SWISS SOCIETY OF NEONATOLOGY. Classical presentation of a newborn infant with renal vein thrombosis

Similar documents
SWISS SOCIETY OF NEONATOLOGY. Neonatal cerebral infarction

VTE in Children: Practical Issues

SWISS SOCIETY OF NEONATOLOGY. Local fibrinolysis with r-tpa in a newborn with brachial artery thrombosis

SWISS SOCIETY OF NEONATOLOGY. Spontaneous intestinal perforation or necrotizing enterocolitis?

Mabel Labrada, MD Miami VA Medical Center

Anticoagulant Therapy in Neonates By Nancy Burke RNC-NIC, MSN, ARNP

DEEP VEIN THROMBOSIS (DVT): TREATMENT

Neonatal thrombosis. E A Chalmers

SWISS SOCIETY OF NEONATOLOGY. Severe apnea and bradycardia in a term infant

SWISS SOCIETY OF NEONATOLOGY. Fatal pulmonary embolism in a premature neonate after twin-twin transfusion syndrome

SWISS SOCIETY OF NEONATOLOGY. Neonatal sinovenous thrombosis

Risk factors for DVT. Venous thrombosis & pulmonary embolism. Anticoagulation (cont d) Diagnosis 1/5/2018. Ahmed Mahmoud, MD

Venous thrombosis & pulmonary embolism. Ahmed Mahmoud, MD

Venous thrombosis is common and often occurs spontaneously, but it also frequently accompanies medical and surgical conditions, both in the community

Treatment of Pediatric Venous Thromboembolism

Draft Agreed by Cardiovascular Working Party 28 September Adoption by CHMP for release for consultation 12 October 2017

PULMONARY EMBOLISM (PE): DIAGNOSIS AND TREATMENT

Approach to Thrombosis

The evaluation and management of postnatal thromboses

Thromboembolic Disease and Antithrombotic Therapy in Newborns

Guidelines for Anticoagulation in Paediatric Cardiac Patients

BLOOD RESEARCH. Venous thromboembolism in pediatric patients: a single institution experience in Korea

10/24/2013. Heparin-Induced Thrombocytopenia (HIT) Anticoagulation Management in ECMO Therapy:

THROMBOPHILIA TESTING: PROS AND CONS SHANNON CARPENTER, MD MS CHILDREN S MERCY HOSPITAL KANSAS CITY, MO

SWISS SOCIETY OF NEONATOLOGY. Vein of Galen aneurysm: Aneurysmal characteristics and clinical features as predictive factors

CASE REPORT. Hannah Lively-Endicott, BA, 1 Angelina M. Dixon, MD, 2 Joyce Varghese, DO 3

SWISS SOCIETY OF NEONATOLOGY. Hypertrophic pyloric stenosis in a preterm infant

How I treat venous thrombosis in children

Patients with cancer are at a greater risk of developing venous thromboembolism than non-cancer patients, partly due to the 1

SWISS SOCIETY OF NEONATOLOGY. Prolonged arterial hypotension due to propofol used for endotracheal intubation in a newborn infant

P-RMS: LT/H/PSUR/0004/001

This chapter will describe the effectiveness of antithrombotic

The control patients had at least the combination of cardiovascular failure necessitating vasoactive

incidence of cancer-associated thrombosis (CAT) is further increased by additional risk factors such as chemotherapeutic 2

Diagnosis and Treatment of Deep Venous Thrombosis and Pulmonary Embolism

Index. Note: Page numbers of article titles are in boldface type.

Risk Factor Evaluation for Thrombosis and Bleeding in Pediatric Patients with Heart Disease

Should infants with perinatal thrombosis be screened for thrombophilia and treated by anticoagulants?

Extensive cystic periventricular leukomalacia following early-onset group B streptococcal sepsis in a very low birth weight infant

SWISS SOCIETY OF NEONATOLOGY. Diagnostic evaluation of a symptomatic cerebrovascular accident in a neonate with focal convulsions

Successful Treatment of Bilateral Renal Vein Thrombosis in a Patient with Nephrotic Syndrome: A Case Report Z Li,J Li, F Liu ABSTRACT

Jessica Bryan, Natalia Evans, Karlyn Henderson, & Whitney Parks

Venous Thromboembolism Prophylaxis

UNIVERSITA DI PADOVA. Un tema particolare (II): Le trombosi venose in pediatria

Epidemiology of venous thrombosis in children with cancer

Pediatric thrombosis: Diagnosis and Management

A pregnant patient with a prosthetic valve Giacomo Boccuzzi, MD, FESC

Heparin-Induced Thrombocytopenia. Steven Baroletti, PharmD., M.B.A., BCPS Brigham and Women s Hospital

