T cells III: Cytotoxic T lymphocytes and natural killer cells

Similar documents
Shiv Pillai Ragon Institute, Massachusetts General Hospital Harvard Medical School

ACTIVATION AND EFFECTOR FUNCTIONS OF CELL-MEDIATED IMMUNITY AND NK CELLS. Choompone Sakonwasun, MD (Hons), FRCPT

Scott Abrams, Ph.D. Professor of Oncology, x4375 Kuby Immunology SEVENTH EDITION

Micro 204. Cytotoxic T Lymphocytes (CTL) Lewis Lanier

Cellular Immune response. Jianzhong Chen, Ph.D Institute of immunology, ZJU

6/7/17. Immune cells. Co-evolution of innate and adaptive immunity. Importance of NK cells. Cells of innate(?) immune response

Title: NATURAL KILLER CELL FUNCTIONS AND SURFACE RECEPTORS

Medical Virology Immunology. Dr. Sameer Naji, MB, BCh, PhD (UK) Head of Basic Medical Sciences Dept. Faculty of Medicine The Hashemite University

Immunology Basics Relevant to Cancer Immunotherapy: T Cell Activation, Costimulation, and Effector T Cells

TCR, MHC and coreceptors

Chapter 10 (pages ): Differentiation and Functions of CD4+ Effector T Cells Prepared by Kristen Dazy, MD, Scripps Clinic Medical Group

Effector Mechanisms of Cell-Mediated Immunity

chapter 17: specific/adaptable defenses of the host: the immune response

Test Bank for Basic Immunology Functions and Disorders of the Immune System 4th Edition by Abbas

Adaptive Immunity: Specific Defenses of the Host

Antigen Presentation and T Lymphocyte Activation. Abul K. Abbas UCSF. FOCiS

Cell Mediated Immunity CELL MEDIATED IMMUNITY. Basic Elements of Cell Mediated Immunity (CMI) Antibody-dependent cell-mediated cytotoxicity (ADCC)

T-cell activation T cells migrate to secondary lymphoid tissues where they interact with antigen, antigen-presenting cells, and other lymphocytes:

T-cell activation T cells migrate to secondary lymphoid tissues where they interact with antigen, antigen-presenting cells, and other lymphocytes:

ACTIVATION OF T LYMPHOCYTES AND CELL MEDIATED IMMUNITY

Immunology for the Rheumatologist

Adaptive Immunity. Jeffrey K. Actor, Ph.D. MSB 2.214,

Immunity. Acquired immunity differs from innate immunity in specificity & memory from 1 st exposure

Chapter 24 The Immune System

7/6/2009. The study of the immune system and of diseases that occur as a result of inappropriate or inadequate actions of the immune system.

LESSON 2: THE ADAPTIVE IMMUNITY

The Adaptive Immune Responses

Natural Killer Cells: Development, Diversity, and Applications to Human Disease Dr. Michael A. Caligiuri

COURSE: Medical Microbiology, PAMB 650/720 - Fall 2008 Lecture 16

The Immune System: Innate and Adaptive Body Defenses Outline PART 1: INNATE DEFENSES 21.1 Surface barriers act as the first line of defense to keep

T cell-mediated immunity

Determinants of Immunogenicity and Tolerance. Abul K. Abbas, MD Department of Pathology University of California San Francisco

C. Incorrect! MHC class I molecules are not involved in the process of bridging in ADCC.

Immunology Lecture 4. Clinical Relevance of the Immune System

Putting it Together. Stephen Canfield Secondary Lymphoid System. Tonsil Anterior Cervical LN s

Mon, Wed, Fri 11:00 AM-12:00 PM. Owen, Judy, Jenni Punt, and Sharon Stranford Kuby-Immunology, 7th. Edition. W.H. Freeman and Co., New York.

Mucosal Immune System

Cell-mediated Immunity

Adaptive immune responses: T cell-mediated immunity

In other words. how to prevent David from killing Goliath. Tammy Rickabaugh, Ph.D. January 14, 2014

Effector T Cells and

1. Overview of Adaptive Immunity

General Overview of Immunology. Kimberly S. Schluns, Ph.D. Associate Professor Department of Immunology UT MD Anderson Cancer Center

Chapter 1. Chapter 1 Concepts. MCMP422 Immunology and Biologics Immunology is important personally and professionally!

