The Decrease in Breast-Cancer Incidence in 2003 in the United States

Similar documents
Overdiagnosis in. breast cancers 12. chemoprevention trials. V. Sopik msc* and S.A. Narod md*

Breast Cancer Incidence, : Combined Roles of Menopausal Hormone Therapy, Screening Mammography, and Estrogen Receptor Status

Hysterectomy-Corrected Rates of Endometrial Cancer among Women of Reproductive Age

J Clin Oncol 29: by American Society of Clinical Oncology INTRODUCTION

The Effect of Changing Hysterectomy Prevalence on Trends in Endometrial Cancer, SEER

New Insights into Breast Cancer Risk Reduction

Breast Cancer Trends Among Black and White Women in the United States Ismail Jatoi, William F. Anderson, Sowmya R. Rao, and Susan S.

Life expectancy in the United States continues to lengthen.

Does raloxifene (Evista) prevent fractures in postmenopausal women with osteoporosis?

COMMENTARY: DATA ANALYSIS METHODS AND THE RELIABILITY OF ANALYTIC EPIDEMIOLOGIC RESEARCH. Ross L. Prentice. Fred Hutchinson Cancer Research Center

Trends in Hormone Therapy and Breast Cancer Incidence Results from the German Network of Cancer Registries

Trends in Breast Cancer by Race and

SERMS, Hormone Therapy and Calcitonin

Radiation and DCIS. The 16 th Annual Conference on A Multidisciplinary Approach to Comprehensive Breast Care and Imaging

Postmenopausal hormone therapy and cancer risk

Chapter 13 Cancer of the Female Breast

Breast Cancer Prevention Studies. Key Points. Breast cancer prevention studies are clinical trials (research studies conducted with

Use of Endocrine Therapy Data Points # 14

CCSS Concept Proposal Working Group: Biostatistics and Epidemiology

The projection of short- and long-term survival for. Conditional Survival Among Patients With Carcinoma of the Lung*

Chemo-endocrine prevention of breast cancer

Temporal trends in the incidence of molecular subtypes of breast cancer. Jonine D. Figueroa, Ph.D., M.P.H.

Research. Breast cancer represents a major

Effect of Screening and Adjuvant Therapy on Mortality from Breast Cancer

OUTCOME DISPARITIES BY AGE AND 21-GENE RECURRENCE SCORE RESULT IN HORMONE RECEPTOR-POSITIVE (HR+) BREAST CANCER

WHI Estrogen--Progestin vs. Placebo (Women with intact uterus)

Health Risks and Benefits 3 Years After Stopping Randomized Treatment With Estrogen and Progestin. The WHI Investigators

NON-ADHERENCE TO ADJUVANT HORMONAL TREATMENT IN EARLY BREAST CANCER

Although African American women have a lower incidence of. Histologic Grade, Stage, and Survival in Breast Carcinoma

Breast Cancer Prevention

Breast Cancer: Weight and Exercise. Anne McTiernan, MD, PhD. Fred Hutchinson Cancer Research Center Seattle, WA

Menopausal hormone therapy currently has no evidence-based role for

10/11/2016. Richard J. Santen, MD. Disclosures. Key Question Regarding MHT and Breast Cancer Development. NAMS 2016 Translational Science Symposium

OVER the past three decades, numerous randomized

Breast Cancer: Weight and Exercise. Anne McTiernan, MD, PhD. Fred Hutchinson Cancer Research Center Seattle, WA

Impact of PSA Screening on Prostate Cancer Incidence and Mortality in the US

Annual Report to the Nation on the Status of Cancer, , with a Special Feature Regarding Survival

Update from the 29th Annual San Antonio Breast Cancer Symposium

Ms. Y. Outline. Updates of SERMs and Estrogen

The NSABP Study of Tamoxifen and Raloxifene (STAR) trial

Rare Cancer Prevalence in the SEER Population: Hepatobiliary Cancers,

Biological Cure. Margaret R. Stedman, Ph.D. MPH Angela B. Mariotto, Ph.D.

