R) CF 3 3 4 Catalyst Curci, R.; D' Accolti, L.; Fiorention, M.; Rosa, A. Tetrahedron Lett. 1995, 36, 5831. Adam, W.; Curci, R.; Edwards, J. Acc. Chem. Res. 1989,22, 205. Curci, R.; Fiorentino, M.; Serio, M. R. J. Chem. Soc., Chem. Commun. 1984, 155.

Chiral Ketones with C 2 Symmetry for Asymmetric Epoxidation

Asymmetric Epoxidation of Unfunctionalized lefins Catalyzed by Ketone 1 47% ee (-)-(S,S) 87% ee (-)-(S,S) 50% ee (+)-(S) Yang, D.; Yip, Y. C.; Tang, M. W.; Wong, M. K.; Zeng, J..; Cheung, K. K. J. Am. Chem. Soc. 1996, 118, 491-492.

The Spiro and Planar Transition States for the Dioxirane Epoxidation of lefins R' R R' R R' R xygen non-bonding orbital R' R xygen non-bonding orbital lefin π * orbital lefin π * orbital Spiro T.S Planar T.S Wang, Z.; Tu, Y.; Frohn, M.; Zhang, J.; Shi, Y. J. Am. Chem. Soc. 1997,119, 11224-11235.

Proposed Spiro Transition State for the epoxidation of trans olefins (S, S) A (R, R) B Spiro 1 Favored Spiro 2 disfavored Yang, D.; Wong, M.; Yip, Y.; Wang, X. Tang, M.; Zheng, J.; Cheung, K. J. Am. Chem. Soc. 1998, 120, 5943-5952.

Proposed Planar Transition State for the epoxidation of trans olefins (S, S) A (R, R) B Planar 1 favored Planar 2 disfavored Yang, D.; Wong, M.; Yip, Y.; Wang, X. Tang, M.; Zheng, J.; Cheung, K. J. Am. Chem. Soc. 1998, 120, 5943-5952.

Asymmetric Epoxidation of Unfunctionalized lefins Catalyzed by Ketones Catalyst xone/nac 3 C 3 CN/ 2 rt, p 7-7.5 (S, S) A 3 3' (R)-1 X X 1. X= 2. X= Cl 3. X= Br 4. X= I 5. X= C 2 C 3 Entry Catalyst yield (ee) (%) Config. 1. (R)-1 91 (47) (-)-(S,S) 2. (R)-2 95 (76) (-)-(S,S) 3. (R)-3 92 (75) (-)-(S,S) 4. (R)-4 90 (32) (-)-(S,S) 5. (R)-6 92 (66) (-)-(S,S) Yang, D.; Wang, X.; Wong, M., Yip, Y.; Tang, M. J. Am. Chem. Soc. 1996, 118, 11311-11312.

New Approaches for Asymmetric Epoxidation of trans lefin 10 mole % (S)-6 xone, K 2 C 3 DME- 2 C F F 1 Song 2 Denmark Catalyst Mol (%) Time (h) Temp ( o C) Yield (%) ee (%) 1 100 25 25 95 29 2 10 10 0 55-2 30 10 0 80 88 Song, C. E.; Lee, K. C.; Lee, S; Jin, B. W. Tetrahedron: Asymmetry. 1997, 8, 2921-2926. Denmark, S. E.; Wu, Z. Synlett 1999, 847-859.

ypothetical Transition Structures for Approach of Alkenes to Dioxirane of (-)-2 R b R' a R R' Me Me F F Denmark, S. E.; Matsuhashi,. J. rg. Chem. 2002, 67, 3479-3486.

Behar s Approach to Improve the Enantioselectivity for Asymmetric Epoxidation F F R 2R1 3 Denmark Behar 4., R 2, R 3, R 4 = 5., R 3, R 4 =, R 2 = F 6., R 3 =, R 2, R 4 = F 7., R 2, R 3 = F, R 4 = 8., R 2, R 3, R 4 = F R 4 R 3 Catalyst Mol (%) Time (h) Temp ( o C) Yield (%) ee (%) 3. 30 10 0 80 88 4. 10 4-15 35 46 5. 10 4-15 57 80 6. 10 3.5-15 100 86 7. 10 3.5-15 100 83 8. 10 3.5-15 32 40 Stearman, J. C.; Behar, V. Tetrahedron. Lett. 2002, 43, 1943-1946.