Immunity to Viruses. Patricia Fitzgerald-Bocarsly September 25, 2008

FOCiS. Lecture outline. The immunological equilibrium: balancing lymphocyte activation and control. Immunological tolerance and immune regulation -- 1

Immune response. This overview figure summarizes simply how our body responds to foreign molecules that enter to it.

CELL BIOLOGY - CLUTCH CH THE IMMUNE SYSTEM.

SINGLE CHOICE. 5. The gamma invariant chain binds to this molecule during its intracytoplasmic transport. A TCR B BCR C MHC II D MHC I E FcγR

Prof. Ibtesam Kamel Afifi Professor of Medical Microbiology & Immunology

Immune system. Aims. Immune system. Lymphatic organs. Inflammation. Natural immune system. Adaptive immune system

Tumor Immunology. Wirsma Arif Harahap Surgical Oncology Consultant

Antigen Presentation to T lymphocytes

I. Defense Mechanisms Chapter 15

White Blood Cells (WBCs)

RAISON D ETRE OF THE IMMUNE SYSTEM:

LYMPHOCYTES & IMMUNOGLOBULINS. Dr Mere Kende, Lecturer SMHS

Lecture 9: T-cell Mediated Immunity

Question 1. Kupffer cells, microglial cells and osteoclasts are all examples of what type of immune system cell?

Fluid movement in capillaries. Not all fluid is reclaimed at the venous end of the capillaries; that is the job of the lymphatic system

Darwinian selection and Newtonian physics wrapped up in systems biology

Chapter 22: The Lymphatic System and Immunity

Defensive mechanisms include :

Structure and Function of Antigen Recognition Molecules

Effector mechanisms of cell-mediated immunity: Properties of effector, memory and regulatory T cells

Physiology Unit 3. ADAPTIVE IMMUNITY The Specific Immune Response

The Immune System is the Third Line of Defense Against Infection. Components of Human Immune System

Immune response to infection

Principles of Adaptive Immunity

Blood and Immune system Acquired Immunity

T cell and Cell-mediated immunity

The Adaptive Immune Response. B-cells

RAISON D ETRE OF THE IMMUNE SYSTEM:

There are 2 major lines of defense: Non-specific (Innate Immunity) and. Specific. (Adaptive Immunity) Photo of macrophage cell

Adaptive Immunity: Humoral Immune Responses

Third line of Defense

T cell and Cell-mediated immunity

CHAPTER-VII IMMUNOLOGY R.KAVITHA, M.PHARM, LECTURER, DEPARTMENT OF PHARMACEUTICS, SRM COLLEGE OF PHARMACY, SRM UNIVERSITY, KATTANKULATHUR.

2014 Pearson Education, Inc. Exposure to pathogens naturally activates the immune system. Takes days to be effective Pearson Education, Inc.

محاضرة مناعت مدرس المادة :ا.م. هدى عبدالهادي علي النصراوي Immunity to Infectious Diseases

Chapter 13 Lymphatic and Immune Systems

Micro 204 Innate Lymphocytes & Natural Killer Cells. Lewis L. Lanier

NATURAL KILLER T CELLS EBOOK

General information. Cell mediated immunity. 455 LSA, Tuesday 11 to noon. Anytime after class.

The Immune System. These are classified as the Innate and Adaptive Immune Responses. Innate Immunity

Problem 7 Unit 6 Clinical: Primary immunodeficiency

AGAINST VIRAL INFECTIONS. Identify the types of immunity involve in the mechanisms of protection against viral infections.

Immunology - Lecture 2 Adaptive Immune System 1

Micr-6005, Current Concepts of Immunology (Rutgers course number: 16:681:543) Spring 2009 Semester

The development of T cells in the thymus

T Cell Effector Mechanisms I: B cell Help & DTH

Overview of the Lymphoid System

All animals have innate immunity, a defense active immediately upon infection Vertebrates also have adaptive immunity

The Immune System. A macrophage. ! Functions of the Immune System. ! Types of Immune Responses. ! Organization of the Immune System

Helminth worm, Schistosomiasis Trypanosomes, sleeping sickness Pneumocystis carinii. Ringworm fungus HIV Influenza

Third line of Defense. Topic 8 Specific Immunity (adaptive) (18) 3 rd Line = Prophylaxis via Immunization!