DVT Pathophysiology and Prophylaxis in Medically Hospitalized Patients. David Liff MD Oklahoma Heart Institute Vascular Center

SWISS SOCIETY OF NEONATOLOGY. Pulmonary complications of congenital listeriosis in a preterm infant

Management of Neonatal Thrombosis

CARDIAC PROBLEMS IN PREGNANCY

Welcome! Copyright (C) 2018 by ASPHO

Thrombophilia. Diagnosis and Management. Kevin P. Hubbard, DO, FACOI

Appendix IV - Prescribing Guidance for Apixaban

Atlantic Provinces Pediatric Hematology/Oncology Network Réseau d Oncologie et Hématologie Pédiatrique des Provinces Atlantiques

SWISS SOCIETY OF NEONATOLOGY. Neonatal gastric perforation

WARFARIN: PERI OPERATIVE MANAGEMENT

Paediatric Anticoagulant Guidelines. Bhavee Patel, Gareth Thomas

DVT - initial management NSCCG

Keep catheter. Anticoagulate. Yes. Symptoms resolved? Yes. No Catheter needed? Other access sites available? Yes. Anticoagulate. Place new catheter

A 50-year-old woman with syncope

PULMONARY EMBOLISM -CASE REPORT-

SWISS SOCIETY OF NEONATOLOGY. Prenatal closure of the ductus arteriosus

Antithrombotic Therapy in Neonates and Children

SWISS SOCIETY OF NEONATOLOGY. Preterm infant with. pulmonary hypertension and hypopituitarism

HEPARIN-INDUCED THROMBOCYTOPENIA (HIT)

Thrombosis and emboli. Peter Nagy

Coagulation, Haemostasis and interpretation of Coagulation tests

Pulmonary Embolism Is it the Greatest Danger in Deep Vein Thrombosis?

Renal Vein Thrombosis secondary to pyelonephritis: Case presentation

DEEP VENOUS THROMBOSIS (DVT), SUSPECTED ACUTE, INVOLVING A PROXIMAL LIMB

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

Duration of Anticoagulant Therapy. Linda R. Kelly PharmD, PhC, CACP September 17, 2016

VENOUS THROMBOEMBOLISM: DURATION OF TREATMENT

SWISS SOCIETY OF NEONATOLOGY. Multiple infantile hemangiomas in a preterm infant

Prevention and treatment of venous thromboembolic disease

Acute Pulmonary Embolism and Deep Vein Thrombosis. Barbara LeVarge MD Beth Israel Deaconess Medical Center Pulmonary Hypertension Center COPYRIGHT

Are there still any valid indications for thrombophilia screening in DVT?

MANAGEMENT OF BLEEDING AND EXCESSIVE ANTICOAGULATION IN ADULTS RECEIVING ANTI-COAGULANTS

Anticoagulant Therapy During Pregnancy

Disclosures. DVT: Diagnosis and Treatment. Questions To Ask. Dr. Susanna Shin - DVT: Diagnosis and Treatment. Acute Venous Thromboembolism (VTE) None

Successful Pulmonary Embolectomy of a Saddle Pulmonary Thromboembolism in a Preterm Neonate

Treatment Options and How They Work

PE Pathway. The charts are listed as follows:

Present-on-Admission (POA) Coding

Blood Thinner Agent. Done by: Meznah Al-mutairi Pharm.D Candidate PNU Collage of Pharmacy

SWISS SOCIETY OF NEONATOLOGY. Peripartal management of a prenatally diagnosed large oral cyst

Low-Molecular-Weight Heparin

Handbook for Venous Thromboembolism

WARFARIN: PERI-OPERATIVE MANAGEMENT

Guidance for management of bleeding in patients taking the new oral anticoagulant drugs: rivaroxaban, dabigatran or apixaban

ADMINISTRATIVE CLINICAL Page 1 of 6

THROMBOPHILIA SCREENING

Changing the Ambulatory Training Paradigm: The Design and Implementation of an Outpatient Pulmonology Fellowship Curriculum

Thromboprophylaxis in Patients with Congenital Heart Disease. Rachel Keashen, MSN, CRNP 10/19/2018

Supplementary Online Content

Objectives. Venous Thromboembolism (VTE) Prophylaxis. Case VTE WHY DO IT? Question: Who Is At Risk?

