Research Journal of Pharmaceutical, Biological and Chemical Sciences

Similar documents
3. PRELIMINARY PHYTOCHEMICAL SCREENING

International Journal of PharmTech Research CODEN (USA): IJPRIF, ISSN: Vol.9, No.4, pp , 2016

(Writing model for laboratory note book)

Scholars Research Library. Phytochemical studies of Svensonia hyderobadensis (walp.) Mold: A rare medicinal plant

PRELIMINARY PHYTOCHEMICAL STUDIES ON SOLANUM SURATTENSE BURM.F. SEEDS

Scholars Research Library J. Nat. Prod. Plant Resour., 2017, 7(3): (

PRELIMINARY PHYSICO-PHYTOCHEMICAL STUDY OF THE FRUIT OF A MEDICINAL PLANT CASSIA FISTULA L.

Journal of Pharmacognosy and Phytochemistry. Preliminary Phytochemical Screening and HPTLC Fingerprinting of Leaf Extracts of Pisonea aculeata

Journal of Chemical and Pharmaceutical Research, 2013, 5(3): Research Article

Phytochemical screening and evaluation of leaves of Citrus limon (L.)Osbeck.

Comparison of Curcuma caesia Roxb. with other Commonly Used Curcuma Species by HPTLC

D. Prasanthi Institute of Pharmaceutical Technology Sri Padmavathi Mahila Visvavidyalayam Tirupati

JOURNAL OF SCIENTIFIC & INNOVATIVE RESEARCH

Journal of Chemical and Pharmaceutical Research

Study of Phytochemical Screening and Antimicrobial Activity of Citrus aurantifolia Seed Extracts

Journal of Chemical and Pharmaceutical Research

ON TEA TANNIN ISOLATED FROM GREEN TEA.

EXPERIMENT 4 DETERMINATION OF REDUCING SUGARS, TOTAL REDUCING SUGARS, SUCROSE AND STARCH

Petrolatum. Stage 4, Revision 1. Petrolatum is a purified semi solid mixture of hydrocarbons obtained from petroleum.

Journal of Medicinal Plants Studies Preliminary Phytochemical Studies Of Kalanchoe pinnata (Lam.) Pers

Saxena et al., IJPSR, 2012; Vol. 3(4): ISSN:

Preliminary phytochemical and anti-diabetic activity of Cassia sophera Linn

Phytochemical Analysis of Alfalfa (Medicago sativa) Seed Extract by Soxhlet Extraction Using Different Solvents

Pharmacognostic and preliminary phytochemical analysis of Aegle marmelos L. and Centella asiatica L.

PHYTOCHEMICAL ANALYSIS OF THE WHOLE PLANT OF Mimosa pudica (Linn.)

Available online at Scholars Research Library

Figure 2. Figure 1. Name: Bio AP Lab Organic Molecules

Research Article GALLIC ACID AND FLAVONOID ACTIVITIES OF AMARANTHUS GANGETICUS

Hydroxypropyl Starch (Tentative)

IJPRD, 2013; Vol 5(03): November-2013 ( ) International Standard Serial Number

QUALITATIVE AND QUANTITATIVE ANALYSIS OF SECONDARY PHYTOCHEMICAL IN GYMNEMA SYLVESTRE

Qualitative test of protein-lab2

Purity Tests for Modified Starches

WORLD JOURNAL OF PHARMACY AND PHARMACEUTICAL SCIENCES. World Journal of Pharmacy and Pharmaceutical Sciences SJIF Impact Factor 6.

4. Determination of fat content (AOAC, 2000) Reagents

PRELIMINARY PHYTOCHEMICAL AND HISTOCHEMICAL INVESTIGATION ON KIGELIA PINNATA DC.,

Aim: To study the effect of ph on the action of salivary amylase. NCERT

Pectins. Residue Monograph prepared by the meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA), 82 nd meeting 2016

SALIVA TEST Introduction

PHARMACOGNOSTIC AND PHYSICOCHEMICAL STUDIES OF THE ROOTS OF Stereospermum suaveolens

BRIEFING Assay + + +

World Journal of Pharmaceutical and Life Sciences WJPLS

Preliminary Phytochemical Profile of Leaf Extracts in. Different Solvents of Cassia roxburghii D.C.

