This PDF is available for free download from a site hosted by Medknow Publications

Similar documents
A Comparative Evaluation of Cross Linked Starch Urea-A New Polymer and Other Known Polymers for Controlled Release of Diclofenac

Formulation and Development of Sustained Release Tablets of Valsartan Sodium

STABILITY STUDIES OF FORMULATED CONTROLLED RELEASE ACECLOFENAC TABLETS

Formulation and evaluation of immediate release salbutamol sulphate

DESIGN AND EVALUATION OF CONTROLLED RELEASE MATRIX TABLETS OF FLURBIPROFEN

FORMULATION AND EVALUATION OF PIROXICAM AND CELECOXIB TABLETS EMPLOYING PROSOLVE BY DIRECT COMPRESSION METHOD

Volume: 2: Issue-3: July-Sept ISSN FORMULATION AND EVALUATION OF SUSTAINED RELEASE MATRIX TABLETS OF NICORANDIL

Preparation and Evaluation of Silymarin Controlled Release Tablets Prepared Using Natural Gums

FABRICATION AND EVALUATION OF GLIMEPIRIDE CORDIA DICHOTOMA G.FORST FRUIT MUCILAGE SUSTAINED RELEASE MATRIX TABLETS

OPTIMIZATION OF CONTROLLED RELEASE GASTRORETENTIVE BUOYANT TABLET WITH XANTHAN GUM AND POLYOX WSR 1105

STUDIES ON EFFECT OF BINDERS ON ETORICOXIB TABLET FORMULATIONS

Asian Journal of Pharmacy and Life Science ISSN Vol. 2 (2), July-Sept,2012

FORMULATION AND EVALUATION OF VALSARTAN TABLETS EMPLOYING CYCLODEXTRIN-POLOXAMER 407-PVP K30 INCLUSION COMPLEXES

PREPARATION AND EVALUATION OF STARCH - PEG 1500 CO-PROCESSED EXCIPIENT AS A NEW DIRECTLY COMPRESSIBLE VEHICLE IN TABLET FORMULATIONS

Formulation and In-vitro Evaluation of Chewable Tablets of Montelukast Sodium

FORMULATION AND DEVELOPMENT OF ER METOPROLAOL SUCCINATE TABLETS

Sivakasi , Tamil Nadu, India. ABSTRACT KEYWORDS:

Formulation and evaluation of sublingual tablets of lisinopril

FORMULATION AND EVALUATIONOF AMOXYCILLIN: THREE-LAYER GUAR GUM MATRIX TABLET

A FACTORIAL STUDY ON THE ENHANCEMENT OF DISSOLUTION RATE OF KETOPROFEN BY SOLID DISPERSION IN COMBINED CARRIERS

CHAPTER 8 HYDROGEL PLUG FORMULATION AND EVAUATION

Optimization of valsartan tablet formulation by 2 3 factorial design

Available Online through Research Article

Formulation and Evaluation

Design and development of fast Melting Tablets of Terbutaline Sulphate

FORMULATION AND EVALUATION OF DILTIAZEM HYDROCHLORIDE COLON TARGETED TABLETS

Journal of Chemical and Pharmaceutical Research, 2012, 4(6): Research Article. Studies on Carica Papaya Starch as a Pharmaceutical Excipient

Pharmaceutical Studies on Formulation and Evaluation of Sustained Release Tablets Containing Certain Drugs

Formulation And Evaluation Of Flurbiprofen Matrix Tablets For Colon Targeting

FORMULATION AND EVALUATION OF BILAYERED TABLET OF METFORMIN HYDROCHLORIDE AND PIOGLITAZONE HYDROCHLORIDE

Int. Res J Pharm. App Sci., 2014; 4(1):47-51 ISSN:

Study of Disintegrant Property of Moringa Oleifera Gum and its Comparison with other Superdisintegrants

Journal of Chemical and Pharmaceutical Research

Journal of Global Trends in Pharmaceutical Sciences Vol.2, Issue 4, pp , Oct -Dec 2011

