Silencing Dicer expression enhances cellular proliferative and invasive capacities in human tongue squamous cell carcinoma

Similar documents
RNA extraction, RT-PCR and real-time PCR. Total RNA were extracted using

Long noncoding RNA linc-ubc1 promotes tumor invasion and metastasis by regulating EZH2 and repressing E-cadherin in esophageal squamous cell carcinoma

Long noncoding RNA CASC2 inhibits metastasis and epithelial to mesenchymal transition of lung adenocarcinoma via suppressing SOX4

Advances in Computer Science Research, volume 59 7th International Conference on Education, Management, Computer and Medicine (EMCM 2016)

LncRNA LET function as a tumor suppressor in breast cancer development

KDR gene silencing inhibits proliferation of A549cells and enhancestheir sensitivity to docetaxel

mir-26a inhibits invasion and metastasis of nasopharyngeal cancer by targeting EZH2

Effects of metallothionein-3 and metallothionein-1e gene transfection on proliferation, cell cycle, and apoptosis of esophageal cancer cells

LncRNA NKILA suppresses colon cancer cell proliferation and migration by inactivating PI3K/Akt pathway

Supplemental information

Effect of Survivin-siRNA on Drug Sensitivity of Osteosarcoma Cell Line MG-63

Berberine Sensitizes Human Ovarian Cancer Cells to Cisplatin Through mir-93/ PTEN/Akt Signaling Pathway

Downregulation of serum mir-17 and mir-106b levels in gastric cancer and benign gastric diseases

Mir-595 is a significant indicator of poor patient prognosis in epithelial ovarian cancer

microrna-200b and microrna-200c promote colorectal cancer cell proliferation via

Expression of long non-coding RNA linc-itgb1 in breast cancer and its influence on prognosis and survival

Annals of Oncology Advance Access published January 10, 2005

Ephrin receptor A2 is an epithelial cell receptor for Epstein Barr virus entry

Supplementary data Supplementary Figure 1 Supplementary Figure 2

RESEARCH COMMUNICATION. sirna Mediated Silencing of NIN1/RPN12 Binding Protein 1 Homolog Inhibits Proliferation and Growth of Breast Cancer Cells

Low levels of serum mir-99a is a predictor of poor prognosis in breast cancer

Long noncoding RNA DARS-AS1 acts as an oncogene by targeting mir-532-3p in ovarian cancer

Profiles of gene expression & diagnosis/prognosis of cancer. MCs in Advanced Genetics Ainoa Planas Riverola

p47 negatively regulates IKK activation by inducing the lysosomal degradation of polyubiquitinated NEMO

CircHIPK3 is upregulated and predicts a poor prognosis in epithelial ovarian cancer

Original Article Differential expression profile analysis of mirnas with HER-2 overexpression and intervention in breast cancer cells

microrna Presented for: Presented by: Date:

The effect of insulin on chemotherapeutic drug sensitivity in human esophageal and lung cancer cells

Supplementary Data. Supplementary Methods:

Influence of RNA Interference Targeting Rab5a on Proliferation and Invasion of Breast Cancer Cell Line MCF-7

PUMA gene transfection can enhance the sensitivity of epirubicin-induced apoptosis of MCF-7 breast cancer cells

Type of file: PDF Size of file: 0 KB Title of file for HTML: Supplementary Information Description: Supplementary Figures

Effect of ABCE1-silencing gene, transfected by electrotransfer, on the proliferation, invasion, and migration of human thyroid carcinoma SW579 cells

Supplementary Fig. 1. Identification of acetylation of K68 of SOD2

Supplementary Figure 1. HOPX is hypermethylated in NPC. (a) Methylation levels of HOPX in Normal (n = 24) and NPC (n = 24) tissues from the

Original Article Long non-coding RNA PANDAR overexpression serves as a poor prognostic biomarker in oral squamous cell carcinoma

Effect of lncrna LET on proliferation and invasion of osteosarcoma cells

Safranal inhibits the migration and invasion of human oral squamous cell carcinoma cells by overcoming epithelial-mesenchymal transition.

Cellular Physiology and Biochemistry

HEK293FT cells were transiently transfected with reporters, N3-ICD construct and

CircMTO1 inhibits cell proliferation and invasion by regulating Wnt/β-catenin signaling pathway in colorectal cancer

Li et al. Journal of Experimental & Clinical Cancer Research (2018) 37:108

An epithelial-to-mesenchymal transition-inducing potential of. granulocyte macrophage colony-stimulating factor in colon. cancer

Epstein-Barr virus driven promoter hypermethylated genes in gastric cancer

SUPPLEMENT. Materials and methods

Long non-coding RNA UCA1 regulates the proliferation, migration and invasion of human lung cancer cells by modulating the expression of microrna-143

Supplementary Materials and Methods

Effect of sirna targeting EZH2 on cell viability and apoptosis of bladder cancer T24 cells