THERMALLY OXIDIZED SOYA BEAN OIL interacted with MONO- and DIGLYCERIDES of FATTY ACIDS

Antibacterial assay of leaf of Dalbrgia sisso roxb

Organic Molecule Composition of Milk: Lab Investigation

Phytochemical Investigation of Methanolic Extract of Icacina trichantha Tuber

THERMALLY OXIDIZED SOYA BEAN OIL

Pharmacognostical and Phytochemical Evaluation of Leaves of Mimusops elengi L.

Preliminary phytochemical screening of foliar extract of Anthocephalus cadamba (Roxb.)

Phytochemical and Pharmacological Studies of Ethanolic and Aqueous Extract from the Leaf of Folk Medicinal Plant Ichnocarpus frutescens

PHYTOCHEMICAL STUDIES IN THE LEAVES OF ECBOLIUM LINNEANUM- THE MEDICINAL PLANT A.Jeena Pearl

Asian Journal of Biochemical and Pharmaceutical Research DOI URL:

COMMON BARBERRY FOR HOMOEOPATHIC PREPARATIONS BERBERIS VULGARIS FOR HOMOEOPATHIC PREPARATIONS

Investigation of the Pharmacognostical, Phytochemical and Antioxidant Studies of Plant Withania coagulans Dunal

Preliminary Phytochemical Analysis of the Extracts of Psidium Leaves

Phytochemical screening and quantitative analysis of hexane, acetone, methanol & water extracts of Salicornia virginica by UV-spectrophotometry

QUALITATIVE ANALYSIS OF AMINO ACIDS AND PROTEINS

Preliminary phytochemical, pharmacognostical and physico-chemical evaluation of Cedrus deodara heartwood

Asian Journal of Research in Biological and Pharmaceutical Sciences Journal home page:

» Croscarmellose Sodium is a cross linked polymer of carboxymethylcellulose sodium.

Keywords- Hibiscus rosa- sinensislinn., phytochemical, extract.antibacterial, axillary solitary, companulate.

PRELIMINARY PHYTOCHEMICAL ANALYSIS OF WATTAKAKAA (l.f.) STAPF LEAF IN DIFFERENT SOLVENT EXTRACTS

Part I. Chemical Composition of the Roots

Phytochemical,Screening,of,Various,Extracts,of,Root,of,Withania, Somnifera*(L)*Dunal*

CHAPTER 9: Preliminary phytochemical analysis of aqueous-ethanol extract of G. lucidum, protein bound polysaccharides and total triterpenes

Pharmacognostic studies on leaves of Ageratum conyzoides Linn.

Phytochemical screening and antioxidant activity of the leaves of plant Casearia tomentosa

CLASSIFICATION & NOMENCLATURE OF PLANT

Botanical and phytochemical evaluation of fruits of spondias pinnata

International Journal of Pharma and Bio Sciences

International Journal of Pharma and Bio Sciences PHYTOCHEMICAL ANALYSIS OF LEAVES OF TECTONA GRANDIS LINN. ABSTRACT

Phytochemical and Physico-Chemical Analysis of Siddha Preparation Magizham Pattai Chooranam

PHYTOCHEMICAL ANALYSIS OF TWO HIGH YIELDING CURCUMA LONGA VARIETIES FROM ANDHRA PRADESH

ARTENIMOLUM ARTENIMOL. Adopted revised text for addition to The International Pharmacopoeia

Final text for addition to The International Pharmacopoeia (June 2010)

Phytochemical Screening of Tubers and Leaf extracts of Sagittaria sagittifolial.:newsa (Arrowhead)

