IFLS C-Reactive Protein Data User Guide

Similar documents
Eileen Crimmins 1 Jianwei Hu 2 Peifeng Hu 3 Wei Huang 2 Jungki Kim 1 Yuhui Shi 2 John Strauss 1 Lu Zhang 1 Xiaohui Zhao 2 Yaohui Zhao 2

Results from the Health and Retirement Study Biomarker Validation Project

Venous Blood Based Biomarker Data from the China Health and Retirement Longitudinal Study (CHARLS)

Biomarkers of inflammation for population research: Stability of C-reactive protein and alpha 1 -acid glycoprotein in dried blood spots.

HPLC-based measurement of glycated hemoglobin using dried blood spots collected under adverse field conditions

Preliminary Dried Blood Spot Biomarker Data from the Study on global AGEing and adult health (SAGE)

Documentation of Blood-Based Biomarkers in the 2014 Health and Retirement Study

WORKING P A P E R. Comparative Performance of the MS-DRGS and RDRGS in Explaining Variation in Cost for Medicare Hospital Discharges BARBARA O.

Gentian Canine CRP Immunoassay Application Note for scil VitroVet*

EliKine Free Thyroxine (ft4) ELISA Kit

Analysis of Hemoglobin A1c from Dried Blood Spot Samples with the Tina-quant II Immunoturbidimetric Method

WORKING P A P E R. Analysis of Case-Mix Strategies and Recommendations for Medicare Fee-for-Service CAHPS. Case-Mix Adjustment Report: 2004

Triiodothyronine (T3) ELISA

What a drop can(t) do: Methodological challenges associated with incorporating dried blood spot biomarkers into population-based research

2011 UGANDA DHS - ADDENDUM TO CHAPTER 11

DKK-1 ELISA, Cat.No. BI For the quantitative determination of DKK-1 in human serum

Bovine Insulin ELISA

Porcine/Canine Insulin ELISA

How are testing technologies used to diagnose HIV infection?

WORKING P A P E R. Estimating the Impact of Improving Asthma Treatment. A Review and Synthesis of the Literature

THE HEALTH AND RETIREMENT STUDY: INVESTIGATION OF DRIED BLOOD SPOT HBA1C MEASUREMENT ERRORS USING TIPTEMP STAMPS

Rat Insulin ELISA. For the quantitative determination of insulin in rat serum and plasma. For Research Use Only. Not For Use In Diagnostic Procedures.

Polymer Technology Systems, Inc. CardioChek PA Comparison Study

Insulin (Porcine/Canine) ELISA

HbA1c (Human) ELISA Kit

Validation and Stability of Retinol-Binding Protein Evidence From Tanzania. January 2006

Gentian Canine CRP Immunoassay Application Note for Abbott Architect * c4000

2006 HIV Diagnostics Survey

WHO Prequalification of Diagnostics Programme PUBLIC REPORT

Mouse Ultrasensitive Insulin ELISA

A HealthTech Report. January NW Leary Way Seattle, WA , USA Tel: Fax:

SP.718 Special Topics at Edgerton Center: D-Lab Health: Medical Technologies for the Developing World

Cotinine (Mouse/Rat) ELISA Kit

Harmonization of Cross-National Studies of Aging to the Health and Retirement Study

Collection of Dried Blood Spots from Infants for Diagnosis of HIV by DNA PCR. MOH Regional Trainings March 2013

VQA Control SOP Version 4.0 Roche Amplicor HIV-1 DNA Test, v August 2007

Instructions for use. TSH rat ELISA. Please use only the valid version of the Instructions for Use provided with the kit AR E-8600

USING THE ACCESS AMH ASSAY IN YOUR LABORATORY

National Family Health Survey (NFHS-3) HIV Knowledge and Prevalence

(a) y = 1.0x + 0.0; r = ; N = 60 (b) y = 1.0x + 0.0; r = ; N = Lot 1, Li-heparin whole blood, HbA1c (%)

EXOTESTTM. ELISA assay for exosome capture, quantification and characterization from cell culture supernatants and biological fluids

In Search of a Salient Marker of Immune Function for Population Health Research

Mouse C-peptide ELISA

Accuracy and Precision. Intra- and inter-assay accuracy and precision for both rifapentine

Mouse HBsAg(Hepatitis B Virus Surface Antigen) ELISA Kit

TECHNICAL BULLETIN. GLP-1 EIA Kit for serum, plasma, culture supernatant, and cell lysates. Catalog Number RAB0201 Storage Temperature 20 C

Thyroid Stimulating Hormone (TSH) ELISA Catalog No. GWB , legacy id (96 Tests)

METHOD VALIDATION: WHY, HOW AND WHEN?