DEVELOPMENT AND EVALUATION OF ORAL RECONSTITUTABLE SYSTEMS OF CEPHALEXIN

A STUDY ON SUITABILITY OF NIMESULIDE-BETACYCLODEXTRIN COMPLEX IN ORAL AND TOPICAL DOSAGE FORMS

Venkateswara Rao et.al Indian Journal of Research in Pharmacy and Biotechnology ISSN: (Print) ISSN: (Online)

Int. Res J Pharm. App Sci., 2013; 3(6):42-46 ISSN:

Research Journal of Pharmaceutical, Biological and Chemical Sciences

Feasibility of using natural gums for development of sustained release matrix tablet of itopride

Studies on Curcuma angustifolia Starch as a Pharmaceutical Excipient

Asian Journal of Research in Biological and Pharmaceutical Sciences

Effect of Polymer Concentration and Viscosity Grade on Atenolol Release from Gastric Floating Drug Delivery Systems

FORMULATION AND EVALUATION OF ETORICOXIB TABLETS EMPLOYING CYCLODEXTRIN- POLOXAMER PVPK30 INCLUSION COMPLEXES

Design and In-vitro Evaluation of Silymarin Bilayer Tablets

Formulation Development and Evaluation of Sustained Release Matrix Tablets of Guaiphenesin

Scholars Research Library. Formulation Development of Pioglitazone Tablets Employing β Cyclodextrin- Poloxamer 407- PVP K30: A Factorial Study

Biswajit Biswal IRJP 2 (7)

International Journal of Medicine and Pharmaceutical Research

Formulation and evaluation of gastro retentive floating tablets of Terbutaline sulphate

Formulation and Evaluation of Gastroretentive Dosage form of Ciprofloxacin Hydrochloride.

FORMULATION DEVELOPMENT AND EVALUATION OF COLON TARGETED DOSAGE FORM OF IBUPROFEN

Formulation and evaluation of sustained release matrix tablet of metoprolol succinate

Journal of Global Trends in Pharmaceutical Sciences. Journal home page:

Formulation Development of Nimesulide Tablets by Wet Granulation and Direct Compression Methods Employing Starch Citrate

Formulation development of Glipizide matrix tablet using different proportion of natural and semi synthetic polymers

Muniyandy SARAVANAN,*,a Kalakonda SRI NATARAJ, a and Kettavarampalayam Swaminath GANESH b

Formulation Development of Aceclofenac Tablets Employing Starch Phosphate -A New Modified Starch

A FACTORIAL STUDY ON ENHANCEMENT OF SOLUBILITY AND DISSOLUTION RATE OF IBUPROFEN BY β CYCLODEXTRIN AND SOLUTOL HS15

May Vol: 06 Issue: 01 (1-12)

Int. Res J Pharm. App Sci., 2012; 2(6): ISSN:

DESIGN AND CHARACTERIZATION OF FLOATING TABLETS OF ANTI-DIABETIC DRUG

International Journal of Research in Pharmacy and Science

FORMULATION AND EVALUATION OF ACECLOFENAC SODIUM BILAYER SUSTAINED RELEASE TABLETS

Pelagia Research Library

Bahadur S. et al /J. Pharm. Sci. & Res. Vol.1(4), 2009,

Maisammaguda, Dulapally, Secundrabad.

International Journal of Innovative Pharmaceutical Sciences and Research

Asian Journal of Biochemical and Pharmaceutical Research

Fabrication and evaluation of Nimesulide Azadirachta indica fruit mucilage based sustained release matrix tablets

FACTORIAL STUDIES ON THE EFFECTS OF HYDROXY PROPYL β- CYCLODEXTRIN AND POLOXAMER 407 ON THE SOLUBILITY AND DISSOLUTION RATE OF BCS CLASS II DRUGS

Patel Krunal M et al. IRJP 2 (2)

A HIGH PERFORMANCE LIQUID CHROMATOGRAPHIC ASSAY FOR LERCANIDIPINE HYDROCHLORIDE

The objective of the present investigation is to design and evaluate controlled release tablets of carvedilol, employing

FORMULATION AND EVALUATION OF GASTRORETENTIVE FLOATING TABLETS OF FAMOTIDINE

Journal of Chemical and Pharmaceutical Research

International Journal of Pharma and Bio Sciences

Formulation Development of Etoricoxib Tablets by Wet Granulation and Direct Compression Methods Employing Starch Phosphate