Breast Cancer Statistics, 2017, Racial Disparity in Mortality by State

Key Words. Cancer statistics Incidence Lifetime risk Multiple primaries Survival SEER

Chemoprevention of Breast Cancer

Hormone therapy in Breast Cancer patients with comorbidities

LOBULAR CARCINOMA IN SITU: WHAT DOES IT MEAN? THE SURGEON'S PERSPECTIVE

The Greater Bay Area Cancer Registry: Annual Incidence and Mortality Review,

Implications of Progesterone Receptor Status for the Biology and Prognosis of Breast Cancers

Adjuvant treatment Tamoxifen for 5 years ER or uncertain Risk reduction for contralateral breast cancer optional AI may also be considered

Prophylactic Mastectomy

DATAWATCH 121. Increasing The Odds For Cancer Survival

Breast Cancer and Bone Loss. One in seven women will develop breast cancer during a lifetime

During the past 2 decades, an increase in the ageadjusted

Tamoxifen For Breast Cancer Chemoprevention: Low Uptake by High-Risk Women After Evaluation of a Breast Lump

ATAC Trial. 10 year median follow-up data. Approval Code: AZT-ARIM-10005

Delayed adjuvant tamoxifen: Ten-year results of a collaborative randomized controlled trial in early breast cancer (TAM-02 trial)

Cancer Prevention & Control in Adolescent & Young Adult Survivors

Breast Cancer? Breast cancer is the most common. What s New in. Janet s Case

NIH Public Access Author Manuscript Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2011 January 1.

Trends in Leukemia Incidence and Survival in the United States ( )

Cancer Statistics, 2008

NIH Public Access Author Manuscript Obstet Gynecol. Author manuscript; available in PMC 2013 September 01.

PROSPECTIVE STUDIES HAVE

RALOXIFENE Generic Brand HICL GCN Exception/Other RALOXIFENE EVISTA Is the request for the prevention (risk reduction) of breast cancer?

Health Outcomes After Stopping Conjugated Equine Estrogens Among Postmenopausal. women with prior hysterectomy. JAMA. 2011;305(13):

Breast Cancer. Most common cancer among women in the US. 2nd leading cause of death in women. Mortality rates though have declined

Cancer Control - the role of Surveillance. Anthony B. Miller Department of Public Health Sciences University of Toronto, Canada

WEIGHING UP THE RISKS OF HRT. Department of Endocrinology Chris Hani Baragwanath Academic Hospital

Breast Cancer. Saima Saeed MD

Estrogen, Estrogen Plus Progestin Therapy, and Risk of Breast Cancer

Breast Cancer. Breast Cancer. Established breast cancer risk factors. Established breast cancer risk factors. Cancer incidence.

Review Future possibilities in the prevention of breast cancer Breast cancer prevention trials Jack Cuzick

Prophylactic Mastectomy

HRT and bone health. Management of osteoporosis and controversial issues. Delfin A. Tan, MD

POSITION PAPER FOR HEALTH CARE PROVIDERS Use of Pharmacologic Intervention for Breast Cancer Risk Reduction

ORMONOTERAPIA ADIUVANTE: QUALE LA DURATA OTTIMALE? MARIANTONIETTA COLOZZA

The Study of Tamoxifen and Raloxifene (STAR): Questions and Answers. Key Points

Trends in the Use of Implantable Accelerated Partial Breast Irradiation Therapy for Early Stage Breast Cancer in the United States

Modeling the annual costs of postmenopausal prevention therapy: raloxifene, alendronate, or estrogen-progestin therapy Mullins C D, Ohsfeldt R L

adherence research Introduction Breast cancer is the most common cancer diagnosis among women in the United States,

Current Strategies in the Detection of Breast Cancer. Karla Kerlikowske, M.D. Professor of Medicine & Epidemiology and Biostatistics, UCSF

Breast Cancer Prevention and Breast Cancer Survivorship

Bad to the bones: treatments for breast and prostate cancer

Scottish Medicines Consortium

Adjuvant Systemic Therapy in Early Stage Breast Cancer

So, Who are the appropriate individuals that should consider genetic counseling and genetic testing?

Chapter 5: Epidemiology of MBC Challenges with Population-Based Statistics

Raloxifene: A Selective Estrogen Receptor Modulator (SERM) with Multiple Target System Effects

Performance of the Breast Cancer Risk Assessment Tool Among Women Aged 75 Years and Older


Effective Health Care Program

Clinical Policy Title: Breast cancer index genetic testing

Hormone replacement therapy and breast density after surgical menopause

Recent decline in prostate cancer incidence in the United States, by age, stage, and Gleason score

of Nebraska - Lincoln

BLACK-WHITE DIFFERENCES IN SURVIVAL FROM LATE-STAGE PROSTATE CANCER

Something has changed? The literature from 2008 to present?