Summary F R 3 F 1 Song Behar 3 Cl F F (R)-3 3' Cl 2 Denmark

Fructose-derived Chiral Ketones for Epoxidation

Fructose-derived Ketone Catalyst for the Asymmetric Epoxidation of trans Stilbene xone, 2 -C 3 CN p 7-7.5 1 d entry Time (h) Isolated Yield (%) ee (%) 1. 1 31 > 95 2. 2 39 > 95 3. 3 40 89 4. 4 47 85 Wang, Z.; Tu, Y.; Frohn, M.; Zhang, J.; Shi, Y. J. Am. Chem. Soc. 1997,119, 11224-11235.

Possible Reaction Pathway of Ketone 1 R 3 R 2 S 5 R 2 R 3 1 4 Baeyer-Villiger Reaction S 3 2 2 S 4 S 3 + 3 5 6 ydrolysis Wang, Z.; Tu, Y.; Frohn, M.; Zhang, J.; Shi, Y. J. Am. Chem. Soc. 1997,119, 11224-11235.

Baeyer-Villiger Reaction R 2 2 R ' R R ' Mechanism 2 R R ' R R' G 2 R R ' Example 2 2 F + F F 71% E 29% F Renz, M.; Meunier, B.; Eur. J. rg. Chem. 1999, 737 Crudden, C. M.; Chen, A. C.; Calhoun, L. A.Angew. Chem., Int. Ed. 2000, 39, 2852

Effect of p in Ketone Catalyzed Epoxidation xone, 2 -C 3 CN p 7-7.5 R 3 R 2 S 5 Catalyst 1 R 3 R 2 4 1 Baeyer-Villiger Reaction S 3 2 2 S 4 p 7-7.5 p 10.5-11.5 entry Time (h) Yield (ee) (%) Yield (ee)(%) 1. 4 47 (85) 86 (>95) S 3 3 + 5 6 ydrolysis Frohn, M.; Wang, Z.; Shi, Y. J. rg. Chem. 1998, 63, 6425-6426.

Approaches to Circumvent Baeyer-Villiger Reaction 4 2 mcpba + 1 2 3 major Ac Ac 4 5 Epoxidation by catalyst 5 Entry Substrate Yield (%) ee (%) config. 1. 2. 3. 4. 5. Et C 2 Et C 2 Et C 2 Et C 2 Et C 2 Et 73 96 (+)-(2S,3R) 91 93 (+) 64 82 (+) 77 89 (+) 96 94 (+) 6. C 2 Et 84 44 (-)-(2S,3S) Wu, X.; She, X.; Shi, Y. J. Am. Chem. Soc. 2002, 124, 8792-8793.

Comparison Between Ketones 1 and 5 Ac Ac 1 5 Ketone 1 Ketone 5 Entry Substrate Yield (ee) (%) Yield (ee) (%) config. 1. 94 (95.5) 81 (83) (R, R) 2. 85 (97.9) 67 (96) (R, R) 3. TBS 87 (94) 73 (94) (R, R) Me 4. 80 (93) (R, R) 89 (95.5) 5. 94 (98) 93 (92) (R, R) Tian,.; She, X.; Shi, Y. rganic Lett. 2001, 3, 715-718

Transition State Analysis for the Epoxidation of trans lefin by Ketone 1 Catalyst xone/nac 3 C 3 CN/ 2 rt (R, R) (R, R) Spiro 1 Favored 1 Planar 1 disfavored Spiro 2 disfavored (S, S) 2 Planar 2 Favored Tu, Y.; Wang, Z.' Shi, Y. J. Am. Chem. Soc. 1996, 118, 9806-9807.

Asymmetric Epoxidation of Trisubstituted lefin by Ketone 1 xone, R R 3 3 2 -C 3 CN R 1 R 2 R 2 p 11, catalyst 1 (catalyst) Entry Substrate Yield (%) ee (%) Config. 1. 2. 89 96.8 (R,R) 93 76.4 (+)-(R) 3. 89 95.5 (+)-(R,R) Wang, Z.; Tu, Y.; Frohn, M.; Zhang, J.; Shi, Y. J. Am. Chem. Soc. 1997, 119, 11224-11235.

Transition State Analysis for the Epoxidation of Trisubstituted lefins xone, R R 3 3 2 -C 3 CN R 1 R 2 R 2 p 11, catalyst 1 (catalyst) R 3 R 2 Spiro 1 Favored R 2 R3 Spiro 2 disfavored R 3 R 2 R 1 Major 1 R 3 R 2 Planar 1 disfavored R 1 R 2 R 3 Planar 2 disfavored Wang, Z.; Tu, Y.; Frohn, M.; Zhang, J.; Shi, Y. J. Am. Chem. Soc. 1997, 119, 11224-11235.