Volume: I: Issue-3: Nov-Dec ISSN

Development and evaluation of controlled release mucoadhesive tablets of Tramadol Hydrochloride

JOURNAL OF SCIENTIFIC & INNOVATIVE RESEARCH

FORMULATION AND EVALUATION OF BILAYERED TABLET OF METFORMIN HYDROCHLORIDE AND GLIMEPIRIDE

Formulation and evaluation of sustained release atenolol

Formulation and evaluation of oro-dispersible tablets of lafutidine

Tablet is a major category of solid dosage forms which are widely used worldwide. Extensive information is required to prepare tablets with good

FORMULATION AND IN VITRO EVALUATION OF FAMOTIDINE FLOATING TABLETS BY LIPID SOLID DISPERSION SPRAY DRYING TECHNIQUE

Global College of Pharmacy, Kahnpur Khui, Tehsil Anandpur Sahib, Distt.- Ropar, Punjab, India

Available online Research Article

5.1 STANDARD CURVES OF DRUGS USED

ENHANCEMENT OF SOLUBILITY AND DISSOLUTION RATE OF NIMESULIDE BY CYCLODEXTRINS, POLOXAMER AND PVP

Direct Compression. With the right ingredients it s a simple, cost-effective manufacturing process

FORMULATION AND CHARACTERIZATION OF TELMISATAN SOLID DISPERSIONS

IJRPC 2012, 2(3) Chowdary et al ISSN: INTERNATIONAL JOURNAL OF RESEARCH IN PHARMACY AND CHEMISTRY

Asian Journal of Research in Biological and Pharmaceutical Sciences Journal home page:

7. SUMMARY, CONCLUSION AND RECOMMENDATIONS

SUSTAINED RELEASE TABLETS USING A PVA DC FORMULATION RESISTANT TO ALCOHOL INDUCED DOSE DUMPING

Formulation Development and Evaluation of Atorvastatin Calcium Tablets using Co-Processed Excipients

Biopharmaceutics Dosage form factors influencing bioavailability Lec:5

DEVELOPMENT AND IN VITRO EVALUATION OF SUSTAINED RELEASE FLOATING MATRIX TABLETS OF METFORMIN HYDROCHLORIDE

Journal of Chemical and Pharmaceutical Research, 2015, 7(5): Research Article

Transcription:

26 CMYK Research Paper Possible Use of Psyllium Husk as a Release Retardant ANGIRA DESAI, SUPRIYA SHIDHAYE*, V. J. KADAM Department of Pharmaceutics, Bharati Vidhyapeeth s College of Pharmacy, Sector-8, C. B. D. Belapur, Navi Mumbai-4 614, India. Various hydrophilic polymers from synthetic origin such as methylcellulose, PEGs, HPMC as well as those from natural world such as guar gum, tragacanth, xanthan gum have been used to formulate oral sustained release formulations. Psyllium husk has the ability to swell 1-14 times of its original volumeand form a hydrogel. It is biocompatible, inexpensive, inert, non-absorbable, environment friendly and easily available. However, its use as a release retardant has not been fully explored. Owing to large dose, high sensitivity to light, moisture and heat and also very short half-life of 1-2 h; formulation of sustained release dosage form of amoxicillin trihydrate is a challenge. Hence the present study has been undertaken to develop sustained release granules as well as matrix tablets of amoxicillin trihydrate using psyllium husk as a primary release retardant. The drug release of these formulations was compared with those containing HPMC K4M.The results showed insignificant difference in t value for 8% drug release as assessed by student s t-test at 5% level of significance. Selected formulations were kept at controlled conditions of 4 o /% RH and 3 o /65% RH for a period of 3 mo. Microbiological assay was used as a stability indicating method of assay. Sustained release granules and tablet formulations containing HPMC alone were found to be more stable than the similar formulations containing husk with percent drug content at the end of 3 mo at 4 o / % RH being 92.66%, 93.81%, 86.74%, 88.31% and the rate of degradation being 8.46 1-4 d -1, 7.1 1-4 d -1, 1.58 1-3 d -1 and 1.38 1-3 d -1, respectively. Thus it was concluded that psyllium husk can be effectively used as a hydrogel polymer in sustained release formulations. However, there is a need to keep moisture level under control during and after formulation. Amoxicillin trihydrate is a widely prescribed broadspectrum antibiotic, available in conventional dosage forms for peroral delivery. The conventional formulations such as capsules, tablets, suspensions produce a large plasma peak of drug about 2 h after administration, which rapidly declines to below the minimum inhibitory concentration (MIC) of most pathogenic microorganisms, before the administration of subsequent doses of -5 mg at 8 h intervals 1. It has often been claimed without clinical substantiation that this pulsed pattern of administration is more effective than sustained delivery of therapeutic concentration of active, as it may encourage outgrowth of resistant organisms when antibiotic levels become subtherapeutic 2. However, this suggestion is at variance with practice of giving the antibiotic as its sodium salt by slow intravenous infusion when treating severe infections and by the increasing use of orally active cephalosporin and tetracycline antibiotics with once- or twice-a-day dosage regimen. Also, it has been shown in vitro that β-lactam antibiotics differ from aminoglycosides in that their antibacterial effect was less concentration dependent, but was more related to the duration of active antibiotic level 3. Attempts to develop a sustained release dosage form of amoxicillin have been hindered by its dose size, short biological half-life of 1-2 h, high sensitivity to light, moisture and heat. In recent years, water-swellable polymers have attracted considerable attention in the field of drug delivery systems. The swellable, hydrophilic polymers such as polyvinylalcohol, hydroxypropylcellulose, methylcellulose and hydroxypropylmethylcellulose (HPMC) are quite popular in designing of controlled drug delivery dosage forms with HPMC being the most widely used among all 4. However, these semi-synthetic polymers are relatively expensive. *For correspondence E-mail: supriya.shidhaye@rediffmail.com The work has been carried out for the use of natural materials such as guar gum, alginates, xanthan gum, 26 Indian Journal of Pharmaceutical Sciences March - April 27