MiR-508-5p is a prognostic marker and inhibits cell proliferation and migration in glioma

m 6 A mrna methylation regulates AKT activity to promote the proliferation and tumorigenicity of endometrial cancer

Decreased expression of mir-490-3p in osteosarcoma and its clinical significance

mir-542-3p targets sphingosine-1-phosphate receptor 1 and regulates cell proliferation and invasion of breast cancer cells

Effects of AFP gene silencing on Survivin mrna expression inhibition in HepG2 cells

Increased expression of the lncrna BANCR and its prognostic significance in human osteosarcoma

Overexpression of long-noncoding RNA ZFAS1 decreases survival in human NSCLC patients

Mir-138-5p acts as a tumor suppressor by targeting pyruvate dehydrogenase kinase 1 in human retinoblastoma

(A) PCR primers (arrows) designed to distinguish wild type (P1+P2), targeted (P1+P2) and excised (P1+P3)14-

Supplementary Information and Figure legends

Effect of starvation-induced autophagy on cell cycle of tumor cells

Marine Streptomyces sp. derived antimycin analogues. suppress HeLa cells via depletion HPV E6/E7 mediated by

MTC-TT and TPC-1 cell lines were cultured in RPMI medium (Gibco, Breda, The Netherlands)

Circular RNA_LARP4 is lower expressed and serves as a potential biomarker of ovarian cancer prognosis

Original Article Increased expression of lncrna HULC indicates a poor prognosis and promotes cell metastasis in osteosarcoma

mirna Dr. S Hosseini-Asl

Supplemental Materials. STK16 regulates actin dynamics to control Golgi organization and cell cycle

Original Article High serum mir-203 predicts the poor prognosis in patients with pancreatic cancer

LncRNA RGMB-AS1 is activated by E2F1 and promotes cell proliferation and invasion in papillary thyroid carcinoma

Long non-coding RNA XLOC_ correlates with poor prognosis and promotes tumorigenesis of hepatocellular carcinoma

Clinical significance of serum mir-21 in breast cancer compared with CA153 and CEA

MicroRNA 761 is downregulated in colorectal cancer and regulates tumor progression by targeting Rab3D

Expression of mir-1294 is downregulated and predicts a poor prognosis in gastric cancer

Evaluation of altered expression of mir-9 and mir-106a as an early diagnostic approach in gastric cancer

B16-F10 (Mus musculus skin melanoma), NCI-H460 (human non-small cell lung cancer

Electronic Supplementary Information. Direct chemiluminescence detection of circulating. micrornas in serum samples using a single-strand specific

HCC1937 is the HCC1937-pcDNA3 cell line, which was derived from a breast cancer with a mutation

MicroRNA 98 suppresses cell growth and invasion of retinoblastoma via targeting the IGF1R/k Ras/Raf/MEK/ERK signaling pathway

The lncrna MIR4435-2HG is upregulated in hepatocellular carcinoma and promotes cancer cell proliferation by upregulating mirna-487a

Downregulation of microrna-196a inhibits human liver cancer cell proliferation and invasion by targeting FOXO1

Expression of mir-146a-5p in patients with intracranial aneurysms and its association with prognosis

Long non coding RNA GAS5 suppresses pancreatic cancer metastasis through modulating mir 32 5p/PTEN axis

Original Article Increased LincRNA ROR is association with poor prognosis for esophageal squamous cell carcinoma patients

NF-κB p65 (Phospho-Thr254)

Research on the inhibitory effect of metformin on human oral squamous cell carcinoma SCC-4 and CAL-27 cells and the relevant molecular mechanism.

Regulatory role of microrna184 in osteosarcoma cells

The inhibitory effect of mir-375 targeting sp1 in colorectal cancer cell proliferation

http / /cjbmb. bjmu. edu. cn Chinese Journal of Biochemistry and Molecular Biology A431 . Western aza-dC FUT4-siRNA

Original Article B7-H3 repression by mir-539 suppresses cell proliferation in human gliomas

(a) Significant biological processes (upper panel) and disease biomarkers (lower panel)

Argininosuccinate synthetase 1 suppression and arginine restriction inhibit cell

Epithelial interleukin-25 is a key mediator in Th2-high, corticosteroid-responsive

Original Article TRAF4 promotes the growth and invasion of colon cancer through the Wnt/β-catenin pathway

Bmi-1 regulates stem cell-like properties of gastric cancer cells via modulating mirnas

Original Article Notch1 regulates proliferation and invasion in gastric cancer cells via targeting Fascin1

SUPPLEMENTARY INFORMATION

Chronic Diseases Prevention Review 5 (2018) 19-24

Human Urokinase / PLAU / UPA ELISA Pair Set

Highly expressed microrna-124 inhibits migration and promotes apoptosis of esophageal cancer cells by degrading PDCD6

CytoSelect Tumor- Endothelium Adhesion Assay

Overexpressing exogenous S100A13 gene and its effect on proliferation of human thyroid cancer cell line TT