Transition State Analysis for the Epoxidation of Trisubstituted lefin by Ketone 1 xone, R R 3 3 2 -C 3 CN R 1 R 2 R 2 p 11, catalyst 1 (catalyst) R 3 R 2 R 3 Spiro 4 disfavored R 2 R 3 Spiro 3 disfavored R 3 R 2 Planar 3 disfavored minor R 2 R 3 Planar 4 Favored R2 Wang, Z.; Tu, Y.; Frohn, M.; Zhang, J.; Shi, Y. J. Am. Chem. Soc. 1997, 119, 11224-11235.

Effects of the Size of Substituents on Enantioslectivity R 3 R 3 R 2 R R 2 1 Major R 3 R 2 minor R 3 R2 Spiro 1 Effect of the size of Planar 4 26% ee 79% ee 81% ee Effect of the size of R 3 ee increases as the size of decreases C 10 21 86.5% ee 91% ee ee increases as the size of R 3 increase Wang, Z.; Tu, Y.; Frohn, M.; Zhang, J.; Shi, Y. J. Am. Chem. Soc. 1997, 119, 11224-11235.

Epoxidation of cis and Terminal lefins by Ketone 1 Entry Subtrate Yield (%) ee (%) Config. 1 (catalyst) 1. 2. 3. 92 12 (-)-(1S,2R) 43 61.4 (+)-(R,R) 90 24.3 (+)-(R) 4. C 8 17 92 17 (+)-(R) 5. 95 19.6 (-)-(S) Wang, Z.; Tu, Y.; Frohn, M.; Zhang, J.; Shi, Y. J. Am. Chem. Soc. 1997,119, 11224-11235.

Transition State Analysis for cis and Terminal lefins cis lefin Terminal lefins R 2 R 3 1 spiro 1 Spiro 3 Planar 3 R 3 R 2 2 spiro 2 Spiro 4 Planar 4 Wang, Z.; Tu, Y.; Frohn, M.; Zhang, J.; Shi, Y. J. Am. Chem. Soc. 1997, 119, 11224-11235.

Summary Advantages: Enantioselctivity is high for trans and tri substitued olefins. Disadvantages: Enantioselectivity is very low for cis and terminal olefins. 1 Ac Ac Effective catalyst for elctron deficient olefins. 5

Transition State Analysis to Design new Catalyst for cis lefins Me Me Spiro 1 Spiro 2 X Y Me X Y Me Spiro 3 Spiro 4 Tian,.; She, X.; Shu, L.; Yu,.; Shi, Y. J. Am. Chem. Soc. 2000, 122, 11551-11552.

6, xone Fructose-derive new Catalyst for the Epoxidation of cis lefins Up to 97% ee Entry Substrate Yield (%) ee (%) Config. 1. 87 91 (-)-(1R,2S) Boc N 6 2. 91 92 (-)-(1R,2S) 3. 77 91 (-)-(5R,6S) 4. 82 91 (-)-(2S,3R) 5. 61 97 (+) Tian,.; She, X.; Yu,.; Shu, L.; Shi, Y. J. rg. Chem. 2002, 67, 2435-2446

Transition State Analysis for the Epoxidation of cis lefins NBoc Ar R NBoc R Ar Spiro 1 Spiro 2 NBoc NBoc R Ar Ar R Planar 1 Planar 2 Tian,.; She, X.; Yu,.; Shu, L.; Shi, Y. J. rg. Chem. 2002, 67, 2435-2446

Catalyst 6 for the Epoxidation of Terminal lefins R 6, xone R Up to 85 % ee Entry Substrate Yield (%) ee (%) Config. 1. 100 81 (-)-(R) 2. 86 84 (-)-(R) Boc N 6 3. 93 71 (-) NBoc NBoc NBoc Spiro 1 Spiro 2 Planar 1 Tian,.; She, X.; Shi, Y. rg. lett. 2001, 5, 1929-1931.