BREAST CANCER AND BONE HEALTH

Key Words. SEER Cancer Survival Incidence Mortality Prevalence

Transcription:

T h e n e w e ng l a nd j o u r na l o f m e dic i n e s p e c i a l r e p o r t The Decrease in Breast-Cancer Incidence in 23 in the United States Peter M. Ravdin, Ph.D., M.D., Kathleen A. Cronin, Ph.D., Nadia Howlader, M.S., Christine D. Berg, M.D., Rowan T. Chlebowski, M.D., Ph.D., Eric J. Feuer, Ph.D., Brenda K. Edwards, Ph.D., and Donald A. Berry, Ph.D. summar y An initial analysis of data from the National Cancer Institute s Surveillance, Epidemiology, and End Results (SEER) registries shows that the age-adjusted incidence rate of breast cancer in women in the United States fell sharply (by 6.7%) in 23, as compared with the rate in 22. Data from 24 showed a leveling off relative to the 23 rate, with little additional decrease. Regression analysis showed that the decrease began in mid-22 and had begun to level off by mid-23. A comparison of incidence rates in 21 with those in 24 (omitting the years in which the incidence was changing) showed that the decrease in annual age-adjusted incidence was 8.6% (95% confidence interval [CI], 6.8 to 1.4). The decrease was evident only in women who were 5 years of age or older and was more evident in cancers that were estrogen-receptor positive than in those that were estrogen-receptor negative. The decrease in breastcancer incidence seems to be temporally related to the first report of the Women s Health Initiative and the ensuing drop in the use of hormone-replacement therapy among postmenopausal women in the United States. The contributions of other causes to the change in incidence seem less likely to have played a major role but have not been excluded. Major changes in cancer incidence and death rates, as detected in cancer-registry data, provide unique opportunities to examine questions related to the cause, prevention, detection, and treatment of cancer. In a preliminary report, we suggested that such a major change in breast-cancer incidence occurred in 23 in the United States. 1 In contrast, the 199s saw an increase in the annual age-adjusted incidence of breast cancer by an average of about.5% per year, a rise that was particularly evident among women who were 5 years of age or older 2 (Fig. 1). Changes in reproductive factors, in the use of menopausal hormonereplacement therapy, in mammographic screening, in environmental exposures, and in diet have all been proposed to explain the trend. Of these factors, only the use of hormone-replacement therapy changed substantially between 22 and 23. In this report, we provide additional data from 24 that show little change in breast-cancer incidence between 23 and 24. A comparison of incidence rates in 21 with those in 24 (omitting the years in which the incidence was in the process of changing) showed that the decrease in annual age-adjusted incidence was 8.6% (95% CI, 6.8 to 1.4). The decrease in breast-cancer incidence began in mid-22 and occurred shortly after the highly publicized series of reports from the randomized trial of the Women s Health Initiative, which reported a significant increase in the risks of coronary heart disease and breast cancer associated with the use of estrogen progestin combination therapy. 3 By the end of 22, the use of hormonereplacement therapy had decreased by 38% in the United States, with approximately 2 million fewer prescriptions written in 23 than in 22. 4,5 The analyses we report here used information from the SEER Program of the National Cancer Institute (NCI) collected from nine cancer registries reporting on 9% of the U.S. population. Trends in the incidence of female breast cancer were age-adjusted to the standard population in the year 2 and were adjusted for reporting delays. Joinpoint (version 3.) statistical software (http://srab.cancer.gov/joinpoint/) was used for fit- 167 n engl j med 356;16 www.nejm.org april 19, 27

