Malinee Pongsavee. 1. Introduction

Similar documents
Toxicity and Genotoxicity of Pendimethalin in Maize and Onion

Genotoxicity of Caffeinated Soft Drinks on Meristematic Root Cells of Allium Cepa

Cytological effects induced by Agil herbicide to onion

GENOTOXIC EFFECTS OF BORAX ON CULTURED LYMPHOCYTES

Lecture -2- Environmental Biotechnology

Effects of Some Growth Substances on Mitosis

Cinnamomum Essential Oil Prevents DNA Damage- Induced by Doxorubicin on CHO-K1 Cells

SISTER CHROMATID EXCHANGE FREQUENCY AND CHROMOSOME ABERRATIONS IN RESIDENTS OF FLUORIDE ENDEMIC REGIONS OF SOUTH GUJARAT

Determination of sodium benzoate in fruit juice. BCH445 [Practical] 1

STUDY OF MITOTIC ACTIVITY AND CHROMOSOMAL BEHAVIOUR IN ROOT MERISTEM OF Allium cepa L. TREATED WITH MAGNESIUM SULPHATE

Introduction: Alprazolam is a triazolobenzodiazepine used in panic disorders and other anxiety

Onion (Allium cepa) genotoxicity test

LYMHOCYTE CHROMOSOMAL ABERRATION ASSAY IN RADIATION BIODOSIMETRY

Chemical and Biochemical Mechanism Of Cell Injury.

Investigations on its antioxidative and anti-inflammatory potential

Evaluation of cytotoxic effects of synthetic pesticide attack on root meristems of Allium cepa L.

(Z)-1-Chloro-2,3,3,3-tetrafluoropropene (2017)

Evaluation of genome damage in subjects occupationally exposed to possible carcinogens. D. Želježi, M. Mladini, N. Kopjar, A. Hursidic Radulovic

Ch. 3 CELLS AND TISSUES. Copyright 2010 Pearson Education, Inc.

Genotoxicity of formaldehyde in vitro and in vivo. Günter Speit

EFFECTS OF DITHANE M-45 (A FUNGICIDE) ON ROOT MERISTEM OF VIGNA MUNGO (L.) HEPPER

VITAMINS, MINERALS AND THE GUT

Cytogenetic Effects of Fungicide Afugan on the Meristematic Cells of Allium cepa L.

Stages of Mitosis. Introduction

CYTOGENETIC EFFECTS OF TWO FOOD PRESERVATIVES, SODIUM METABISULPHITE AND SODIUM BENZOATE ON THE ROOT TIPS OF ALLIUM

Cytological Effects of 5- Amino Uracil on Allium cepa L. roots

Chapter 3. Toxicity and the Factors That Modify Toxic Responses

Principles of Anatomy and Physiology

Regulators of Cell Cycle Progression

Chapter 24 Diabetes Mellitus

VICH GL23: Studies to evaluate the safety of residues of veterinary drugs in human food: genotoxicity testing

Amanda Deering Clinical Assistant Professor Department of Food Science, Purdue University

Aging and nutrition 03/11/2012. Why do people age? Oxidative stress and damage

Application of chromosomal radiosensitivity assays to temporary nuclear power plant workers

EVALUATION OF CYTOTOXICITY OF DICHLORVOS PESTICIDE IN LABORATORY MOUSE

shehab Moh Tarek ... ManarHajeer

DICHLOROACETONITRILE. 1. Exposure Data

Advanced Anatomy and Physiology

Clastogenic effect of soft drink on root tip of Allium cepa

EFFECTS OF CHRONIC GAMMA IRRADIATION ON SHALLOT CHROMOSOMES (Allium ascalonicum Linn)

T R L J. Version 2, 2018 NAME: OPTION GROUP: CELL DIVISION MITOSIS WORKBOOK

ideal chemical preservatives

Breaking Up is Hard to Do (At Least in Eukaryotes) Mitosis

Available online:

Proteins. Length of protein varies from thousands of amino acids to only a few insulin only 51 amino acids

Cell Cycle Phase. Interphase (G 1, S, G 2 ) Mitotic Phase (M phase) Prophase. Metaphase. Anaphase. Telophase