Determination of Tanninoids. Analytical Pharmacognosy

(LM pages 91 98) Time Estimate for Entire Lab: 2.5 to 3.0 hours. Special Requirements

BCH302 [Practical] 1

E17 ETHYLCELLULOSE. Revision 3 Stage 4

PRELIMINARY PHYTOCHEMICAL SCREENING AND IN-VITRO FREE RADICAL SCAVENGING ACTIVITY OF MELOCHIA CORCHORIFOLIA PLANT EXTRACTS

Dhanashri Mestry, Vidya V. Dighe

ARTESUNATE TABLETS: Final text for revision of The International Pharmacopoeia (December 2009) ARTESUNATI COMPRESSI ARTESUNATE TABLETS

XXVI. STUDIES ON THE INTERACTION. OF AMINO-COMPOUNDS AND CARBOHYDRATES.

Chakraborthy et al., IJPSR, 2010; Vol. 1(9):76-80 ISSN: PHARMACOGNOSTIC STUDIES OF NERIUM INDICUM. A. Shah and G. S. Chakraborthy* ABSTRACT

EXERCISE 3 Carbon Compounds

Available online at Comparative studies of phytochemical screening of Carissa carandus Linn.

Title Revision n date

Appendix II. Barton's reagent:

Pelagia Research Library

,Thiruvananthapuram 2Professor, Department of Botany, University of Kerala, Kariavattom, Thiruvananthapuram

TECHNICAL BULLETIN METHOD 1: DETERMINATION OF TOTAL DIETARY FIBRE

E55A GELATIN, GELLING GRADE Gelatina

Pharmacognostic, Phytochemical and Physicochemical Study of Ficus arnottiana Miq. Leaves (Moraceace)

9. Determine the mass of the fat you removed from the milk and record in the table. Calculation:

Phytochemical Screening of Aerial Parts of Artemisia parviflora Roxb.: A medicinal plant

Pharmacognostical evaluation of Terminalia Arjuna bark on different marketed samples

Available online at Phytochemical analysis and inhibitory activity of Ornamental Plant (Bougainvillea spectabilis)

International Journal of Drug Research and Technology

Transcription:

ISSN: 09758585 Research Journal of Pharmaceutical, Biological and Chemical Sciences PhysicoChemical and Phytochemical Investigation of Plant Sesbania sesban. Kumar Sandeep *, Bajwa Baljinder Singh and Kumar Narinder Lala Lajpat Rai College of Pharmacy, MogaFzr G T Road, Near P.S Sadar, Moga 142001, Punjab, India. ABSTRACT The genus Sesbania sesban contains about 50 spieces, the majority of which are annuals. The greatest spieces diversity occurs in Africa with 33 spieces. The spieces Sesbania sesban belongs to subfamily Papilionoidea of the family Leguminosae. It is a small perennial tree with woody stems, yellow flowers and linear pods. Sesbania sesban is very common throughout Africa and in asian countries like India, Malaysia, Indonesia and Phillipines. Campesterol, βsitosterol, Cyanidine, Delphinidin glycosides, αketo glutaric, Oxaloacetic and pyruvic acids, Oleanolic acid, saponins, Palmitic acid, Stearic acid, Oleic acid, Linoleic acid and Linolenic acid are reported in Whole plant. Cyanidin and Delphinidin glycosides, Flavonols are reported in flowers. The plant has been reported to possess various activities such as antiinflammatory activity, antinociceptive activity, antidiabetic activity, antifertility activity and antioxidant activity. The physicochemical parameters such as ash value, acid insoluble ash, loss on drying, alcohol soluble extractive value and water soluble extractive value were determined. Further fluorescence analysis was done. The extracts of Sesbania sesban stem were prepared and phytochemical screening of extracts were done. The Phytochemical study showed that chloroform, methanol, ethanol and aqueous extracts gave positive tests for alkaloids, proteins, flavonoids and phytosterols. Methanol and ethanol extracts were found to contain phenolic compounds. Aqueous extract gave postive test for saponins. Methanol, ethanol and aqueous extract gave positive test for carbohydrates. Keywords: Physicochemical, phytochemical, alkaloids, flavnoids. *Corresponding author January February 2014 RJPBCS 5(1) Page No. 110