ting trends over time and to evaluate when changes in trends occurred. The number of patients with unknown estrogen-receptor status changed from 15% in 21 to 8% in 24; to adjust for this change, multiple imputation was used to generate estrogen-receptor values for missing data. Comparison of incidence rates in 21 with rates in 24 (omitting the years in which the incidence was rapidly changing) showed that the decrease in annual age-adjusted incidence was evident only in women who were 5 years of age or more. During that period, there was an increase of 1.3% (95% CI, 3.1 to 5.8) in incidence for women below the age of 5 years, a decrease of 11.8% (95% CI, 9.2 to 14.5) for women between the ages of 5 and 69 years, and a decrease of 11.1% (95% CI, 7.9 to 14.2) for women 7 years of age or older. For women between the ages of 5 and 69 years, the decrease was more evident in those with estrogen-receptor positive tumors (14.7%; 95% CI, 11.6 to 17.4) than in those with estrogen-receptor negative tumors (1.7%; 95% CI, 4.6 to 8.). The decreases were similar for localized disease (11.3%; 95% CI, 8. to 14.6) and more advanced disease (13.6%; 95% CI, 9.2 to 17.9) and were evident in primary breast cancers (13.7%; 95% CI, 11. to 16.4) but not in contralateral second primary or later breast cancers, for which there was a nonsignificant increase (9.4%; 95% CI, 1.6 to 2.5). Figure 2A shows the quarterly, age-adjusted incidence rates of breast cancer in women between the ages of 5 and 69 years, categorized according to estrogen-receptor status. The data for change in trend were examined with the use of Joinpoint statistical software. Changes in trend in mid-22 and mid-23 were evident for all patients and for patients with estrogen-receptor positive tumors but not for those with estrogen-receptor negative tumors. However, the low incidence of estrogenreceptor negative tumors limited the statistical ability to detect a change in trend. For all patients, the quarterly changes in rate were an increase of.8% (95% CI,.6 to.77) in the first time interval, a decrease of 4.43% (95% CI, 12.66 to 4.75) in the next time interval defined by Joinpoint analysis, and a decrease of.4% (95% CI, 1.56 to 1.5) in the last time interval. What might have been responsible for the sharp decline in breast-cancer incidence, followed by a relative stabilization at a lower incidence rate? Rate per 1, Women 5 4 3 2 1 1975 198 1985 199 1995 2 Year of Diagnosis Figure 1. Annual Incidence of Female Breast Cancer (1975 24). One possibility is a SEER reporting flaw, which seems unlikely. The trend for a decrease in incidence in 23 was evident in all nine SEER registries, there was no statistically significant change in the incidence of cancer other than breast cancer in women during this period, and the lower rates continued in 24. Could the change have been related to a major decrease in the rate of screening mammography? Although a decrease of 3.2% in this rate was reported for women between the ages of 5 and 65 years for 23, as compared with that for 2, 6 such a change would seem insufficient to explain the observation. A change in screening patterns specific to women who formerly received hormone-replacement therapy is also a possibility. For example, if women who discontinued hormone-replacement therapy also stopped receiving mammograms, an apparent decrease in incidence could result. Although visits to physicians would probably decrease among women who discontinued hormone-replacement therapy, no published data are available showing a substantial decrease in mammographic screening in such women. Another possible explanation is that a decrease in incidence is expected in a heavily screened population, similar to that reported for prostate cancer. No sudden decrease has yet been reported for breast-cancer incidence in heavily screened populations. 5 Years of age <5 Years of age Data are from nine of the NCI s SEER registries. SEER sites include San Francisco, Connecticut, Detroit (metropolitan area), Hawaii, Iowa, New Mexico, Seattle Puget Sound, Utah, and Atlanta (metropolitan area). n engl j med 356;16 www.nejm.org april 19, 27 1671