July. July Newsletter

Regulation of the Cell Cycle CHAPTER 12

BIOLOGY LTF DIAGNOSTIC TEST CELL CYCLE & MITOSIS

Preservatives in Our Food: Part 1

INCI: Leucojum Aestivum Bulb Extract

Superoxide Dismutase Assay Kit

CELL CYCLE INTRODUCTION PART I ANIMAL CELL CYCLE INTERPHASE

The Cell Cycle. Materials 2 pipe cleaners of one color and 2 of another color Drawing paper

OCCUPATIONAL EXPOSURE TO FORMALDEHYDE: EFFECTS OF YEARS OF EXPOSURE IN THE FREQUENCY OF MICRONUCLEUS

The Study of Cells The diversity of the cells of the body The following figure shows the proportion of cell size of the variety of cells in the body

By Dr.Burde Kaustubh Girish DNB Narayana Hrudayalaya

TABLE OF CONTENTS. Introduction...5 What the Wrong Kind of Water...5 Benefits of Alkaline Water...8

Mouse Hydrogen Peroxide (H2O2) Fluorescent Detection Kit

Genotoxic and acute toxic properties of selected synthetic cannabinoids

Effect of Nano-Silver on Cell Division and Mitotic Chromosomes: A Prefatory Siren

Genomic Instability Induced by Ionizing Radiation

Evaluation of genotoxicity of gastric proton pump inhibitor omeprazole and role of vitamin-e in mice

5/25/2015. Replication fork. Replication fork. Replication fork. Replication fork

B.5ABCD Cell Differentiation

Biology is the only subject in which multiplication is the same thing as division. AP Biology

Human Hydrogen Peroxide Fluorescent Detection Kit

Cytological Effects of Paper Mills Effluents on Somatic Cells of Allium cepa

Genetics and Information Transfer

The radiotracer 99m Tc-MIBI is not genotoxic for human peripheral blood lymphocytes at diagnostic radioactive dose

Cell Cycle. Cell Cycle the cell s life cycle that extends from one division to the next G1 phase, the first gap phase. S phase, synthesis phase

The Cell Cycle. Dr. SARRAY Sameh, Ph.D

Fig You may use each letter once, more than once or not at all. link reaction... glycolysis... electron transport chain... Krebs cycle...

Chapter 8: Cellular Reproduction

Mugimane Manjanatha, Ph.D

Comparison of different genotoxicity tests in vitro for assessment of surface water quality E. Dopp, J. Richard, S. Zander-Hauck

OECD/OCDE Adopted: 29 July 2016

Molecular Radiobiology Module 4 Part #3

Mitosis in Onion Root Tip Cells

MITOSIS INTRODUCTION. Cytokinesis. centromere. DNA Replication S-Phase. One Chromosome Two Chromatids. One Chromosome No Chromatids 10.

Radioprotective effects of selenium and vitamin-e against 6MV X-rays in human blood lymphocytes by micronucleus assay

Understanding probiotics and health

Original article: EVALUATION OF CHROMOSOME ABERRATIONS INDUCED BY DIGOXIN IN CHINESE HAMSTER OVARY CELLS

Impact of Preservatives in ph of Yoghurt Produced from Soya Beans Milk in Sokoto Metropolis

6 Essential Minerals for Women's Health. By Dr. Isaac Eliaz

AN ACTIVE SHELTER AGAINST POLLUTION V.16

Biology 4A Laboratory MITOSIS Asexual Reproduction OBJECTIVE

Instructor s Manual for Unit 2 The Inside Story about Nutrition and Health

10-2 Cell Division. Slide 1 of 38. End Show. Copyright Pearson Prentice Hall

Lecture - 07 Food Additives

CHAPTER 6 DISCUSSION

_??_ 1987 by Cytologia, Tokyo C ytologia 52: , Meiotic Abnormalities Induced by Dye Industry Waste Water in Chlorophytum amaniense Engler

DIBROMOACETONITRILE. 1. Exposure Data

Cell Division. Learning Objectives: Introduction. Revised Fall 2018

CYTOGENETICS Dr. Mary Ann Perle

Superoxide Dismutase Microplate Assay Kit User Manual

Breaking Up is Hard to Do (At Least in Eukaryotes) Mitosis

FACTORS AFFECTING THE GROWTH OF MICRO-ORGANISMS IN FOODS

Almost every cell in the human body has an identical set of 46 chromosomes, produced through the process of mitosis.