ISSN: 09758585 INTRODUCTION Unlike modern allopathic drugs which are single active components that target one specific pathway, herbal medicines work in a way that depends on an orchestral approach. A plant contains a multitude of different molecules that act synergistically on targeted elements of the complex cellular pathway [1,2,4]. Medicinal plants have been source of wide variety of biologically active compounds for many centuries and used extensively as crude material or as pure compounds for treating various disease conditions [3].The use of herbal medicines becoming popular due to toxicity and sideeffects of allopathic medicines. Medicinal plants play an important role in the development of potent therapeutic agents. There are over 1.5 million practitioners of traditional medicinal system using medicinal plants in preventive, promotional and curative applications [5]. Now a days in pharmaceuticals herbal medicines gained more interest. These herbal medicines comprises of active ingredients from different parts of plants such as roots, stems, rhizomes, leaves, seeds and fruits. The active constituents so obtained are crude in nature. Medicinal properties of plants are due many active compounds like alkaloids, glycosides, saponins, terpenoids, lactones, phenols and flavnoids. Ayurvedic medicines are now a day s not only used by Indian peoples but also in developed countries like USA, Canada, Japan, China etc. Most of facility for the ayurvedic or herbal medicines are manufactured and implemented in India and China [6]. Sesbania sesban is very common throughout Africa and in asian countries like India, Malaysia, Indonesia and Phillipines. In India these crops have had a long history of agricultural use and as a source of forage. One of the major advantages of perennial Sesbania sesban spieces over other forage trees and shrubs is their rapid growth rates. Sesbania sesban grows well in the subtropics and is most suitable for altitudes between 200500m. Sesbania sesban is outstanding in its ability to tolerate waterloging and is ideally suited to seasonally waterlogged environments. The flowers of Sesbania sesban have been reported to have Cyanidin and Delphinidin glycosides, Flavonols [7]. The seeds of Sesbania sesban have been reported to have Saponins, Palmitic acid, Stearic acid, Lignoceric acid, Oleic acid, Linoleic acid and Linolenic acid. [8]. The leaves of Sesbania sesban have been reported to have Kaempferol [9]. Table 1: Synonyms of Sesbania sesban Hindi Kannada Oriya Marathi Telgu Sanskrit Jayanti Jeenangi Thaitimul Shewarie Samintha Jayantika Table 2: Taxonomical Classification of Sesbania sesban Kingdom Division Class Order Family Genus Spieces Plantae Magnoliophyta Magnoliopsida Fabales Fabaceae Sesbania Sesbania sesban January February 2014 RJPBCS 5(1) Page No. 111

ISSN: 09758585 MATERIALS AND METHODS Plant Material Dried stem portion of Sesbania sesban was collected from S V University, Tirupati, Andhra Pradesh.and botanical Authentication of Sesbania sesban has been obtained from Dr. K. Madhava Chetty, S V University, Tirupati, Andhra Pradesh. Solvents Used Petroleum ether (6080 C), Chloroform and Methanol were employed for extraction of plant material using soxhlet apparatus and finally the drug was boiled with distilled water. Dimethyl sulphoxide,was used as solvent for dissolving different extracts. It is colourless liquid with boiling point 189 C. It is miscible with water, chloroform, acetone, alcohol and petroleum ether. Chemicals Used Sodium hydroxide, Chloral hydrate, Copper sulphate, Ferric chloride, Sulphuric acid, Iodine, Lead acetate, Magnesium, Potassium iodide, Potassium mercuric iodide, Picric acid, Mercuric chloride, Nitric acid, Gelatin, Sodium chloride, αnapthol,, sodium nitropruside, pyridine, were used for phytochemical screening of the plant extracts. PhysicoChemical Evaluation Ash values The ash values, following ignition of medicinal plant materials is determined by thee different methods, which measures total ash, acid insoluble ash and watersoluble ash (WHO., 1998). Total ash It is designed to measure the total amount of material remaining after ignition. This includes both physiological ash, which is derived from the plant tissue itself and nonphysiological ash, which is the residue of the extraneous matter (e.g. sand and soil) adhering to the plant material. Method The finely ground and dried plant material was accurately weighed (2g) and placed in a previously ignited and tarred crucible (silica). The material was spread in an even layer and ignited by gradually increasing the heat to 500600 C until it is white, indicating absence of carbon. It was then cooled in a desiccators and weighed. If carbonfree ash cannot be obtained in this manner, the crucible was cooled and moistened the residue with about 2mL of water or a saturated solution of ammonium nitrate R. Dried on a water bath, then on a hot plate and ignited to constant weight. The residue was allowed to cool in a suitable January February 2014 RJPBCS 5(1) Page No. 112