T h e n e w e ng l a nd j o u r na l o f m e dic i n e A Quarterly Rate per 1, Women B No. of Prescriptions (millions) 1 9 8 7 6 5 4 3 2 1 8 6 4 2 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 2 21 22 Year of Diagnosis Reporting Year 23 All patients ER-positive tumors ER-negative tumors 24 2 21 22 23 24 Figure 2. Quarterly Incidence of Breast Cancer in Women between the Ages of 5 and 69 Years, According to Estrogen-Receptor (ER) Status, and the Number of Prescriptions for Hormone-Replacement Therapy (2 24). In Panel A, data are from nine of the NCI s SEER registries, with trends modeled with regression-analysis statistical software (Joinpoint). Trends were age-adjusted to the standard population in the year 2 and were adjusted for reporting delays. Panel B shows the number of prescriptions reported in the United States for the combined estrogen progestin preparation Prempro and the conjugated equine estrogen Premarin, according to year. One of the arguments against changes in mammographic screening as a primary reason for the decline is that the effect was mainly on estrogenreceptor positive tumors. Breast cancers that are detected on mammography are more likely to be estrogen-receptor positive than are tumors not detected on mammography (8% vs. 7%), 7 but the difference in the percentages according to estrogen-receptor status is minor. Thus, a drop in screening would result in an approximately equal decrease in estrogen-receptor positive and estrogen-receptor negative tumors, an expectation that differed from our findings. Discontinuation of hormone-replacement therapy could have caused a decreased incidence of breast cancer by direct hormonal effects on the growth of occult breast cancers, a change that would have been expected to affect predominantly estrogen-receptor positive tumors. If the decrease in breast-cancer incidence had been associated with discontinuation of hormone-replacement therapy, the rapidity of change suggested that clinically occult breast cancers stopped progressing or even regressed soon after discontinuation of the therapy. The hypothesis that hormone withdrawal can rapidly influence the growth of breast cancer is supported by anecdotal reports of regression of breast cancer after discontinuation of hormone-replacement therapy. 8 A cessation of such therapy was associated with a reduction in the proliferative index of breast-cancer cells within 1 month in women with estrogen-receptor positive tumors but not in those with estrogen-receptor negative tumors in the same setting, 9 and responses within weeks after estrogen deprivation have been seen in clinical trials of neoadjuvant hormones. An early effect of tamoxifen was seen in the Breast Cancer Prevention Trial, in which the cumulative rates of invasive breast cancer in the tamoxifen group and the placebo group appeared to diverge within the first few months and differed statistically at the end of the first year. 1 An analysis of 51 epidemiologic studies showed that an elevated risk of breast cancer after the use of hormone-replacement therapy had largely if not wholly disappeared within 5 years after discontinuation of therapy, although a more detailed analysis of the time course of changes in risk within this period was not presented. 11 Notably, the change in the use of hormonereplacement therapy also followed a time course that was similar to the decline in breast-cancer incidence, with a sharp decline followed by a relative stabilization at a new, lower level. The total number of prescriptions for the two most commonly prescribed forms of hormone-replacement therapy in the United States Premarin and Prempro had their steepest declines starting in 22 and particularly in 23 (62 million pre- 1672 n engl j med 356;16 www.nejm.org april 19, 27