Lab title: Cell Division author: Dr. Ruth Dahlquist-Willard (modified by D. Bell)

Transcription:

BioMed Research International Volume 2015, Article ID 103512, 5 pages http://dx.doi.org/10.1155/2015/103512 Research Article Effect of Sodium Benzoate Preservative on Micronucleus Induction, Chromosome Break, and Ala40Thr Superoxide Dismutase Gene Mutation in Lymphocytes Malinee Pongsavee Department of Medical Technology, Faculty of Allied Health Sciences, Thammasat University, Rangsit Campus, Pathum Thani 12121, Thailand Correspondence should be addressed to Malinee Pongsavee; malineep@tu.ac.th Received 24 December 2014; Accepted 20 January 2015 Academic Editor: Davor Zeljezic Copyright 2015 Malinee Pongsavee. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Sodium benzoate is food preservative that inhibits microbial growth. The effects of sodium benzoate preservative on micronucleus induction, chromosome break, and Ala40Thr superoxide dismutase gene mutation in lymphocytes were studied. Sodium benzoate concentrations of 0.5, 1.0, 1.5, and 2.0 mg/ml were treated in lymphocyte cell line for 24 and 48 hrs, respectively. Micronucleus test, standard chromosome culture technique, PCR, and automated sequencing technique were done to detect micronucleus, chromosome break, and gene mutation. The results showed that, at 24- and 48-hour. incubation time, sodium benzoate concentrations of 1.0, 1.5, and 2.0 mg/ml increased micronucleus formation when comparing with the control group (P < 0.05). At 24- and 48-hour. incubation time, sodium benzoate concentrations of 2.0 mg/ml increased chromosome break when comparing with the control group (P < 0.05). Sodium benzoate did not cause Ala40Thr (GCG ACG) in superoxide dismutase gene. Sodium benzoate had the mutagenic and cytotoxic toxicity in lymphocytes caused by micronucleus formation and chromosome break. 1. Introduction Preservatives are the substances added to food to prevent decompositions by microbial growth or undesirable chemical changes. There are many preservatives which are commonly used in food industries including benzoate group, which is used as bacteriostatic and fungistatic in acidic food and drink such as vinegar, carbonated drinks, jams, fruit juice, and condiments. Sodium benzoate is commonly used in worldwide food. Nowadays food and drink consumption involve with these preservatives, due to almost products even fresh or dried food are always added preservatives to extend lifespan. Food and Drug Administration (FDA) regulates the amount of food additives allowable in foods or other goodstohelpensuresafetyandreducethepossibilityof overconsumption. For using benzoate group such as sodium benzoate and potassium benzoate in dairy products such as ice cream, pudding, and yoghurt, FDA allows using sodium benzoate at 300 mg/1 kg. As the result of long term intake even though it is small amount, the preservatives may cause harm to consumers within some sickness and in chromosomes level. The following adverse effects of food preservatives are nausea, vomiting, diarrhea, rhinitis, bronchospasm, migraine, anaphylaxis, and hyperactivity in children [1]. Micronucleus test (MN) is the test system for the detection of chemicals which induces the formation of micronuclei inthecytoplasmofbinucleatedcells.thesemicronucleimay originate from chromosome fragments or whole chromosomes which are unable to migrate with the rest of the chromosomes during the anaphase of cell division [2]. Due tothetoxicityofsodiumbenzoatetohuman,thepurposeof this study was to evaluate the potential genotoxic effects of sodium benzoate which was one of the food preservatives on human lymphocytes. Extracellular superoxide dismutase (EC-SOD) is an enzyme that in humans is encoded by the SOD3 gene. This gene encodes a member of the superoxide dismutase (SOD) protein family. SODs are antioxidant enzymes that catalyze the dismutation of two superoxide radicals into hydrogen peroxide and oxygen. The product of this gene is thought to protect the brain, lungs, and other tissues from oxidative