VQA HIV DNA Control SOP Version 5.0 HIV DNA Testing 13 March 2012

Chapter 2. High-sensitivity C-reactive protein methods examined

Rat C-peptide ELISA. For the quantitative determination of C-peptide in rat serum. For Research Use Only. Not For Use In Diagnostic Procedures.

25(OH) Vitamin D ELISA (BD-220BA), 192 Tests

System accuracy evaluation of FORA Test N Go Blood Glucose Monitoring System versus YSI 2300 STAT Plus glucose analyzer following ISO 15197:2013

Equivalent Accuracy Evaluation of FORA Premium V10 Blood Glucose Monitoring System as Compared to Fora V30 Blood Glucose Monitoring System

COMMITTEE FOR MEDICINAL PRODUCTS FOR HUMAN USE (CHMP)

APHL-CDC Influenza Cost Estimation Models

Mouse C-peptide ELISA

A COMPARISON OF IMPUTATION METHODS FOR MISSING DATA IN A MULTI-CENTER RANDOMIZED CLINICAL TRIAL: THE IMPACT STUDY

Prothrombin (Human) ELISA Kit

EPIGENTEK. EpiQuik HDAC2 Assay Kit (Colorimetric) Base Catalog # P-4006 PLEASE READ THIS ENTIRE USER GUIDE BEFORE USE

Basic Biostatistics. Dr. Kiran Chaudhary Dr. Mina Chandra

Validation Report for the Neogen Fentanyl Kit for ELISA Screening of Whole Blood and Urine Specimens

DetectX. Urinary Creatinine Detection Kit. Catalog Number K002-H1. Sample Types Validated: Human, Monkey, Dog, Rat and Mouse Urine

Insulin ELISA. For the quantitative determination of insulin in serum and plasma

EPIGENTEK. EpiQuik Global Histone H3 Acetylation Assay Kit. Base Catalog # P-4008 PLEASE READ THIS ENTIRE USER GUIDE BEFORE USE

Rat C-peptide ELISA. For the quantitative determination of C-peptide in rat serum

Human HBcAb IgM ELISA kit

Mouse/Rat THYROXINE (T4) ELISA Catalog No (96 Tests)

TSH (Human) ELISA Kit

See external label 2 C-8 C Σ=96 tests Cat # 3171Z. Free Estriol. Cat # 3171Z. Enzyme Linked Immunosorbent Assay

The Challenges in Developing and Commercializing HIV Tests that are Useful in Differentiating VISP/R VISP/R Workshop Bethesda, MD March 2013

Automated and Standardized Counting of Mouse Bone Marrow CFU Assays

Attrition in longitudinal survey data: Evidence from the Indonesia Family Life Survey

Toxoplasma gondii IgM ELISA Kit

HIV-1 p24 Antigen ELISA Catalog Number:

YY/T Translated English of Chinese Standard: YY/T PHARMACEUTICAL INDUSTRY STANDARD

Determination of hemoglobin is one of the most commonly

10/4/2007 MATH 171 Name: Dr. Lunsford Test Points Possible

Adiponectin, TG/HDL-cholesterol index and hs-crp. Predictors of insulin resistance.

retardation in infants. A wide variety of analytical methods for the analysis of

Insulin ELISA. For the quantitative determination of insulin in serum and plasma.

HIV Viral Load Quality Assessment Program Summary for Panel HIVVL 2018Oct26

Week 17 and 21 Comparing two assays and Measurement of Uncertainty Explain tools used to compare the performance of two assays, including

TECHNICAL BULLETIN. C-Peptide EIA Kit for serum, plasma, culture supernatant, and cell lysates. Catalog Number RAB0326 Storage Temperature 20 C

CoQ10(Coenzyme Q10) ELISA Kit

Carnitine / Acylcarnitines Dried Blood Spots LC-MS/MS Analysis Kit User Manual

Procine sphingomyelin ELISA Kit

Mouse Cathepsin B ELISA Kit

Comparison between ELISA and chemiluminescence immunoassay for the detection of Hepatitis C virus antibody

HIV-1 p24 Antigen ELISA 2.0 Catalog Number:

Toxoplasma gondii IgM ELISA Kit

Hocus Pocus: How the National Institute of Mental Health Made Two Million People with Schizophrenia Disappear

Rat Mullerian Inhibiting Substance/Anti-Mullerian hormone, MIS/AMH ELISA kit

Human HIV (1+2) antigen&antibody ELISA Kit

An update on the analysis of agreement for orthodontic indices

LDL (Human) ELISA Kit

HBeAg and HBeAg Ab ELISA Kit

PKU (Phenylketonuria) Serum HPLC Analysis Kit User Manual

JUNG KI KIM CURRICULUM VITAE

Transcription:

WORKING PAPER IFLS C-Reactive Protein Data User Guide Perry Hu, Elizabeth Henny Herningtyas, John Strauss, Eileen Crimmins, Jung Ki Kim, and Bondan Sikoki RAND Labor & Population WR-675/7 October 2013 This paper series made possible by the NIA funded RAND Center for the Study of Aging (P30AG012815) and the NICHD funded RAND Population Research Center (R24HD050906). RAND working papers are intended to share researchers latest findings and to solicit informal peer review. They have been approved for circulation by RAND Labor and Population but have not been formally edited or peer reviewed. Unless otherwise indicated, working papers can be quoted and cited without permission of the author, provided the source is clearly referred to as a working paper. RAND s publications do not necessarily reflect the opinions of its research clients and sponsors. RAND is a registered trademark.

IFLS C-Reactive Protein Data User Guide Perry Hu University of California, Los Angeles Elizabeth Henny Herningtyas Gadjah Mada University John Strauss University of Southern California Eileen Crimmins University of Southern California Jung Ki Kim University of Southern California Bondan Sikoki Survey METER September 2013

Preface This document describes the design and implementation of dried blood spot assays for high sensitivity C- reactive protein (hs CRP) undertaken as part of IFLS4. The Indonesia Family Life Survey is a continuing longitudinal socioeconomic and health survey. It is based on a sample of households representing about 83% of the Indonesian population living in 13 of the nation s 26 provinces in 1993. The survey collects data on individual respondents, their families, their households, the communities in which they live, and the health and education facilities they use. The first wave (IFLS1) was administered in 1993 to individuals living in 7,224 households. IFLS2 sought to reinterview the same respondents four years later. A follow-up survey (IFLS2+) was conducted in 1998 with 25% of the sample to measure the immediate impact of the economic and political crisis in Indonesia. The next wave, IFLS3, was fielded on the full sample in 2000. IFLS4 was fielded in late 2007 and early 2008 on the same 1993 households and their splitoffs; 13,535 households and 44,103 individuals were interviewed. IFLS4 was a collaborative effort of RAND, the Center for Population and Policy Studies (CPPS) of the University of Gadjah Mada and Survey Meter. Funding for IFLS4 was provided by the National Institute on Aging (NIA), grant 1R01 AG026676, the National Institute for Child Health and Human Development (NICHD), grant 1R01 HD050764 and grants from the World Bank, Indonesia and AUSAID. Partial support for the validation and assessment of the CRP assay was provided by the National Institute on Aging, grant P30 AG017265.

Chronic Inflammation and CRP There is strong evidence supporting that chronic inflammation plays an important role in the process of aging and age-related diseases (Singh & Newman 2011). Persistently elevated level of CRP, a biomarker for systemic inflammation, is associated with increased risk of cardiovascular disease, functional decline, and higher mortality in older adults. Therefore, DBSbased CRP assay has been increasingly incorporated into community-based surveys. Compared to venous blood samples, DBS specimens are easier to collect, and do not need to be processed and frozen immediately. Method of DBS-based CRP Assay For the DBS-based CRP assay, IFLS collaborated with the laboratory at the Clinical Pathology Department, Gadjah Mada University, Yogyakarta, Indonesia. This laboratory is part of the network that is performing DBS-based assays for the World Health Organization (WHO) s Study on Global Aging and Adult Health (SAGE) project. The laboratory head, Dr. Henny Herningtyas, was trained for DBS-based assays, including CRP, in a training course organized by the SAGE. She participated and supervised the laboratory work for IFLS. Three technicians worked under her, while her laboratory measured CRP levels on IFLS specimens. CRP concentrations in DBS specimens were measured using validated ELISA method (McDade et al, 2004). Optic densities (OD) of all samples were measured using an automated ELISA reader. The detection limit of this CRP assay is 0.028 mg/l. The intra-assay coefficient of variation (CV) is reported to be 5.8% and the inter-assay CV is 8.2% (McDade et al, 2004). The IFLS laboratory used the reagents from the same manufacturers specified in the assay protocol. Some of the reagents were not available locally. Therefore, we worked with the WHO