ISSN: 09758585 desiccator for 30 min, and weighed without delay. The percentage of ash with reference to air dried drug was calculated. Acidinsoluble ash: It is the residue obtained after boiling the total ash with dilute hydrochloric acid, and igniting the remaining insoluble matter. This measures the amount of silica present, especially as sand and siliceous earth. Method To the crucible containing the total ash, 25 ml of hydrochloric acid (~70g/L) was added. It was covered with a watch glass and boiled gently for 5 min. The watch glass was rinsed with 5 ml of hot water and this liquid was added to the crucible. The insoluble matter was collected on an ashless filter paper and washed with hot water until the filtrate became neutral. The filter paper containing the insoluble matter was transferred to the original crucible, dried on a hot plate and ignited to constant weight. The residue was allowed to cool in a vacuum desiccator for 30 min, and weighed without delay. The percentage of ash with reference to air dried drug was calculated. Watersoluble ash: It is the difference in weight between total ash and the residue left after treatment of total ash with water. Method To the crucible containing the total ash, 25 ml of water was added and boiled for 5 min. The insoluble matter was collected in a sintered glass crucible or on an ashless filter paper. Washed with hot water and ignited in a crucible for 15 min. at a temperature not exceeding 450 C, and the ash obtained was weighed. The weight of this residue was subtracted from the weight of total ash. The percentage of ash with reference to air dried drug was calculated Fluoresence Analysis A small quantity of dried and finely powdered stem of Sesbania sesban was placed on a grease free clean microscopic slide and added 12 drops of freshly prepared reagent solution, mixed by gentle tilting the slide and waited for 12 minutes. Then the slide was placed inside the UV viewer chamber and viewed in day light, short (254 nm) and long (365 m) ultraviolet radiations. The colours observed by application of different reagents in different radiations were recorded (WHO. 1998). Preparation of extracts The stems of plant was dried under shade and coarsely powdered. Five hundred gram powder material was subjected to successive. The solvents used were petroleum ether (6080 C), chloroform, hexane, methanol, ethanol and then distilled water. Soxhlet extraction was carried out by these solvents in an increasing order of their polarity for not less than 48 hours. After each extraction the powdered material was dried in air at room temperature. Finally, marc was digested with distilled water for 24 hours or more to obtain January February 2014 RJPBCS 5(1) Page No. 113