Deep vein thrombosis (DVT) is a pervasive LOW-MOLECULAR-WEIGHT HEPARIN IN THE TREATMENT OF ACUTE DEEP VEIN THROMBOSIS AND PULMONARY EMBOLISM *

Transcription:

SWISS SOCIETY OF NEONATOLOGY Classical presentation of a newborn infant with renal vein thrombosis December 2017

Wendelspiess M, Schifferli A, Rudin C, Kaempfen S, Department of Neonatology (WM, KS), Department of Pediatric Nephrology (RC), Department of Oncology / Hematology (SA), University of Basel Children s Hospital (UKBB), Basel, Switzerland Title figure: Blood clot (source: www.biocurious.com) Swiss Society of Neonatology, Thomas M Berger, Webmaster

3 Thrombosis in neonates is a rare event, but associated with significant morbidity and even mortality. Renal vein thrombosis (RVT) accounts for approximately 10 % of venous thromboses in neonates. Compared to other regions of thrombosis, RVT is less often asso ciated with central venous catheters (1). Various pathomechanisms, which may lead to a RVT, reduce blood flow to the kidneys or provoke hyperos molarity, hypercoagulability or increased blood viscosity (2, 3). Fetal/neonatal as well as maternal risk factors are summarized in Fig. 1. RVT can also occur as an extension of inferior vena cava thrombosis. INTRODUCTION Two thirds of neonatal RVTs are diagnosed during the first three days of life. RVTs are associated with male sex and preterm birth. Clinical presentation includes macrohematuria, thrombocytopenia and a palpable abdominal mass in approximately half of the cases (4, 5).

4 CASE REPORT This male infant was born to a 33-year-old G2/P2 at 38 0/7 weeks of gestation after an uncomplicated pregnancy. The mother developed fever during labor and received amoxicillin clavulanate prior to delivery for suspected chorioamnionitis. The infant was delivered by secondary Caesarean section and adapted well with Apgar scores of 8, 9 and 10 at 1, 5 and 10 minutes, respectively. Arterial and venous umbilical cord ph values were 7.28 and 7.42, respectively. Birth weight was 3160 g (P50), length 49 cm (P50) and head circumference 33 cm (P30). At 34 hours of age, the infant developed macrohematuria. Apart from a palpable mass in the right flank, physical examination was normal. On admission to the NICU, vital signs including blood pressure (80/40 (56) mmhg) were normal. Laboratory investigations showed thrombocytopenia (61 G/l) and renal failure (serum creatinine 124 µmol/l with a maternal serum creatinine prior to delivery of 49 µmol/l). Hemoglobin concentration was 135 g/l, and clotting studies (INR, aptt, fibrinogen) were within the normal range. Markers of inflammation were not elevated. Urine analysis confirmed macrohematuria, and the urine output was normal (3.1 ml/kg/hour). An abdominal ultrasound examination showed an enlarged right kidney with abolished corticomedullary differentiation and echogenic streaks in the lower pole, compatible with partial renal venous thrombosis (Fig. 2, 3). Apart from a persistent foramen ovale, echocardiography was normal.

5 Fetal/neonatal risk factors Catheters CHD RDS Sepsis Dehydration Birth asphyxia Polycythemia Inherited thrombophilia Prematurity T H R O M B O S I S Maternal risk factors Infertility Oligohydramnion Thrombotic states Chorioamnionitis Preeclampsia Diabetes mellitus Antiphospholipid syndrome In utero twin death Fig. 1 Risk factors for neonatal thrombosis (CHD: congenital heart disease; RDS: respiratory distress syndrome) (17).

6 Fig. 2 Renal ultrasound examination on DOL 2: enlarged right kidney (5.35 cm, normal range 3.9 5.1 cm).

7 Fig. 3 Renal ultrasound examination on DOL 3: right kidney with echogenic streaks and abolished corticomedullary differentiation.

8 On follow-up ultrasound examination a few hours later there was extension of the thrombus into the inferior vena cava (IVC) over a length of 2 cm and partial thrombosis of the left renal vein (Fig. 4). After interdisciplinary discussions, anticoagulation with unfractionated heparin (UFH) was started with a heparin bolus, followed by a continuous infusion. Anti coagulation was adjusted using the protocol published by Michelson et al. (6) (Table), aiming at an appt of 60 to 85 seconds. Loading dose: 75 units/kg i.v. over 10 minutes Initial maintenance dose: 28 units/kg/hour for infants < 1 year Adjust infusion rate to maintain aptt between 60 85 seconds or anti-xa between 0.35 0.70 IU/ml aptt (seconds) Bolus (units/kg) Hold (minutes) Infusion rate change Repeat aptt < 50 50 0 + 10% 4 hours 50-59 0 0 + 10% 4 hours 60-85 0 0 no change next day 86-95 0 0-10% 4 hours 96-120 0 30-10% 4 hours > 120 0 60-15% 4 hours Protocol for systemic unfractionated heparin (UFH) administration and dose adjustments for pediatric patients (6).