Islet viability assay and Glucose Stimulated Insulin Secretion assay RT-PCR and Western Blot

Transcription:

ONCOLOGY REPORTS 31: 867-873, 2014 Silencing Dicer expression enhances cellular proliferative and invasive capacities in human tongue squamous cell carcinoma SHUGUANG ZENG 1*, JING YANG 1*, JIANJIANG ZHAO 1, QICAI LIU 2, MINGDENG RONG 1, ZEHONG GUO 1 and WENFENG GAO 1 1 Stomatological Hospital of Guangdong Province Affiliated to Southern Medical University, Guangzhou, Guangdong 510280; 2 Department of Molecular Biology, Guangzhou Medical College, Guangzhou, Guangdong 510120, P.R. China Received September 20, 2013; Accepted November 11, 2013 DOI: 10.3892/or.2013.2903 Abstract. micrornas (mirnas) are aberrantly expressed in cancer. An enzyme essential for mirna processing is Dicer, whose expression is deregulated in diverse types of cancer and correlates with tumor progression. However, whether the regulation of Dicer expression affects tongue squamous cell carcinoma is unknown. In the present study, we investigated how silencing the expression of Dicer alters cell proliferation, cell cycle patterns, and cell migration and invasion in the Tca-8113 tongue squamous cell carcinoma cell line. Dicer expression levels were determined using quantitative PCR and western blot analysis in normal oral gingival epithelial cells and in two tongue squamous cell carcinoma lines, Tca-8113 and UM-1. Tca-8113 cells were transfected with Dicer sirna or a negative control sirna. Cell proliferation was determined using the MTT assay and the cell cycle was examined using flow cytometry. Cell migration and invasion changes were evaluated using wound-healing, adherence and Transwell assays. Dicer was expressed at lower levels in the tongue squamous cell carcinoma cell lines Tca-8113 and UM-1 compared to normal gingival epithelial cells, and less Dicer was expressed in UM-1 cells compared to Tca-8113 cells. Notably, Tca-8113 cells transfected with Dicer sirna had significantly higher proliferative and invasive abilities than cells transfected with the negative control sirna or nontransfected cells. Silencing Dicer may promote the progression of tongue squamous cell carcinoma. Dicer could serve a promising biomarker and a potential therapeutic target for tongue squamous cell carcinoma. Correspondence to: Professor Shuguang Zeng or Professor Jianjiang Zhao, Guangdong Provincial Stomatological Hospital Affiliated to Southern Medical University, 366 Jiangnan Da Dao, Guangzhou 510280, P.R. China E-mail: sunrisez@tom.com E-mail: zjj2521@sina.com * Contributed equally Key words: Dicer, carcinoma, tongue, squamous cell, proliferation, invasion Introduction micrornas (mirnas) are small non-coding RNAs (~22 nt) that regulate the expression of target genes by promoting RNA cleavage or inhibiting RNA translation. Dicer, a key member of the RNase III family, is an essential component of the mirna-processing machinery in the cytoplasm in which the precursors of mirnas are processed by Dicer into mature mirnas (1). The abnormal expression of mirnas is associated with the development and progression of cancer (2,3). Dicer is aberrantly expressed in different types of cancer, and, being an upstream regulator of mirnas, Dicer may affect the behavior of cancer by altering the expression spectrum of mirnas. The mirna expression spectrum varies with cancer types, although in most types of cancer mirnas are globally downregulated (4). However, whether the reduction in mirna expression promotes cancer development or merely reflects the state of undifferentiated tumors is unclear. Markedly, tumor behaviors have been reported to be altered after silencing Dicer expression in vitro (5,6), but little evidence is available regarding the expression patterns of Dicer in tongue squamous cell carcinoma or the influence of knocking down Dicer expression on this type of cancer. In the present study, we first compared Dicer protein and mrna expression between 2 carcinoma cell lines, Tca-8113 (7,8) and UM-1 (8,9) and normal gingival epithelial cells. We found that Dicer protein levels were lower in the carcinoma cells than in normal cells, and that Dicer expression was the lowest in the highly aggressive UM-1 cancer cells. Thus, we knocked down the expression of Dicer in Tca-8113 cells using sirna transfection in vitro to investigate how disrupting Dicer-dependent maturation of mirnas affects cell proliferation, cell cycle patterns and cell migration and invasion to affect cancer development. Materials and methods Cell culture and sirna transfection. Normal gingival epithelial cells were purchased from the American Type Culture Collection (ATCC; Manassas, VA, USA). Tca-8113 and UM-1 were kindly provided by Dr AnXun Wang (The First Hospital Affiliated with Sun Yat-Sen University, Guangzhou, China). Cells were grown in minimal essential medium containing