2 BioMed Research International stress. The protein is secreted into the extracellular space and forms a glycosylated homotetramer that is anchored to the extracellular matrix (ECM) and cell surfaces through an interaction with heparan sulfate, proteoglycan, and collagen. A fraction of the protein is cleaved near the C-terminus before secretion to generate circulating tetramers that do not interact with the ECM [3]. Oxidative stress has been implicated in pancreatic β-cell damage, insulin resistance, and vascular function in diabetic patients. The missense mutation Ala40Thr (GCG ACG) of EC-SOD gene is associated with insulin resistance and the susceptibility to type 2 diabetes [4]. The toxicity of sodium benzoate involved in type 2 diabetes on EC-SOD mutation wasinvestigatedinthisstudy. 2. Materials and Methods The study was carried out using human lymphocyte cell line (ATCC PCS-800-013). 2.1. Study of the Effects of Sodium Benzoate on Micronucleus Test and Chromosome Breakage. Human lymphocyte cell line (ATCC PCS-800-013) was cultured in RPMI medium containing 10% fetal bovine serum, antibiotics, and phytohemagglutinin M. The human lymphocyte cultures were incubated in 5% CO 2 incubator at 37 C. The concentrations of sodium benzoate were 0.5, 1.0, 1.5, and 2.0 mg/ml and the incubation times for treating lymphocytes were 24 and 48 hrs, respectively, for micronucleus test and chromosome study in this study. For micronucleus test, micronuclei preparation was performed according to the procedures of Fenech [5] and Palus et al. [6]. For chromosome study, standard human lymphocyte culture for chromosome study was performed and stained the chromosomes with Giemsa [7]. Micronuclei and chromosome breakage were observed under microscope. 2.2. Study of the Effect of Sodium Benzoate Toxicity on Ala40Thr Superoxide Dismutase Gene Mutation in Lymphocytes. Lymphocytes were treated with sodium benzoate concentration of 2.0 mg/ml for 48 hrs. After that, DNA was extracted from treated lymphocytes with DNA extraction kit followed by PCR [4] and automated DNA sequencing. 2.3. Statistical Analysis. The correlations among micronucleus formations, the concentrations of sodium benzoate, and the incubation times were tested by ANOVA at P < 0.05 level. 3. Results and Discussion 3.1. Study of the Effects of Sodium Benzoate on Micronucleus Test and Chromosome Breakage. For micronucleus formation, the results showed that the micronucleated cells were increased when the concentration of sodium benzoate increased. At 24- and 48-hour incubation times, sodium benzoate concentrations of 1.0, 1.5, and 2.0 mg/ml increased themicronucleatedcellssignificantlywhencomparedwith the control group (P < 0.05) but sodium benzoate concentration of 0.5 mg/ml did not increase the micronucleated Table 1: Effect of four sodium benzoate concentrations at 24 and 48 hrs on micronucleus formation in lymphocytes. Treated substance Period (hrs) Treatment Conc. (mg/ml) MN ± SE (%) Control 24 0 42.88 ± 2.88 SB 24 0.5 51.52 ± 1.62 24 1.0 66.67 ± 2.10 24 1.5 69.23 ± 1.36 24 2.0 86.67 ± 1.77 Control 48 0 50.00 ± 2.88 SB 48 0.5 63.64 ± 1.01 48 1.0 69.23 ± 1.05 48 1.5 78.57 ± 1.17 48 2.0 93.64 ± 1.42 Significantly different from the control (P <0.05). SB: sodium benzoate. MN: micronucleated cell. MN (%) 100 90 80 70 60 50 40 30 20 10 0 0 0.5 1 1.5 2 SB24 SB: sodium benzoate MN: micronucleated cell Conc. of SB (mg/ml) SB48 Figure 1: Percent of micronucleated cell in lymphocytes for four sodium benzoate concentrations at 24- and 48-hour incubation time. cells significantly when compared with the control group (P > 0.05)(Table 1 and Figure 1). Micronucleated cells in each sodium benzoate concentration were shown in Figure 2. For chromosome breakage, at 24- and 48-hour incubation time, sodium benzoate concentration of 2.0 mg/ml caused sister chromatid separation and gap in chromosomes when compared with the control group (P < 0.05) butsodium benzoate concentrations of 0.5, 1.0, and 1.5 mg/ml did not cause sister chromatid separation and gap in chromosomes when compared with the control group (P > 0.05) (Figures 3 and 4). Sister chromatid separation and gap in chromosomes were shown in Figure 5. 3.2. Study of the Effect of Sodium Benzoate Toxicity on Ala40Thr Superoxide Dismutase Gene Mutation in Lymphocytes. The missense mutation Ala40Thr of superoxide