(SAGE project) to purchase and ship these reagents into Indonesia, under shipping conditions specified by the manufacturers. Validation and Quality Control of DBS-based CRP Assay 1. Pretest Venous and DBS specimens for the pre-test were collected from 67 volunteers who were recruited through the USC/UCLA Center on Biodemography and Population Health (CBPH). Serum samples were sent to the laboratory at Department of Laboratory Medicine, University of Washington (UW), for high-sensitivity CRP (hscrp) assay (Laboratory director: Alan Potter, PhD). Two DBS cards were collected from each volunteer via direct finger prick, with two blood spots on each card. One set of DBS cards were sent to UW for DBS-based hscrp assay, while the other set were sent to the laboratory at Gadjah Mada University, Indonesia. Validation samples for both laboratories were shipped with dry ice. Duration of shipment to Indonesia was approximately 48 hours. Fifteen validation samples and 79 IFLS study samples were measured for CRP levels during the pretest, which was conducted in December of 2011 and lasted for 5 days. Fourteen validation samples had DBS-based CRP values from the ILFS laboratory as well as both DBSbased and serum-based values from UW. For calculation purpose, results with undetectable CRP levels were assigned a value of 0.001 mg/l. The correlation coefficients for CRP results were 0.98 between the IFLS DBS and UW DBS, 0.97 between the IFLS DBS and serum, and 0.97 between the UW DBS and serum. The average differences were 0.11 mg/l (standard deviation: 0.54 mg/l), 0.14 mg/l (standard deviation: 0.60 mg/l) and -0.21 (standard deviation: 0.61

mg/l), respectively. IFLS also had repeated measurements of CRP levels on 10 samples from study participants. The correlation coefficient between the test-retest results was 0.998. 2. Ongoing assay quality control with validation samples The IFLS research team, led by Dr. Peifeng (Perry) Hu, established regular communication with the laboratory and reviewed the CRP results from study samples on a biweekly basis. All CRP standards, controls, and study samples were measured in duplicate. Individual samples with duplicate CV above 10% were re-tested, unless both concentrations were less than 0.2 mg/l. When inter-assay variability exceeded 10%, which was based on control values, the entire microwell plate would be rerun. During the testing of study samples, IFLS included 8 validations on every 40 th microplate, approximately every 1,500 study samples: A total of 48 validation samples were measured over a 6-month period. Using serum-based CRP levels as the gold standard, the results from IFLS and UW were comparable. For each batch of 8 validation samples, the correlation coefficients between DBS-based and serum-based values were all above 0.95 in both laboratories. Summary statistics from the DBS CRP readings from both the Indonesian and UW labs are shown in Table 1. Serum equivalents are also shown as is the serum-based readings from the UW lab. Regressions of the UW results on the Indonesian lab results for DBS serum equivalents and Bland-Altman plots are shown in Figure 1. Figure 2 shows the same for the Indonesian DBS serum equivalents and the UW serum samples and Figure 3 for the UW serum samples and the UW DBS serum equivalents. The R 2 s are all above 0.90, and the plots, including the Bland Altman plots look good.

The results from validation samples have showed that DBS-based CRP values from IFLS had excellent correlations with serum-based values and/or DBS-based results from UW. The IFLS laboratory was able to maintain its assay quality during the testing of actual study samples. Sampling for CRP Blood was taken on all individuals with AR01i==1 (who would get individual interviews) over 1 year old living in a random half of IFLS stem households; where a stem household is defined as an IFLS1 household and all of its splitoffs. In US2 there is an indicator variable which informs us whether a respondent had blood taken. Some 20,000 individuals had finger prick blood samples taken and dried blood spot cards made. Cost did not allow for all of these samples to be analyzed, the ones not analyzed are stored at Survey Meter in a deep freezer at -20C. To choose which samples would be assayed for CRP, the following algorithm was used: 1. All persons aged 50 years and over with DBS samples were chosen. 2. All persons in the same household (nuclear, not stem) as the 50 year olds and were chosen-these 2 criteria gave us 7,888 potential samples 3. A random sample of 2,200 persons under age 50, stratified by age, who live in the same stem households as the 50+ respondents chosen in 1. a. 100 aged 1-4 b. 500 aged 5-14 c. 1,452 aged 15-39 d. 148 aged 40-49 CRP data file There are 9,945 observations with CRP data. The number of observations is a little less than the number sampled because some sampled respondents with DBS had unusable blood spots, generally because the circles were not filled enough to take punches for the assay. The data file, crp_public_use.dta (the STATA file), has the following variables:

Mean_WB_conc = MEAN CRP concentration from 2 duplicate samples from the same specimen (if available) Mean_WB_concn_impute = Mean CRP concentration with imputations for undetectable values Mean_serum_eq_conc = Mean serum equivalent CRP concentration from 2 duplicate samples from the same specimen Mean_serum_eq_conc_impute = Mean serum equivalent CRP concentration with imputed values. WB_impute = binary indicator if WB value is imputed Serum_impute = binary indicator is serum value is imputed Pct_cv = Coefficient of variation of the two readings per observations without imputation. High values (over 10%) were used as one criterion to decide if a re-test was needed. IDRTK = Enumeration area code HID = Household id PID = person id within the household PIDLINK = Person id used to link across waves and across modules Some 43% of the samples had very low values that were undetectable. These are indicated by wb_impute and serum_impute. These values should NOT be assumed to be missing or invalid, they are just very low. We imputed them as 0.1 for mean WB and 0.2 for mean serum and added those to the *_impute variables. Summary statistics are shown in Table 2. Figures 4-11 plot the distributions of the CRP values and serum equivalents, both unlogged and logged, without and with imputations. Without imputations the logged distributions look close to symmetric. There is a reasonable spread in the distributions allowing for analysis by users.

Table 1 Indonesia and UW Validation Samples Summary Statistics N Mean SD Min Max Median DBS_INDONESIA 46 1.31 1.28 0.0005 6.026 0.95 DBS_SERUM_EQUI_INDONESIA 46 2.62 2.56 0.001 12.052 1.89 DBS_UW 46 2.64 2.54 0.13 9.38 2.01 DBS_UW_SERUM_EQUI 46 2.41 2.17 0.11 7.90 1.70 SERUM_UW 46 2.34 2.42 0.00 9.5 1.50

Figure 1 Regression and Bland-Altman Plot of UW Serum Equivalent on IFLS Serum Equivalent-Validation Samples N=46 Equation DBS_UW_Serum_Equi = 0.29868 + 0.80540*DBS_Serum_Equi_Indonesia R 2.9009 CRP, mg/l (Plasma Eq-Mean) 14 12 10 8 6 4 2 0 0 2 4 6 8 10 12 14 DBS_Serum_Equi_Indonesia Diff b/w UW Serum Equi & IFLS Serum Equi 6 5 4 3 2 1 0-1 -2 0 2 4 6 8 10 12 Average of UW Serum Equi & IFLS Serum Equi Bland-Altman Plot Figure 2 Regression and Bland-Altman Plot of UW Serum on IFLS Serum Equivalent

Validation Samples N=46 Equation Serum_uw = -0.06608 + 0.91602*DBS_Serum_Equi_Indonesia R 2.9392 serum_uw 14 12 10 8 6 4 2 0 0 2 4 6 8 10 12 14 DBS_Serum_Equi_Indonesia Difference b/w UW Serum & IFLS Serum Equi 6 4 2 0-2 -4-4 -2 0 2 4 6 8 10 12 Average of UW Serum & IFLS Serum Equi Bland-Altman Plot

Figure 3 Regression and Bland-Altman Plot of UW Serum on UW Serum Equivalent Validation Samples N=46 Equation Serum_uw = -0.27856 + 1.08459*DBS_UW_Serum_Equi R 2.9480 serum_uw 12 10 8 6 4 2 0 0 2 4 6 8 10 12 CRP, mg/l (Plasma Eq-Mean) Difference b/w UW Serum & UW Serum Equi 4 3 2 1 0-1 -2-3 0 2 4 6 8 10 12 Average of UW Serum & UW Serum Equi Bland-Altman Plot

Table 2 Summary Statistics for CRP Values N Mean (mg/l) Std Dev Min Max MEAN_WB_CONC 5,680 0.9880184 1.3984586 0.04 15.6645 MEAN_WB_CONC_IMPUTE 9,941 0.6073880 1.1447642 0.04 15.6645 MEAN_SERUM_EQ_CONC 5,659 1.9753895 2.7950272 0.08 31.3290 MEAN_SERUM_EQ_CONC_IMPUTE 9,941 1.2124317 2.2844506 0.08 31.3290

Figure 4 Mean CRP distribution-without imputations

Figure 5 Logged mean CRP distribution-without imputations

Figure 6 Mean CRP distribution-with imputations

Figure 7 Mean Logged CRP distribution-with imputations

Figure 8 Mean serum-equivalent CRP distribution-without imputations

Figure 9 Mean logged serum-equivalent CRP distribution-without imputations

Figure 10 Mean serum-equivalent CRP distribution-with imputations

Figure 11 Mean logged serum-equivalent CRP distribution-with imputations

References: McDade TW, Burhop J, Dohnal J. High-sensitivity enzyme immunoassay for C-reactive protein in dried blood spots. 2004. Clin Chem. 50:652-654. Singh T, Newman AB. Inflammatory markers in population studies of aging. Ageing Res Rev. 2011. doi: 10.1016/j.arr.2010.11.002.