scriptions in 2, 61 million in 21, 47 million in 22, 27 million in 23, 21 million in 24, and 18 million in 25) 12 (Fig. 2B). Other medications can influence the incidence of breast cancer. These drugs include tamoxifen and raloxifene, and there is some evidence for beneficial effects of nonsteroidal antiinflammatory drugs, statins, and calcium and vitamin D supplements. However, none of these agents were used by a substantial portion of postmenopausal women or showed substantial change in use during the period from 2 to 24. 12,13 Therefore, the drugs are unlikely candidates for causing the decrease in incidence. When the results of the Women s Health Initiative hormone trial were announced, women were asked to discontinue their study medications (placebo or hormone) but were encouraged to continue undergoing annual mammography. These women continue to be followed for clinical outcome, and a report of follow-up of the combined estrogen-plus-progestin trial is anticipated later this year. This report will provide the highest level of evidence concerning the influence of cessation of hormone-replacement therapy on the incidence of breast cancer. Other observers have noted a decline in breast-cancer incidence after 22. A report from a subgroup of California registries also showed a sharp decrease in breastcancer incidence in 23 and suggested that it extended into 24. 14 A recent analysis of national cancer data by Jemal et al. 15 showed a decline in the incidence of breast cancer in 23 but did not comment on its clinical relevance. The joinpoint in that study was done with annual (rather than quarterly) data. Annual rates obscure within-year trends, in this case within years 22 and 23. In addition, the statistical method used by Jemal et al. cannot select the final year in a range (in this case, 23) as demonstrating a discontinuity. It is possible that the ultimate understanding of the effect of cessation of hormone-replacement therapy will be complex; it will probably depend on more than one mechanism and will be affected in different ways by various forms of postmenopausal hormone-replacement therapy. The time course of the decrease in breast-cancer incidence is of both practical and theoretical interest. Our data suggest that much of the decrease in breast-cancer incidence that is attributable to changes in the use of hormone-replacement therapy has already occurred, but important questions remain. Can we expect only a delay in the appearance of clinically detectable tumors, with no reduction in long-term incidence, or will there be a long-term reduction? A change in the hormonal milieu may have slowed the growth of tumors slightly or temporarily. If this is the case, as the use of hormone-replacement therapy stabilizes, breast-cancer incidence should rise again. Alternatively, the change in hormonal milieu may have a more profound effect, similar to that of hormonal adjuvant therapy. 16 We believe that the data are most consistent with a direct effect of hormone-replacement therapy on preclinical disease, but this conclusion does not rule out some contribution from changes in screening mammography. In any case, attempts to understand the rapid reduction in incidence using theoretical models of breast-cancer evolution and the effects of screening and treatment such as those of the NCI s Cancer Intervention and Surveillance Modeling Network 17 may lead to new insights into the development and prevention of breast cancer. No potential conflict of interest relevant to this article was reported. From the Department of Biostatistics, M.D. Anderson Cancer Center, Houston (P.M.R., D.A.B.); the Division of Cancer Control and Population Sciences (K.A.C., N.H., E.J.F., B.K.E.) and the Division of Cancer Prevention (C.D.B.), National Cancer Institute, Bethesda, MD; and the Los Angeles Biomedical Research Institute at Harbor UCLA Medical Center, Torrance, CA (R.T.C.). 1. Ravdin PM, Cronin KA, Howlander N, Chlebowski RT, Berry DA. A sharp decrease in breast cancer incidence in the United States in 23. Breast Cancer Res Treat 26;1:Suppl:S2. abstract. 2. Howe HL, Wu X, Ries LAG, et al. Annual report to the nation on the status of cancer, 1975-23, featuring cancer among U.S. Hispanic/Latino populations. Cancer 26;17:1711-42. 3. Rossouw JE, Anderson GL, Prentice RL, et al. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the Women s Health Initiative randomized controlled trial. JAMA 22;288:321-33. 4. Buist DSM, Newton KM, Miglioretti DL, et al. Hormone therapy prescribing patterns in the United States. Obstet Gynecol 24;14:142-5. 5. Hersh AL, Stefanick ML, Stafford RS. National use of postmenopausal hormone therapy: annual trends and response to recent evidence. JAMA 24;291:47-53. 6. Health, United States 26, with chartbook on trends in the health of Americans. Hyattsville, MD: National Center for Health Statistics, November 26:313-4. (DHHS publication no. 26-1232.) 7. Porter PL, El-Bastawissi AY, Mandelson MT, et al. Breast tumor characteristics as predictors of mammographic detection: comparison of interval- and screen-detected cancers. J Natl Cancer Inst 1999;91:22-8. 8. Powles TJ, Hickish T. Breast cancer response to hormone replacement therapy withdrawal. Lancet 1995;345:1442. n engl j med 356;16 www.nejm.org april 19, 27 1673

9. Prasad R, Boland GP, Cramer A, Anderson E, Knox WF, Bundred NJ. Short-term biologic response to withdrawal of hormone replacement therapy in patients with invasive breast carcinoma. Cancer 23;98:2539-46. 1. Fisher B, Costantino JP, Wickerham DL, et al. Tamoxifen for prevention of breast cancer: report of the National Surgical Adjuvant Breast and Bowel Project P-1 Study. J Natl Cancer Inst 1998;9:1371-88. 11. Collaborative Group on Hormonal Factors in Breast Cancer. Breast cancer and hormone replacement therapy: collaborative reanalysis of data from 51 epidemiological studies of 52,75 women with breast cancer and 18,411 women without breast cancer. Lancet 1997;35:147-59. [Erratum, Lancet 1997;35:1484.] 12. Drug Topics. Drugs by units in the United States in specific years. (Accessed March 29, 27, at http://www.drugtopics.com/ drugtopics/.) 13. Freedman AN, Graubard BI, McCaskill-Stevens W, Gail MH, Ballard-Barbash R. Tamoxifen use for breast cancer chemoprevention among U.S. women. Eur J Cancer Suppl 24;2: 17-8. 14. Clarke CA, Glaser SL, Uratsu SL, Selby JV, Kushi LH, Herrington LJ. Recent declines in hormone therapy utilization and breast cancer incidence: clinical and population-based evidence. J Clin Oncol 26;24:49e-5e. 15. Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ. Cancer statistics, 27. CA Cancer J Clin 27;57:43-66. 16. Early Breast Cancer Trialists Collaborative Group (EBCTCG). Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet 25;365:1687-717. 17. Berry DA, Cronin KA, Plevritis SK, et al. Effect of screening and adjuvant therapy on mortality from breast cancer. N Engl J Med 25;353:1784-92. Copyright 27 Massachusetts Medical Society. 1674 n engl j med 356;16 www.nejm.org april 19, 27