Cytokines, adhesion molecules and apoptosis markers. A comprehensive product line for human and veterinary ELISAs

Oncolytic Immunotherapy: A Local and Systemic Antitumor Approach

IMMU3903 Immunology in Human Disease 2017

5/1/13. The proportion of thymus that produces T cells decreases with age. The cellular organization of the thymus

Transcription:

T cells III: Cytotoxic T lymphocytes and natural killer cells Margrit Wiesendanger Division of Rheumatology, CUMC September 17, 2008 Killer cells: CD8 + T cells (adaptive) vs. natural killer (innate) Shared purpose: protect the host from viral, bacterial and parasitic infection recognize and destroy malignant cells Shared mechanisms of cytotoxicity and similar cytokine secretion profiles Distinct modes of target recognition Cytotoxic T lymphocytes Express CD8 (potentiates interaction with class I MHC molecule) Each T cell expresses a unique receptor, within a highly diverse repertoire generated by V(D)J recombination Scan MHC class I-peptide complexes, searching for pathogen or tumorencoded antigens Preactivation and differentiation required Natural killer cells Invariant activating and inhibitory receptors Recognize missing self : the absence of class I MHC on the cell surface triggers NK attack (viral or tumor strategy to evade immune surveillance by CD8+ T cells) No preactivation required, but significantly potentiated by cytokines 1

Clinical relevance of cytotoxic cells according to Goldilocks Too Hot Too Cold Just Right Autoimmune diseases: seronegative spondyloarthropathies, type I diabetes Hypersensitivity reactions Graft versus host disease Transplant rejection Immunodeficiency syndromes with decreased NK function: Chediak-Hidashi syndrome (CHS1 gene) Griscelli syndrome (Rab27a gene) Hermansky-Pudlak syndrome (HPS1 gene) Familial Hemophagocytic Lymphohistiocytosis: (perforin gene defect) Host defense against: Viruses (HSV, EBV, CMV) Bacteria (Listeria monocytogenes) Parasites (Plasmodium falciparum and Toxoplasma gondii) Primary and metastatic tumors Graft versus leukemia effect NK cells in placenta: vascularization and inhibition of fetal rejection Examples are provided for illustrative purposes: do not memorize! Cytotoxic effector cells: armed and very dangerous Cytotoxicity: Immune modulation: Granzyme/perforin pathway Death receptor pathway: Fas/Fas ligand TNF-Related Apoptosis-Inducing Ligand (TRAIL) Production of inflammatory cytokines: interferon-γ tumor necrosis factor (TNF) Chemokine secretion: CCL3 (MIP1α) CCL4 (MIP1β) CCL5 (RANTES) Immunomodulatory cytokines: Interleukin-10 Granulocyte and Monocyte Colony Stimulating Factor (GM-CSF) 2

Mechanisms of cytotoxic T lymphocyte (CTL)-induced cell death: a form of assisted suicide Perforin: disrupts cell membrane Granzyme A: cleaves nuclear proteins and facilitates doublestranded DNA breaks Granzyme B: activates the proapoptotic molecule BID Clinical Immunology: Principles and Practice, 3rd ed., Elsevier, ch. 18, p. 272 (2008) Mechanisms of cytotoxic T lymphocyte (CTL)-induced cell death: Fas/FasLigand and TRAIL/TRAIL receptors TRAIL TRAIL-R Thomas Brunner lab website, Fas expressed on target cell: Fas expressed activated T cell: Institute of Pathology, University of Bern, CH enables killing via Fas/FasL pathway provides mechanism for downregulating the immune response by T cell fratricide (activa TRAIL (TNF-related apoptosis inducing ligand) expressed on activated T cell: TRAIL enables killing (apoptosis) via signaling through the receptor expressed by the target cell -- tumor cells may be particularly sensitive to this death pathway 3

How T cells become activated: life cycle of the dendritic cell José A. Villadangos, Louise J. Young Clinical Immunology: Principles and Practice, 3rd ed., Elsevier, ch. 7 (2008) How T cells become activated: Cellular interactions during an immune response in the lymph node IL-12, CCL3, CCL4 Antigen presentation Clinical Immunology: Principles and Practice, 3rd ed., Elsevier, ch. 18 (2008) 4