ISSN: 09758585 aqueous extract. Each extract was concentrated in vaccum using Rotatory evaporator.extracts were weighed subsequently and the percentage yields were calculated of each extract obtained individually in terms of the air dried weigh of plant material. Phytochemical screening Test for Carbohydrates Molisch test: To 23 ml of extract, few drops of 95% αnapthol solution in alcohol were added. Conc. H 2 SO 4 was added from sides of the test tube. Appearance of a red brown ring at the junction of the liquids revealed the presence of carbohydrates. Fehling s solution test: One ml of Fehling s A and Fehling s B solutions were mixed and boiled for one minute. Equal volume of extract was added and heated on boiling water bath for 510 min. Appearance of first a yellow and then brick red precipitates revealed the presence of carbohydrates. Benedict s solution test: Equal volume of Benedict s reagent and extract were mixed in test tube and heated on boiling water bath for 5 min. Appearance of red solution revealed the presence of carbohydrates. Tests for Proteins Biuret test: To 3 ml of aqueous extract 4% NaOH and few drops of 1% CuSO 4 solution were added. Appearance of violet or pink colour revealed the presence of proteins. Test with Millon s reagent: To 3 ml of extract, 5 ml Millon s reagent was added. Appearance of white precipitates initially which turned to red when heated revealed the presence of proteins. Xanthoproteic test: To 3mL of extract 1mL conc. H 2 SO 4 was added. Appearance of white precipitates which turned yellow on heating and orange on addition NH 4 OH revealed the presence of proteins Ninhydrin solution test: To 3 ml of extract, 3 drops of 5% Ninhydrin solution was added and heated in boiling water bath for 10 min. Appeareance of purple or bluish colour revealed the presence of proteins. Test for Alkaloids Extract was dried and treated with few drops of dilute HCl. Filtered and subjected the filtrate to no of tests. Dragendorff s test: To 23 ml of filtrate few drops of Dragendorff s reagent were added. Appearance of orange brown precipitates revealed the presence of alkaloids. Mayer s test: To 23 ml filtrate, few drops of Mayer s reagent were added. Appearance of cream coloured precipitates revealed the presence of alkaloids. Hager s test: To 23 ml filtrate, few drops of Hager s reagent were added. Appearance of yellow colour precipitates revealed the presence of alkaloids. Wagner s test: To 23 ml filtrate few drops of Wagner s reagent were added. Appearance of reddish brown precipitates revealed the presence of alkaloids. January February 2014 RJPBCS 5(1) Page No. 114

ISSN: 09758585 Test for Flavonoids Shinoda s test: A small quantity of test residue was dissolved in 5 ml ethanol (95% w/v) and treated with few drops of concentrated hydrochloric acid and 0.5 g of magnesium metal. Appearance of pink, crimson or magenta colour within a minute or two, revealed the presence of flavonoids. Lead acetate solution test: To small quantity of extract, lead acetate solution was added. Appearance of yellow coloured precipitates revealed the presence of flavonoids. Test for Phenolic compounds The test residue of each extract was taken separately in water, warmed and filtered. Tests were carried out with the filtrate using following reagents. Ferric chloride test: A 5% w/v solution of ferric chloride in 90% alcohol was prepared. Few drops of this solution were added to a little of the above filtrate. Appearance of dark green or deep blue colour revealed the presence of phenolic compounds. Lead acetate test: A 10% w/v solution of basic lead acetate in distilled water was added to the test filtrate. Appearance of white precipitate revealed the presence of phenolic compounds. Potassium dichomate test: If on an addition of a solution of potassium dichomate in test filtrate, appearance of dark colour revealed the presence of phenolic compounds. Test for Saponins Foam test: A few mg of the test residue was taken in a test tube and shaken vigorously with a small amount of sodium bicarbonate and water. Appearance of stable, characteristic honeycomb like forth indicates presence of saponins. RESULTS AND DISCUSSION Table 3: PhysicoChemical Studies S.NO. PHYSICAL PARAMETERS % VALUE OBTAINED 1 Total ash 5.70 2 Acid insoluble ash 1.35 3 Loss on drying 9.15 4 Alcohol soluble extractive value 6.25 5 Water soluble extractive value 9.75 January February 2014 RJPBCS 5(1) Page No. 115