Comparison Between Ketone Catalysts 1 and 6 Entry Substrate ketone Yield (ee) (%) 1. 1 32 [85] Boc N 6 6 81 [81] 2. 1 43 [61] 6 97 [61] 3. 1 24 [24] 6 81 [92] 4. 1 95 [98] 1 6 42 [68] 5. 1 95 [98] 6 80 [55] 6. 1 98 [85] 6 96 [67] 7. 1 94 [95.5] 6 100 [88]

N-aryl Substituted xazolidinone for the Epoxidation of lefins 7 N X Entry Ketone yield (ee) (%) yield (ee) (%) 1. 7a 71 (83) (2R,3S) 56 (80) (R) 2. 7b 60 (84) (2R,3S) 60 (80) (R) 3. 7c 72 (90) (2R,3S) 61 (80) (R) 7a, X = p-me 7b, X = p-me 7c, X = p-mes 2 7d, X= p-n 2 7e, X = o-n 2 4. 7d 55 (90) (2R,3S) 30 (79) (R) 5. 7e 59 (78) (2R,3S) 55 (62) (R) X N X X N N Spiro 1 Favored Spiro 2 Planar 1 Shu, L.; Wang, P.; Gan, Y.; Shi, Y. rg. lett. 2003, 3, 293-296.

N-aryl Eubstituted xazolidinone for the Epoxidation of cis lefins Ketone 3a Ketone 3b Entry Substrate Conv. (ee) (%) Conv. (ee) (%) 1. 99 (84) 100 (90) N Catalyst X 2. 3. Me Me 86 (88) 80 (92) 94 (91) 100 (93) 3a, X= Me 3b, X= S 2 Me 4. 5. X X= Me 100 (88) 96 (92) X=F 99 (87) 100 (91) X=N 2 86 (98) 91 (97) Me Me 72 (92) 100 (97) 6. Me 75 (91) 97 (96) 7. Me Me Me 97 (91) 100 (94) Shu, L.; Shi, Y. Tetrahedron Lett. 2004, 45, 8115-8117.

Possible Transition State N Me Y X N Me Y X Spiro 1 Favored Spiro 2 Edge-tilted-T Shu, L.; Wang, P.; Gan, Y.; Shi, Y. Tetrahedron. lett. 2004, 3, 8115-8117.

Summary R N 6 Effective catalyst for cis and Terminal olefins R= Boc, X

ydrogen Peroxide as Primary xidant Instead of Potassium Peroxomonosulfate (KS 5 ) R 2 R 3 2 2 C 3 CN-K 2 C 3 R 2 R 3 1, catalyst R 2 R 3 R 3 R 2 1 3 C N N 4 2 C 3 C 3 CN + 2 2 N 3 C 5 3 C N 2 N 3 C 3 Shu, L.; Shi, Y. Tetrahedron, 2001, 57, 5213-5218.

Comparison Between 2 2 and KS 5 as xidant R 2 R 3 1 2 2 C 3 CN-K 2 C 3 R 2 R 3 2 2 KS 5 Entry Substrate Yield (ee) (%) Yield (ee) (%) 1. 2. 93 (92) 90 (98) 94 (96) 85 (98) 3. 94 (95) 89 (96) 4. 94 (98) 94 (98) 5. 88 (89) 98 (95) Shu, L.; Shi, Y. Tetrahedron, 2001, 57, 5213-5218

First Reported Chiral Aldehydes for the Epoxidation of lefins Entry Substrate Catalyst yield (ee) (%) Config. 2 C Bn 1 C Bn, KS 5 C 3 CN, 0 o C, 2h p 10.5 C 3 4 1. 2 16 (63.5) (R,R) 2. 3 54 (93.5) (R,R) 3. 4 31 (39) (R,R) 4. 5. 2 3 8 (81) 8 (92) (R) (R) 6. 4 4 (36) (R) 7. 2 14 (70) (R,R) 8. 2 28 (48) (R,R) 9. 3 12 (67) (R,R) 10 2 50 (18) (S) 11. 3 36 (18) (S) Bez, G.; Zhao, C. Tetrahedron Letter, 2003, 44, 7403-7406.

Transition State Analysis 2 C Bn C 3 4 Favored (R,R) Disfavored (S,S) Bez, G.; Zhao, C. Tetrahedron Letter, 2003, 44, 7403-7406.

Conclusion Advantages 1. igh catalytic activity of ketone catalyst was achieved. 2. igh level of enantioselectivity was achieved. Disadvantages 1. Broad generality of substrates couldn t be achieved.

Acknowledgement Prof. Babak Borhan Prof. W.. Reusch Prof. J. E. Jackson Prof. W. D. Wulff Chrysoula, Courtney, Dan, Jennifer, Jun, Marina, Montserrat, Stewart, Tao, Shang Vijay, Keith