007: license to kill In order to be able to efficiently prime naïve CD8+ T cells, dendritic cells must first be licensed CD4+ T cell help: licensing via CD40/ CD40L Virulent pathogen: licensing via Tolllike receptors (TLR) No license -> no priming William Heath, Francis Carbone Nature Reviews in Immunology 1: 126 (2001) Different antigen processing pathways for MHC class I and class II molecules William Heath, Francis Carbone Nature Reviews in Immunology 1: 126 (2001) 5

What if a virus directly infects and shuts down the antigen-presenting cell? Cross-presentation pathways can take over William Heath, Francis Carbone Nature Reviews in Immunology 1: 126 (2001) Generation of an effector response and memory CTL: 2 models for the role of antigen stimulation in T cell proliferation EXPANSION CONTRACTION Susan Kaech, E. John Wherry, Rafi Ahmed Nature Reviews in Immunology, 2:251 (2002) 6

Generation of memory CTL: CD8+ T cells need help to remember CD4+ T cell help: directly or indirectly produces cytokines that promote the survival, proliferation and programming of the memory CTL. CD4 T cell-deficient mice: a model for the study of helpless CD8+ T cells, which resemble CTL in chronic infections in which pathogens are not cleared despite a robust CTL response. Two molecules have been found to mediate the defects in helpless CTL responses: 1. Re-stimulation of helpless CTL leads to an abortive response due to AICD that is mediated by TRAIL. 2. PD-1 (programmed death 1), an inhibitory member of the TNFR family, is expressed on both helpless CTL and on CTL cells during chronic infections. Blocking the interaction of PD-1 with its ligands greatly enhances the numbers and functions of the impaired CTL. Clinical Immunology: Principles and Practice, 3rd ed., Elsevier, ch. 18 (2008) Detection and analysis of CTL function Peptide-MHC class I complex Biotin-avidin Clinical Immunology: Principles and Practice, 3rd ed., Elsevier, ch. 18 (2008) 7

Natural Killer Cells Surveillance function: NK cells are found in: Peripheral blood Secondary lymphoid organs: bone marrow, spleen, activated lymph nodes Peripheral tissue: liver, lung and the decidual lining of the uterus Key cytokines: Interleukin-15: required for NK cell development IL-12, IL-18: promote activation, cytotoxicity, IFN-γ production Key surface markers: CD16 (FcγRIII), binds IgG and promotes the antibody-dependent cytotoxicity (ADCC) of NK cells CD56 (adhesion molecule), Killer cell Immunoglobulin-like Receptor (KIR): recognize MHC class I molecules (HLA-A, B, C). A specific allele (KIR3DS1) can recognize HIV peptide in HLA- Bw4 and is associated with slow progression to AIDS. Clinical Immunology: Principles and Practice, 3rd ed., Elsevier, ch. 18, p. 277 (2008) 2 subsets of human natural killer cells CD56 bright CD16 dim KIR +/- predominant NK population in secondary lymphoid organs, highly proliferative, greater cytokine production CD56 dim CD16 bright KIR + predominant NK cells in peripheral blood, highly cytotoxic Clinical Immunology: Principles and Practice, 3rd ed., Elsevier, ch. 18, p. 272 (2008) 8

Natural Killer cells vs. Cytotoxic T cells: target recognition NK cell Cytotoxic T cell Receptor type Ligand type Absence of class I MHC results in Presence of class I MHC results in NK receptor (numerous activating or inhibitory) Class I MHC, MICA/B, immune complexes, etc. Immediate cytotoxicity ( missing self ) Inhibitory signal to NK cell T cell receptor Peptide-MHC class I complex Lack of recognition TCR engagement Clinical Immunology: Principles and Practice, 3rd ed., Elsevier, ch. 18, p. 272 (2008) NK cell receptors Inhibitory receptors: Recognize mostly MHC class I ligands with high affinity Signal via ImmunoTyrosine Inhibitory Motifs (ITIM) Recruit phosphatases (SHP and SHIP) to prevent a cytotoxic response Activating receptors: Ligands include viral molecules and stress induced proteins Do not bind MHC class I molecules with high affinity Signal via ImmunoTyrosine Activating Motifs (ITAM) Use several signaling adaptors, including DAP12 Required for NK cell licensing Note: most NK cell receptors can also be expressed by some T cells after activation Clinical Immunology: Principles and Practice, 3rd ed., Elsevier, ch. 18, p. 272 (2008) 9