ISSN: 09758585 Table 4: Fluoresence Analysis Drug name Solvent used Colour under visible light Colour under long UV (365 nm) Colour under short UV (254 nm) S. sesban Water Yellow Yellow Yellow S. sesban Concentrated nitric acid Green Yellow Yellowish Green S. sesban Concentrated Lemon Yellow Brown Yellow ammonia S. sesban Concentrated Yellow Yellow Dark Yellow hydrochloric acid S. sesban Concentrated Brown Brownish Black Blue sulphuric acid S. sesban Ethanol Yellow Yellow Light Brown S. sesban Iodine Yellow Yellow Brown Table 5: Phytochemical Screening S. no Phytochemical constituents 1. Alkaloids 1. Mayer s reagent 2. Hager s reagent 3. Wagner s reagent 4. Dragendorff s reagent Chloroform extract of S. sesban leaves Methanol extract of S. sesban leaves Ethanol extract of S. sesban leaves Water extract of S. sesban leaves 2. Phenolic compounds and Tanins 1. Fecl 3 2. Lead acetate test 3. Bromine water test 3. Saponin 1. Frothing test 4. Carbohydrates 1. Molisch test 2. Fehling s solution A 2. Fehling s solution B 5. Protein and Amino acids 1. Millon s test 2. Biuret test 3. Ninhydrin test 6 Flavonoids test 1. Alkaline reagent test 2. Shinoda test 7 Phytosterols test 1. Liebermann s test 2. Libermann Burchard test = present, = absent January February 2014 RJPBCS 5(1) Page No. 116

ISSN: 09758585 DISCUSSION The physicochemical parameters (ash values, extractive values), preliminary phytochemical screening was done. The total ash value was 5.70%, acid insoluble ash was 1.35%, alcohol soluble extractive value was 6.25%, water soluble extractive value was 9.75% and loss on drying was 9.15%. The Phytochemical study showed that chloroform, methanol, ethanol and aqueous extracts gave positive tests for alkaloids, proteins, flavonoids and phytosterols. Methanol and ethanol extracts were found to contain phenolic compounds. Aqueous extract gave postive test for saponins. Methanol, ethanol and aqueous extract gave positive test for carbohydrates. CONCLUSION The present study was designed to study the physicochemical and phytochemical Investigation of stem of plant Sesbania sesban. The physiochemical parameters like ash values, loss on drying and fluorescence analysis were also determined following WHO guidelines and their results were noted. The soxhlet extraction of powdered stem was carried out for preparation of various extracts with the solvents in increasing order of polarity viz pet ether, chloroform, methanol, ethanol and water. The physical appearance and percentage yield of various extracts were noted. The phytochemical screening of extracts was carried out and it revealed the presence of alkaloids, flavonoids, proteins and phytosterols chloroform, methanol, ethanol and aqueous extracts. Phenolic compounds were present in methanol and ethanol extracts. Carbohydrates were observed in methanol, ethanol and aqueous extracts. Saponins were observed in aqueous extract. So, it is concluded that the various activities of plant Sesbania sesban may be due to the presence of phytoconstituents such as alkaloids and flavnoids. REFERENCES [1] Sarkar DN, Azaduddoula Prodhan AKM. Indian J Agric Res 2001;35(4):211218. [2] Aslan M, Orhan DD, Orhan N, Sezik E, Yesilada E. J Ethnopharmacol 2007;109(1):54 59. [3] Durmowicz AG, Stenmak KR. Pediatr Rev 1999;20:91101. [4] Arif T, Bhosale JD, Kumar N, Mandal TK, Bendre RS, Lavekar GS, Dabur R. J Asian Nat Prod Res 2009; 11(7):621638. [5] Dasilva EJ. EJB 1999; 2(2):5770. [6] Meena AK, Bansal P and Kumar S. Asian J Trad Med 2009;4:15270. [7] Kathiresh M, Suganya P Devi, Saravanakumar M. IJPSR 2011;3(2):13071312. [8] Dande PR, Talekar VS, Chakraborthy GS. Int J Res Pharm Sci 2010:1(3):296299. [9] Sayed NH. Pharmize 1991:46(12):898. [10] World Health Organization. 2002. Traditional Medicine Strategy. World Health Organization Geneva, England. January February 2014 RJPBCS 5(1) Page No. 117