868 ZENG et al: SILENCING DICER PROMOTES CANCER CELL PROLIFERATION dimethyl sulfoxide (DMSO); media used were MEM for normal gingival epithelial cells, RPMI-1640 for Tca-8113 cells, and DMEM for UM-1 cells, all supplemented with 10% fetal bovine serum (FBS; Gibco). Dicer sirna and negativecontrol sirna were synthesized by Shanghai Jima Co. (Shanghai, China). The target sequences for Dicer sirna were: 5'-GCCAAGGAAAUCAGCUAAATT-3' and 5'-UUUAGCU GAUUUCCUUGGCTT-3'. The negative-control sirna sequences were: 5'-UUCUCCGAACGUGUCACGUTT-3' and 5'-ACGUGACACGUUCGGAGAATT-3'. One day before transfection, Tca-8113 cells were re-plated in 6-well plates to obtain 50-80% confluence on the day of transfection. A complex of sirnas (100 nm) and 5 µl Lipofectamine RNAiMAX reagent (Invitrogen) was added into each well according to the manufacturer's instructions. Transfection efficiency was estimated 6 h later using fluorescence microscopy. Transfections were performed in triplicate for each treatment. Real-time quantitative PCR analysis. Total RNA was extracted using TRIzol reagent (following the manufacturer's instructions; Invitrogen) from normal gingival epithelial cells, Tca-8113 cells, UM-1 cells and 3 groups of Tca-8113 cells: cells transfected with Dicer-siRNA and negative-control sirna and non-transfected cells. From the total RNA, cdnas were synthesized using the Takara PrimeScript RT reagent (Perfect Real-Time kit) under reaction systems for 500 ng and 10 µl. The qpcr primer sequences used in the study were: Dicer forward primer, 5'-TGTGGGGAGAGGGCTGCTCA-3' and reverse primer, 5'-GGCACAGGGCCTTTTCCCGA-3'; GAPDH forward primer, 5'-AAGGTGAAGGTCGGAGTCA AC-3' and reverse primer, 5'-GGGGTCATTGATGGCAACA ATA-3'. GAPDH was used as an internal control. PCR was performed in triplicate in a total reaction volume of 20 µl, which included 10 µl of the 2X reaction mix, 0.4 µl of 50X Rox, 3 µl of primer (2 µm), 5.6 µl of water and 1 µl of cdna, with SYBR Premix Ex Taq kit. The PCR protocol used involved denaturation for 30 sec at 95 C, followed by amplification for 40 cycles, each cycle consisting of 5 sec at 95 C, 30 sec at 56 C and 30 sec at 72 C. The median in each triplicate was used to calculate the relative Dicer expression level using the comparative ΔCt method [value of 2 -ΔCt (Dicer or GAPDH) ]; fold changes in expression were calculated using 2 -ΔΔCt. Western blotting. Total proteins were extracted from normal gingival epithelial cells, Tca-8113 cells, UM-1 cells and the 3 groups of Tca-8113 cells (transfected with Dicer-siRNA and negative-control sirna and non-transfected) after transfection for 24 and 48 h. Cells were washed thrice with phosphatebuffered saline (PBS) before being lysed on ice in 50 µl 1X extraction buffer prepared fresh. Following centrifugation for 10 min, supernatants were collected and aliquots were withdrawn for detecting proteins using Micro BCA protein assay reagent kit according to the manufacturer's instructions. SDS-PAGE (10% gels) was used to resolve proteins (40 µg/lane), which were transferred electrophoretically for 2 h to polyvinylidene difluoride membranes. Membranes were blocked for 1 h in PBS-Tween (0.1%) containing 5% non-fat milk, probed overnight at 4 C with primary antibodies (rabbit anti-human Dicer, 1:500; Sigma, St. Louis, MO, USA), and then incubated for 1 h with secondary antibodies (goat antirabbit IgG, 1:1,000; Wuhan Boster Biological Technology, Ltd., Wuhan, China) for visualizing protein bands using enhanced chemiluminescence. Results shown are representative from experiments repeated at least twice. Immunohistochemical staining. Dicer was labeled in normal gingival epithelial cells, Tca-8113 and UM-1 cells that had reached 80% confluence. Labeling with anti-human Dicer (Sigma) and secondary anti-rabbit IgG (Wuhan Boster Biological Technology) was according to the manufacturer's protocols using the SV-002 2-step-method Immunohistochemistry kit. MTT assay. Cells were plated in 96-well plates at a density of 2,000 cells/well in 100 µl of culture medium and maintained until they adhered before carrying out transfections. After transfection with sirnas at 37 C for 4 h, cells were incubated with 20 µl of MTT solution (5 mg/ml) for 24 and 48 h. At the end of the incubation, media were aspirated, 200 µl of DMSO was added to each well and the absorbance at 570 nm was measured. Mean absorbance from 3 replicate wells was determined, and cell viability was defined as (absorbance of treated cells)/(absorbance of control cells). Cell cycle analysis. The 3 groups of cells were harvested 24 h after transfection with sirna; cells were fixed overnight with 70% cold ethanol, washed twice with cold PBS, and then incubated in RNase A (10 mg/ml) for 1 h at 37 C. Propidium iodide (PI) 100 µg/ml was added and mixed for 30 min and then the cells were used for flow cytometric analysis. Cell adhesion test, Erasion Trace test and Transwell cellinvasive assay. Matrigel (50 µl) diluted with RPMI-1640 (1:5) was added to 96-well plates and maintained at 4 C overnight. The next day, plates were sealed at 37 C for 1 h after replacing the fluid in the wells with 100 µl of RPMI-1640 containing 1% BSA. Experimental and control cells were plated without serum in the wells and incubated for 1 h, and the cells that did not adhere to the Matrigel were washed off using PBS. Next, 20 µl of MTT with 100 µl of RPMI-1640 was added to each well and incubated for 4 h. At the end of the incubation, the solution was aspirated, 200 µl of DMSO was added to each well, and the absorbance at 570 nm was measured; mean absorbance was determined from 3 replicate wells. When attached, transfected cells were 80% confluent in 24-well plates, the culture medium was replaced with basic medium, and a 100-µl pipette tip was used to scrape cells in the middle of the wells. The scraped cells were washed off using PBS and the plates were placed in a 37 C incubator for 48 h. Distances migrated by cells across the middle of the wells were calculated by examining cells from 5 fields selected randomly under the microscope. To the top chamber of a Transwell chamber, 30 µl of Matrigel diluted with RPMI-1640 (1:3) was added and maintained at 37 C and allowed to polymerize. Transfected cells were trypsinized and adjusted to a concentration of 5x10 5 cells/ml in RPMI-1640, and 200 µl of the resuspended cell solution was added to the top chamber above the Matrigel. The bottom chamber was filled with 600 µl of RPMI-1640 containing 10% serum. The Transwell plates were incubated