9 Repeated cranial ultrasound examinations (including one obtained prior to starting anticoagulation) showed no signs of intracerebral hemorrhage. After initiation of heparin treatment, no further extension of the thrombosis was documented. Serum creatinine concentrations decreased to 79 µmol/l within 96 hours. Macrohematuria disappeared after one week of life. Blood pressure remained normal. After eight days of intravenous UFH, anticoagulation was changed to enoxaparin, a low-molecular-weight heparin (LMWH), administered subcutaneously via an Insuflon catheter. On day 13, improved blood flow in the IVC could be demonstrated on ultrasound. The infant was discharged home on day of life 14. At one month of age, the thrombi in the IVC and the left kidney had completely resolved, and only discreet signs of the thrombosis in the lower pole of the right kidney were still detectable. Renal function had normalized (serum creatinine of 33 µmol/l). Treatment with subcutaneous LMWH was continued for a total of 3 months. Most recently, one year after discharge, renal function, blood pressure, and renal ultrasound examinations have been normal. Family history was positive for sickle cell anemia in two paternal uncles and for pulmonary embolism in a grandmother at the age of 60 years. The patient s parents already had one healthy child. Investigations

10 Fig. 4 Abdominal ultrasound examination on DOL 3: absent flow in the inferior vena cava.

11 for hereditary thrombophilias were negative. Sickle cell trait was excluded by hemoglobin electrophoresis at the age of six months. The etiology of RVT remained unexplained in our patient. Chorionamnionitis was the only maternal risk factor (Fig. 1), however, the baby had no signs of a neonatal infection.

12 DISCUSSION This case report describes an infant with the so-called classical clinical presentation of RVT (macrohematuria, palpable renal mass, and thrombocytopenia). However, the full triad has been reported to be only present in 13 % of RVT cases (7). If RVT is suspected, the diagnosis must be confirmed by imaging. In neonates, the initial method of choice is Doppler ultrasonography (8). In addition, laboratory markers such as full blood count and renal function tests should be analyzed. Coagulation tests, including activated partial thromboplastin time (aptt), fibrinogen and INR, are crucial to exclude an acute hemostatic problem such as DIC and to acquire base-line values before starting treatment. If bilateral RVT is diagnosed, renal function tests, electrolytes and diuresis must be monitored because of the risk of acute renal failure. In unilateral disease, creatinine and urea concentrations usually remain normal. Arterial hypertension can develop after RVT and blood pressure must therefore be monitored regularly. The role of anticoagulation in RVT is controversially discussed in the literature. Strategies regarding initiation of treatment, route of application, choice of anticoagulants and treatment duration differ widely due to a lack of randomized controlled trials (9, 10).

13 In cases of isolated unilateral RVT, supportive care with close monitoring is suggested since no benefit has been demonstrated while bleeding complications can occur. In contrast, for patients with unilateral RVT and extension into the IVC, anticoagulation for six weeks to three months should be considered. If both kidneys are affected with renal impairment, either thrombolytic treatment with systemic tissue plasminogen activator (tpa) followed by anticoagulation or anticoagulation only for six weeks to three months is generally recommended. Suggested strategies include treatment either with LMWH alone or to start with UFH followed by LMWH. We chose to start with UFH because of its rapid onset of action, its short half life and its reversibility by protamine sulfate should side effects (bleeding, heparin induced thrombocytopenia) occur. Disadvantages of anticoagulation with UFH include the need for intravenous administration, frequent blood tests and dose adjustments. Once adequate anticoagulation has been established and the patient is stable, treatment can be changed to subcutaneous LMWH. Major bleeding episodes in children receiving UFH treatment have been described in 1.5 % to 24 % of patients (11). Heparin-induced thrombocytopenia by UFH is relatively rare, occurring in less than 2.5 % of pediatric patients (12).