BioMed Research International 3 Conc. (mg/ml) Sodium benzoate treated in lymphocytes for 24 hrs Sodium benzoate treated in lymphocytes for 48 hrs Control 0.5 1.0 1.5 2.0 Figure 2: Micronuclei in lymphocytes for four sodium benzoate concentrations at 24 and 48 hrs. dismutase gene in lymphocytes was not found in this study. Thus, sodium benzoate toxicity was not involved in this mutation and type 2 diabetes occurrence. Sodium benzoate is a preservative. As a food additive, sodium benzoate has the E number E211. It is bacteriostatic and fungistatic under acidic conditions. The mechanism starts with the absorption of benzoic acid into the cell. If the intracellular ph falls to 5 or lower, the anaerobic fermentation of glucose through phosphofructokinase decreases sharply which inhibits the growth and survival of microorganisms that cause food spoilage. Ishidate et al. [8] reportedthatsodiumbenzoatecaused chromosome aberrations in Chinese hamster fibroblast cell line. In an in vitro study, ornithine transcarbamylase and tyrosine aminotransferase, marker enzymes in the mitochondria and cytosol of rat liver hepatocytes, were clearly suppressed by sodium benzoate at concentration in excess of 500 μg/ml and inhibited DNA synthesis with 100 μg/ml. Oyanagi et al. [9] and Mpountoukas et al. [10] studiedthe genotoxic, cytostatic, and cytotoxic potential of sodium benzoate in human peripheral blood cells in vitro. They reported sodium benzoate concentrations of 2.0, 0.2, and 0.02 mm caused no cytostatic activity detected and 4 and 8 mm caused weak cytostaticity. They concluded that the preservatives can be nongenotoxic at low concentrations. Türkoǧlu [11] and Zengin et al. [12]studiedtheeffectsofsodiumbenzoateof20

4 BioMed Research International Sodium benzoate treated in lymphocytes for 24 hrs Mean of metaphases 80 60 40 20 0 normal abnormal and normal Characteristic groups of chromosomes 0.5 24 1.5 24 1.0 24 2.0 24 and abnormal normal: 46 chromosomes with normal structures abnormal: 46 chromosomes with abnormal structures and normal: chromosome numbers with normal structures and abnormal: chromosome numbers with abnormal structures Figure 3: Mean of the numbers of normal and abnormal chromosomes in lymphocytes treated with sodium benzoate at 24-hour incubation time. Sodium benzoate treated in lymphocytes for 48 hrs Mean of metaphases 60 50 40 30 20 10 0 normal 0.5 48 1.0 48 abnormal and normal Characteristic groups of chromosomes 1.5 48 2.0 48 and abnormal normal: 46 chromosomes with normal structures abnormal: 46 chromosomes with abnormal structures and normal: chromosome numbers with normal structures and abnormal: chromosome numbers with abnormal structures Figure 4: Mean of the numbers of normal and abnormal chromosomes in lymphocytes treated with sodium benzoate at 48-hour incubation time. to 100 ppm for 5, 10, and 20 hrs on root tips of Allium cepa.as compared with control, mitotic index values were decreased and chromosome aberrations (anaphase bridges, C-mitosis, micronuclei, lagging, stickiness, breaks, and unequal distribution) increased with increasing concentrations and the longer period of treatment. The toxicity of sodium benzoate didnotcausemissensemutationala40throfsuperoxide dismutase gene in lymphocytes and was not associated with type 2 diabetes occurrence. 4. Conclusions According to our study, it might be the possible reasons of the sodium benzoate, affected DNA damage. The results observed in this study obtain the progress knowledge to preventdiseasesordecreasethechangesofhumanchromosomes caused by consumption of food additives and insist on more extensive safety assessment of food preservatives to activate the government departments responsible for public health to be concerned about disadvantages of food additives. However, studying in vivo is required to reach a whole decision about preservative genotoxicity and sodium benzoate mechanism of action on the DNA damage in human. Conflict of Interests The author declares that there is no conflict of interests regarding the publication of this paper.