ONCOLOGY REPORTS 31: 867-873, 2014 869 Figure 1. Dicer expression measured using western blotting and real-time qpcr. (A) Western blots showing the relative levels of Dicer staining in 3 types of cells; the band intensities are compared to GAPDH, which was used as a loading control. (B) Quantification of western blot staining showed that the protein level of Dicer was lower in Tca-8113 and UM-1 cells than in normal gingival epithelial cells, and that less Dicer protein was present in the high-grade cancer cell line UM-1 than in the lower-grade cell line Tca 8113 ( * P<0.05). (C) Real-time qpcr showed that Dicer mrna expression in normal gingival epithelial cells was higher than in the 2 tongue squamous cell carcinoma cell lines ( * P<0.05), whereas Dicer mrna levels in Tca-8113 and UM-1 cells were not significantly different. Figure 2. Dicer is expressed at higher levels in the normal gingival epithelial cells than in Tca-8113 and UM-1 cells. Dicer was mainly detected in the cytoplasm (arrow) by the immunohistochemical staining. (A) Dicer protein was strongly expressed in the cytoplasm of the normal gingival epithelial cells, whereas the expression was weaker in Tca-8113 cells (B) and the weakest in UM-1 cells (C). Original magnification, x400. at 37 C for 24 h and then the top chamber was removed and the Matrigel with unmigrated cells was gently scraped with a wet cotton swab. Cells were stained with 0.1% crystal violet for 5 min, washed with PBS to remove excess stain, and the average number of cells per field that had migrated was quantified under the microscope. The assay was repeated using the Transwell chamber without Matrigel. Statistical analysis. SPSS-13.0 software, variance analysis, and 2 independent t-tests were used to analyze the differences in Dicer expression between the 3 types of cells and to evaluate the biological responses in treated and control cells. Results Dicer is downregulated in tongue squamous cell carcinoma cell lines. The relative expression levels of Dicer mrna and protein were evaluated in normal oral gingival epithelial cells and 2 tongue squamous cell carcinoma cell lines, Tca-8113 and UM-1 cells (Figs. 1 and 2). Real-time qpcr showed that more Dicer mrna was present in normal oral gingival cells than in Tca-8113 cells (P=0.020) and UM-1 cells (P=0.002). Western blotting showed that the amount of Dicer protein was significantly less in the 2 tongue squamous cell lines than in normal gingival epithelial cells (P=0.000 for both Tca-8113 and UM-1 cells). Dicer mrna levels in Tca-8113 and UM-1 were not significantly different (P=0.166), but the amount of Dicer protein in the highly aggressive carcinoma cell line UM-1 was less than in Tca-8113 cells (P=0.000). Lastly, these results were further confirmed by the immunohistochemical staining for Dicer in the cells. RNAi knocks down Dicer expression in Tca-8113 cells. FAM-labeled sirnas were transfected into Tca-8113 cells and 6 h later the transfection efficiency was determined using fluorescence microscopy. Approximately 80% of the transfected cells emitted green fluorescence upon excitation. Total cellular RNAs from Dicer sirna-transfected cells and control cells