NK cell recognition of target cells Clinical Immunology: Principles and Practice, 3rd ed., Elsevier, ch. 18, p. 272 (2008) Specific NK cell functions (I) Control of viral infections: Patients with selective NK deficiencies suffer from recurrent herpes simplex and cytomegalovirus infections NK cells can lyse HIV-infected target cells either directly or by ADCC (Antibody- Dependent Cellular Cytotoxicity) NK cells secrete large quantities of chemokines (CCL3, CCL4, CCL5) which are the ligands for CCR5 and inhibit CCR5-dependent entry of HIV into target cells (however, HIV-infected T cells selectively downregulate a subset of HLA genes, thus evading immune control while remaining resistant to NK cell cytotoxicity) Clinical Immunology: Principles and Practice, 3rd ed., Elsevier, ch. 18, p. 282 (2008) 10

Specific NK cell functions (II) Control of malignant cells: A long-standing hypothesis: NK cells function in protective tumor immune surveillance (by killing tumors that have downregulated MHC class I to evade recognition and cytotoxicity by T cells) Difficult to test this theory in humans, but NK cells can reject tumors in mouse models NK cells activate dendritic cells by producing IFN-γ (thus enhancing tumor immunogenicity), and also by providing DC with increased access to tumor antigens by killing activity Clinical Immunology: Principles and Practice, 3rd ed., Elsevier, ch. 18, p. 282 (2008) Specific NK cell functions (III) Role in hematopoeitic stem cell transplantation: Allogeneic bone marrow transplantation (BMT): the graft vs. leukemia effect cures leukemia via killing of residual malignant cells by donor cytotoxic T cells However: transferred donor T cells can also mediate graft vs. host disease. Proposal (controversial): BMT from a haplo-identical donor (eg from parent, where one-half of MHC is shared between parent and child) may provide allogeneic NK cells with an HLA haplotype that would potentiate the graft vs. leukemia effect (while minimizing graft vs. host effect). Clinical Immunology: Principles and Practice, 3rd ed., Elsevier, ch. 18, p. 282 (2008) 11

Specific NK cell functions (IV) NK cells and pregnancy: During pregnancy, maternal and paternal (nonself) antigens are expressed in the embryo and placenta Implantation site: uterine NK cells are the predominant leukocyte population. Features of unk cells: low cytotoxicity, but do secrete IFN-γ, TNF and angiogenic factors ( immune deviation?) Model: maternal NK cells interact with the trophoblast for physiologic placental development Clinical Immunology: Principles and Practice, 3rd ed., Elsevier, ch. 18, p. 282 (2008) How viruses and tumors evade cytoxicity Latency: minimizing viral gene detection (HSV, EBV, HIV) Antigenic variation: rapid mutation of viral genome (HIV) or tumor markers Infection of immune privileged sites : central nervous system (HSV) Production of immunoevasins : adenovirus and Epstein-Barr virus produce proteins that hinder Fas or TNF-mediated killing, or inhibit cytokine function. EBV also produces homologs of the Bcl-2 anti-apoptotic molecule. Modulation of molecules involved in target recognition: viruses interfere with antigen processing, presentation, or MHC class I expression. Clinical Immunology: Principles and Practice, 3rd ed., Elsevier, ch. 18, p. 282 (2008) 12

Take Home Messages 1. CD8 + T cells (adaptive immunity) and Natural Killer cells (innate immunity) cooperate to protect the host from viruses, intracellular bacteria and parasites, and in tumor surveillance 2. Mechanisms of cellular cytoxicity shared between CD8 + T cells and NK cells include triggering apoptosis in the target cell via the perforin/granzyme pathways or cell surface receptors (Fas, TRAIL) 3. Target recognition relies on either specific peptide presented in MHC class I (for CD8 + T cells) or the lack of MHC class I (for NK cells). 4. CD8 + T cells require a licensing step (by activated dendritic cells) in order to acquire cytotoxic function and generate memory. 5. Cross-presentation allows the priming of CD8+ T cells against viruses that attempt to evade the immune response by shutting down antigen presentation 6. NK cell activation is determined by the balance of positive and negative signals received through an array of surface receptors. 13