BioMed Research International 5 Normal structure of chromosomes Abnormal structure of chromosomes Having gap Sister chromatid separation Figure 5: Normal chromosomes and abnormal chromosomes with gap and sister chromatid separation in chromosomes. Acknowledgment This work was supported by Thammasat University research grant, 2013. References [1] T. E. Tuormaa, The adverse effects of food additives on health: a review of the literature with special emphasis on childhood hyperactivity, Orthomolecular Medicine, vol. 9, pp. 225 243, 1994. [2] M.J.AardemaandM.K.Volders, Invitromicronucleusassay, in Genetic Toxicology and Cancer Risk Assessment,W.N.Choy, Ed., pp. 163 186, Marcel Dekker, New York, NY, USA, 2001. [3] J. Iłzecka, Superoxide dismutase-1 (SOD-1) gene mutationdependent mechanisms of neural degeneration in amyotrophic lateral sclerosis, Neurologia i Neurochirurgia Polska,vol.35,no. 3, pp. 461 469, 2001. [4] M. Tamai, H. Furuta, H. Kawashima et al., Extracellular superoxide dismutase gene polymorphism is associated with insulin resistance and the susceptibility to type 2 diabetes, Diabetes Research and Clinical Practice, vol.71,no.2,pp.140 145, 2006. [5] M. Fenech, The in vitro micronucleus technique, Mutation Research, vol. 455, no. 1-2, pp. 81 95, 2000. [6] J.Palus,K.Rydzynski,E.Dziubaltowska,K.Wyszynska,A.T. Natarajan, and R. Nilsson, Genotoxic effects of occupational exposure to lead and cadmium, Mutation Research/Genetic Toxicology and Environmental Mutagenesis,vol.540,no.1,pp. 19 28, 2003. [7] M. Seabright, A rapid banding technique for human chromosomes, The Lancet,vol.2,no.7731,pp.971 972,1971. [8] M.IshidateJr.,T.Sofuni,K.Yoshikawaetal., Primarymutagenicity screening of food additives currently used in Japan, FoodandChemicalToxicology,vol.22,no.8,pp.623 636,1984. [9] K.Oyanagi,Y.Kuniya,M.Nagao,A.Tsuchiyama,andT.Nakao, Cytotoxicitiesofsodiumbenzoateinprimarycultureofhepatocytes from adult rat liver, TohokuJournalofExperimental Medicine,vol.152,no.1,pp.47 51,1987. [10] P. Mpountoukas, A. Vantarakis, E. Sivridis, and T. Lialiaris, Cytogenetic study in cultured human lymphocytes treated with three commonly used preservatives, Food and Chemical Toxicology,vol.46,no.7,pp.2390 2393,2008. [11] Ş. Türkoǧlu, Evaluation of genotoxic effects of sodium propionate, calcium propionate and potassium propionate on the root meristem cells of Allium cepa, Food and Chemical Toxicology,vol.46,no.6,pp.2035 2041,2008. [12] N. Zengin, D. Yüzbaşioĝlu, F. Ünal,S.Yilmaz,andH.Aksoy, The evaluation of the genotoxicity of two food preservatives: sodium benzoate and potassium benzoate, Food and Chemical Toxicology,vol.49,no.4,pp.763 769,2011.

Tropical Medicine The Scientific World Journal Scientifica Autoimmune Diseases International Antibiotics Anesthesiology Research and Practice Toxins Submit your manuscripts at Advances in Pharmacological Sciences Toxicology MEDIATORS of INFLAMMATION Emergency Medicine International Pain Research and Treatment Stroke Research and Treatment Addiction Vaccines BioMed Research International International Pharmaceutics Drug Delivery Medicinal Chemistry