870 ZENG et al: SILENCING DICER PROMOTES CANCER CELL PROLIFERATION Figure 3. Dicer-siRNA reduces Dicer mrna and protein expression in Tca-8113 cells. (A) Detection of Dicer and GAPDH mrna using real-time qpcr in Tca-8113 cells 24 h after transfection showed a significant reduction of Dicer mrna in cells transfected with Dicer-siRNA compared to negative-control sirna-transfected cells and non-transfected cells ( * P<0.05). (B) Western blot analysis showing Dicer protein for a comparison of band intensities (with GAPDH as a loading control) at 24 and 48 h after sirna transfection. (C and D) Quantification of Dicer protein band intensities on western blots showed that Dicer was significantly downregulated in the experimental group (Dicer-siRNA) compared to the control groups ( * P<0.05) at 24 and 48 h after transfection. Dicer, Tca-8113 cells transfected with Dicer-siRNA; mock, Tca-8113 cells transfected with negative-control sirna; control, non-transfected Tca-8113 cells; * P<0.05. Figure 4. Knockdown of Dicer expression increases proliferation of Tca-8113 cells. Cell viability was examined using the MTT assay. Our results showed that greater numbers of viable cells, representing increased proliferative ability, were detected at (A) 24 h after transfection (P=0.000) and (B) 48 h after transfection (P=0.011). Dicer, Tca-8113 cells transfected with Dicer-siRNA; mock, Tca-8113 cells transfected with negative-control sirna; control, non-transfected Tca-8113 cells; * P<0.05. (negative-control-sirna transfected and non-transfected) were extracted 24 h after transfection. RT-PCR showed that the level of Dicer mrna in the Dicer-siRNA group was significantly lower than in the 2 control groups (P=0.000). Similarly, western blotting demonstrated that the Dicer protein amount was substantially lower in the Dicer-siRNA group than in the 2 control groups at 24 and 48 h after transfection (Fig. 3). Silencing Dicer promotes cell proliferation and cell cycle. To investigate the impact of Dicer on the proliferative capacity of cells, we measured the effects of Dicer-siRNA transfection on cell proliferation using the MTT assay and on cell cycle progression by using flow cytometry following PI staining. The MTT assay (Fig. 4) demonstrated that transfection with DicersiRNA increased Tca-8113 cell proliferation at 24 and 48 h after transfection relative to the 2 controls (negative-control sirna transfected and non-transfected cells). Moreover, cell cycle analysis revealed that in Tca-8113 cells transfected with Dicer-siRNA, the rate of S+G2 phases increased sharply accompanied by a reduction in G1 phase (Fig. 5; Table I), indicating that the depletion of Dicer accelerated the cell cycle (to S and G2 phases). Silencing Dicer expression increases cell migration and invasion. To examine how silencing Dicer expression affects the migratory and invasive abilities of Tca-8113 cells, we quantified

ONCOLOGY REPORTS 31: 867-873, 2014 871 Figure 5. Silencing Dicer expression alter cell cycle distribution. Cell cycle analysis using flow cytometry demonstrated that Dicer downregulation increased the proliferative capacity of Tca-8113 cells. Cells in S+G2 phases made up 48.47, 39.58 and 38.73%, and cells in the G1 phase made up 51.42, 60.20 and 61.23%, in Tca-8113 cells transfected with Dicer-siRNA, negative-control sirna, and non-transfected cells, respectively. Thus, the cell cycle in the experimental group (Dicer-siRNA) had advanced to S phase. (A) sirna, Tca-8113 cells transfected with Dicer-siRNA; (B) mock, Tca-8113 cells transfected with negative sirna; (C) control, non-transfected Tca-8113 cells. Figure 6. Knockdown of Dicer increases Matrigel adhesion of Tca-8113 cells. Knockdown of Dicer expression increased the number of cells attached to the Matrigel. (A) sirna, Tca-8113 cells transfected with Dicer-siRNA; (B) mock, Tca-8113 cells transfected with negative-control sirna; (C) control, nontransfected Tca-8113 cells. Original magnification, x100. (D) MTT assay results showing the increase in absorbance at 570 nm (which is positively correlated with the number of cells) in the experimental group compared to the mock and control groups; * P<0.05. Table I. Cell cycle distribution. Cell cycle Control Mock sirna P-value G1 61.23±0.15 60.20±0.04 51.42±0.23 0.000/0.001 S+G2 38.73±0.21 39.58±0.35 48.47±0.07 0.004/0.014 G1 (sirna vs. control, P=0.000; sirna vs. mock, P=0.001); S+G2 (sirna vs. control, P=0.004; sirna vs. mock, P=0.014). cell migration using cell adhesion and Erasion Trace tests and the Transwell cell-invasive assay. Compared to the control cells, more cells that had been transfected with Dicer-siRNA adhered to the Matrigel, migrated through the Transwell membrane and covered the erased trace better. Absorbance at 570 nm in the Matrigel adhesion test for Dicer-siRNA cells was 1.277±0.109 compared to 0.990±0.026 and 0.905±0.079 for negative-control sirna cells and non-transfected cells, respectively (P=0.011, P=0.009; Fig. 6). Similarly, Dicer-siRNA cells migrated more and covered the erased trace to 273.42±18.95 µm compared to 175.76±5.81 µm and 178.14±5.01 µm for cells transfected