14 Therapeutic dosing of LMWH is based on anti-fxa levels. The suggested dose for subcutaneously administered enoxaparin in infants < 2 months of age is 1.5 mg/kg 12 hourly. Anti-FXa levels 4 6 hours after subcutaneous injection should be between 0.5 1 U/ ml. Enoxaparin is easy to administer, even in an outpatient setting (12). Although adverse events are considered to be rare, several major complications including major bleeding episodes, hematoma formation at the administration site, gastrointestinal bleeding, and intracranial hemorrhage have been described with an overall incidence of approximately 5 % (13 14). Inherited prothrombotic conditions like protein C or S deficiency, antithrombin deficiency, factor V Leiden, and mutation of prothrombin 20210A are more common in newborns with RVT as compared to the general population and should be tested in patients with an unclear origin of RVT. Babies born to mothers with antiphospholipid syndrome or lupus should be screened for lupus anticoagulant. Survival rates of infants with RVT are excellent. However, long-term sequelae, including irreversible renal damage (71%) and arterial hypertension (19 %) can occur (4). Therefore, nephrology follow-up is required. Importantly, there is a 6.8 % risk for a second episode of venous thrombosis during puberty.

15 RVT should be suspected in newborns with hematuria, palpable abdominal mass and/or thrombocyto penia, especially if neonatal or maternal risk factors for hemostasis imbalance are present. The aim of heparin treatment is to prevent life-threatening events, thrombus extension, and long-term complications. However, there is limited evidence to guide decision-making and anticoagulation significantly increases the risk of bleeding. CONCLUSION

16 REFERENCES 1. Schmidt B, Andrew M. Neonatal thrombosis: report of a prospective Canadian and international registry. Pediatrics 1995;96:939 943 (Abstract) 2. Marks SD, Massicotte MP, Steele BT, et al. Neonatal renal venous thrombosis: clinical outcomes and prevalence of prothrombotic disorders. J Pediatr 2005;146:811 816 (Abstract) 3. Kosh A, Kuwertz-Bröking E, Heller C, Kumik K, Schobess R, Nowak-Göttl U. Renal venous thrombosis in neonates: prothrombotic risk factors and long-term follow-up. Blood 2004;104:1356 1360 (Abstract) 4. Lau KK, Stoffman JM, Williams S, et al. for the Canadian Pediatric Thrombosis Network. Neonatal renal vein thrombosis: review of the English-language literature between 1992 and 2006. Pediatrics 2007;120:e1278-e1284 (Abstract) 5. Bidadi B, Nageswara A, Kaur D, Kahn S, Rodrriguez V. Neonatal renal vein thrombosis: role of anticoagulation and thrombolysis an institutional review. Pediatr Hematol Oncol 2016;33:59 66 (Abstract) 6. Michelson AD, Bovill E, Andrew M. Antithrombotic therapy in children. Chest 1995;108:506S-522S (no abstract available) 7. Zigman A, Yazbeck S, Emil S, Nguyen L. Renal vein thrombosis: a 10-year review. J Pediatr Surg 2000;35:1540 1542 (Abstract) 8. Roy M, Turner-Gomes S, Gill G, Way C, Mernagh J, Schmidt B. Accuracy of Doppler echocardiography for the diagnosis of thrombosis associated with umbilical venous catheters. J Pediatr 2002;140:131 134 (Abstract)

9. Williams MD, Chalmers EA, Gibson BE, Haemostasis and Thrombosis Task Force, British Committee for Standards in Haematology. The investigation and management of neonatal haemostasis and thrombosis. Br J Haematol 2002;119:295 309 (Abstract) 10. Monagle P, Chalmers E, Chan A, deverber G, et al. Antithrombotic therapy in neonates and children. American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th Edition) 2008;133:887S-968S (Abstract) 11. Kuhle S, Eulmesekian P, Kavanagh B, Massicotte P, Vegh P, Mitchell LG. A clinically significant incidence of bleeding in critically ill children receiving therapeutic doses of unfractionated heparin: a prospective cohort study. Hematologica 2007;92:244 247 (Abstract) 12. Schmugge M, Risch L, Huber AR, Benn A, Fischer JE. Heparininduced thrombocytopenia-associated thrombosis in pediatric intensive care patients. Pediatrics 2002;109:E10 (Abstract) 13. Malowany JI, Monagle P, Knoppert DC, et al. Enoxaparin for neonatal thrombosis: a call for a higher dose for neonates. Thromb Res 2008;122:826 830 (Abstract) 14. Romantsik O, Bruschettini M, Zappettini S, Ramenghi LA, Calevo MG. Heparin for the treatment of thrombosis in neonates. Cochrane Database Syst Rev 2016;CD012185 (Abstract)

concept & design by mesch.ch SUPPORTED BY CONTACT Swiss Society of Neonatology www.neonet.ch webmaster@neonet.ch