872 ZENG et al: SILENCING DICER PROMOTES CANCER CELL PROLIFERATION Figure 7. Silencing Dicer expression increases migration of Tca-8113 cells in Erasion Trace tests. Dicer-depleted cells migrated significantly farther than control cells 48 h after transfection. (A, C and E) Microscopic images for the 3 groups at 0 h in the Erasion Trace test. The distances between the cells are the same in the 3 groups. (B, D and F) Images captured 48 h after starting the Erasion Trace test. The distance between cells was significantly reduced in the experimental group compared to the control groups. (A and B) sirna, Tca-8113 cells transfected with Dicer-siRNA; (C and D) mock, Tca-8113 cells transfected with negative-control sirna; (E and F) control, non-transfected Tca-8113 cells. Original magnification, x100. with the negative-control sirna and non-transfected cells, respectively (P=0.000, P=0.000; Figs. 7 and 9A). Furthermore, Dicer-siRNA transfection increased Transwell migration to 167.20±6.38 cells from 92.40±13.22 cells and 91.60±11.61 cells in negative-control sirna cells and non-transfected cells, respectively (P=0.000, P=0.000; Figs. 8 and 9B). Therefore, transfecting Dicer-siRNA into Tca-8113 cells increased cell migration and invasion in vitro to levels significantly greater than in cells transfected with the negative-control sirna and in non-transfected cells. Collectively, our results suggest that knocking down Dicer expression in Tca-8113 cells increases the invasive and proliferative capacities of these cells. Discussion Dicer, a member of RNase III family essential for mirna processing, is known to be associated with cancer. Dicer is upregulated in prostate, colorectal cancer and lung squamous cell carcinoma (1,10-14), and is downregulated in hepatocellular carcinoma, gastric, breast and ovarian cancer (15-18). Figure 8. Knockdown of Dicer increases the Transwell invasiveness of Tca 8113 cells. Knocking down Dicer expression increased the ability of Tca-8113 cells to invade across a Matrigel membrane. More cells in the experimental group penetrated the membrane to the lower chamber than in the 2 control groups. (A) sirna, Tca-8113 cells transfected with Dicer-siRNA; (B) mock, Tca-8113 cells transfected with negative sirna; (C) Control, non-transfected Tca-8113 cells. Original magnification, x200. Dicer is mis-expressed in different types of cancer, and Dicer expression changes are biomarkers of poor prognostics for cancer patients. Cancer can be promoted or suppressed by mirnas (19). In certain types of cancer, mirnas are upregulated (20), but in most cancers the mirnas are globally downregulated, and this downregulation plays a key role in the phenotypic transformation of cancer (4). Since Dicer is an upstream regulator of mirnas, the mis-expression of Dicer in cancer can partly explain the abnormal expression of mirnas in the cancer cells, and several studies have demonstrated changes in cancer behavior after silencing Dicer both in vivo and in vitro. For instance, knocking down Dicer in breast cancer can lead to a more malignant and invasive phenotype in vitro (21). Moreover, in animal studies, silencing Dicer in the mouse model of lung cancer using K-Ras promoted the development of the cancer,

ONCOLOGY REPORTS 31: 867-873, 2014 873 Figure 9. Silencing Dicer expression increases migration and invasion by Tca-8113 cells. Results of (A) the Erasion Trace test and (B) Transwell invasive assay showing enhanced migration and invasion by Dicer-depleted Tca-8113 cells. sirna, Tca-8113 cells transfected with Dicer-siRNA; mock, Tca-8113 cells transfected with negative-control sirna; control, non-transfected Tca-8113 cells; * P<0.05. and suppressing the expression of Dicer contributed to liver cancer in mice (22,23). However, no evidence thus far has suggested a role of Dicer in tongue squamous cell carcinoma. We found that Dicer was expressed at lower levels in 2 cell lines of tongue squamous cell carcinoma (Tca-8113 and UM-1 cells) compared to normal gingival epithelial cells, which supports the theory that mirnas are downregulated in cancer due to the suppression of Dicer expression. Our results further link Dicer downregulation and the potential impairment of mirna processing with the transformation of tumor cells; we also demonstrated that depletion of Dicer, a key component in the mirna processing machinery in cells, enhanced malignant transformation of tongue squamous carcinoma cells. Specifically, knocking down Dicer in Tca-8113 cells significantly increased the proliferative ability, G1 arrest and invasiveness of the cells. Collectively, our results suggest that Dicer functions as an indirect tumor suppressor, as silencing Dicer expression makes cancer cells more malignant. Although the mechanism of this transformation remains elusive, the present study suggests that rectifying the aberrant expression of Dicer could be one approach in treating tongue squamous cell carcinoma. Acknowledgements This study was supported by a grant from Guangdong Provincial International Science and Technology Cooperation Project (2012B050300028). The authors thank Dr AnXun Wang for providing the tongue squamous carcinoma cell lines (Tca-8113 and UM-1), and Professor Jun Xia from the Hong Kong University of Science and Technology for collaboration and guidance in the research. References 1. Macrae IJ, Zhou K, Li F, et al: Structural basis for double-stranded RNA processing by Dicer. Science 211: 195-198, 2006. 2. Si ML, Zhu S, Wu H, et al: mir-21-mediated tumor growth. Oncogene 26: 2799-2803, 2007. 3. Shi B, Sepp-Lorenzino L, Prisco M, et al: MicroRNA-145 targets the insulin receptor substrate-1 and inhibits the growth of colon cancer cells. J Biol Chem 282: 32582-32590, 2007. 4. Lu J, Getz G, Miska EK, et al: MicroRNA expression profiles classify human cancers. Nature 435: 834-838, 2005. 5. Bu Y, Lu C, Bian C, et al: Knockdown of Dicer in MCF-7 human breast carcinoma cells results in G1 arrest and increased sensitivity to cisplatin. Oncol Rep 21: 13-17, 2009. 6. Han L, Zhang A, Zhou X, et al: Downregulation of Dicer enhances tumor cell proliferation and invasion. Int J Oncol 37: 299-305, 2010. 7. Tian-Run Liu, Li-Hua Xu, An-Kui Yang, et al: Decreased expression of SATB2: a novel independent prognostic marker of worse outcome in laryngeal carcinoma patients. PLoS One 7: e40704, 2012. 8. Lu Jiang, Yang Dai, Xiqiang Liu, et al: Identification and experimental validation of G protein alpha inhibiting activity polypeptide 2 (GNAI2) as a microrna-138 target in tongue squamous cell carcinoma. Hum Genet 129: 189-197, 2011. 9. Nakayama S, Sasaki A, Mese H, Alcalde RE and Matsumura T: Establishment of high and low metastasis cell lines derived from a human tongue squamous cell carcinoma. Invasion Metastasis 18: 219-228, 1998-1999. 10. Chiosea S, Jelezcova E, Chandran U, et al: Up-regulation of Dicer, a component of the microrna machinery, in prostate adenocarcinoma. Am J Pathol 169: 1812-1820, 2006. 11. Faber C, Horst D, Hlubek F, et al: Overexpression of Dicer predicts poor survival in colorectal cancer. Eur J Cancer 47: 1414-1419, 2011. 12. Papachristou DJ, Korpetinou A, Giannopoulou E, et al: Expression of the ribonucleases Drosha, Dicer, and Ago2 in colorectal cancinomas. Virchows Arch 459: 431-440, 2011. 13. Stratmann J, Wang CJ, Gnosa S, et al: Dicer and mirna in relation to clinicopathological variables in colorectal cancer patients. BMC Cancer 11: 345, 2011. 14. Chiosea S, Jelezcova E, Chandran U, et al: Overexpression of Dicer in precursor lesions of lung adenocarcinoma. Cancer Res 67: 2345-2450, 2007. 15. Wu JF, Shen W, Liu NZ, et al: Down-regulation of Dicer in hepotocellular carcinoma. Med Oncol 28: 804-809, 2011. 16. Grelier G, Voirin N, Ay AS, et al: Prognostic value of Dicer expression in human breast cancers and association with the mesenchymal phenotype. Br J Cancer 101: 673-683, 2009. 17. Yan M, Huang HY, Wang T, et al: Dysregulated expression of dicer and drosha in breast cancer. Pathol Oncol Res 18: 343-348, 2012. 18. Pampalakis G, Diamandis EP, Katsaros D, et al: Down-regulation of dicer expression in ovarian cancer tissues. Clin Biochem 43: 324-327, 2010. 19. Volinia S, Calin GA, Liu CG, et al: A microrna expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 103: 2257-2261, 2006. 20. Kumar MS, Lu J, Mercer KL, et al: Impaired microrna processing enhances cellular transformation and tumorigenesis. Nat Genet 39: 673-677, 2007. 21. Martello G, Rosato A, Ferrari F, et al: A MicroRNA targeting dicer for metastasis control. Cell 141: 1195-1207, 2010. 22. Iwanaga K, Yang Y, Raso MG, et al: Pten inactivation accelerates oncogenic K-ras-initiated tumorigenesis in a mouse model of lung cancer. Cancer Ras 68: 1119-1127, 2008. 23. Sekine S, Ogawa R, Ito R, et al: Disruption of Dicer1 induces dysregulated fetal gene expression and promotes hepatocarcinogenesis. Gastroenterology 136: 2304-2315, 2009.