CMYK27 tragacanth as release retardants in sustained release dosage forms 5. Psyllium husk, dried seed coats of Plantago ovata, is biocompatible, inexpensive, inert, nonabsorbable, environment friendly and easily available. It is official in IP, BP and USP. It is used in food and pharmaceuticals at a dose level of 5-7 g, twice-a-day 6. Psyllium husk has the ability to swell 1-14 times 7 of its original volume and form a hydrogel. However, its use as a release retardant is not fully explored by the researchers and hence the present study was undertaken to develop sustained release dosage formulations of amoxicillin trihydrate using psyllium husk. loading dose was compressed on a Remek ten station rotary press tableting machine fitted with 12.5 mm standard concave punch. Also, sustained release matrix tablets using only HPMC K4M as a release retardant were prepared. Physicochemical characterization: The sustained release granules were evaluated for bulk density, angle of repose, flow-rate and moisture content. Capsules were evaluated for weight variation, content uniformity and assay. The tablets were evaluated for uniformity of diameter, uniformity of thickness, hardness, friability, weight variation, uniformity of content, assay and swelling index 11. MATERIALS AND METHODS In vitro dissolution studies: Amoxicillin trihydrate BP (compacted) was received as a For both granules as well as tablets, a Veego USP gift sample from Cipla Pvt. Ltd. and Abbott India Ltd. dissolution tester type II was used. Tablets as well as HPMC K4M was received as a gift sample from Glenmark granules were evaluated in the dissolution medium.1 N Pharmaceuticals. Psyllium husk (Laxmi brand Sat- HCl, ph 1.2 (9 ml, 37 o, n=3) for first two hours and in Ispaghula) was procured from local pharmacy. All other phosphate buffer ph 6.8 (9 ml, 37 o, n=3) for rest of the chemicals and solvents were of analytical grade. For six hours at 1 rpm. The samples were withdrawn at comparative studies, student s t-test was applied at 5% predetermined time intervals and the absorbance was level of significance. measured at 272 nm using Shimadzu UV 168 spectrophotometer. Concentration of the drug was Preformulation studies: calculated by reference to a linear calibration curve The drugs as well as husk (powdered and passed constructed at the respective ph. Effect of ph on drug through sieve no: 36) were standardized as per release was also studied by carrying out dissolution study pharmacopeial methods and the micromeretic studies were in various buffers at ph 2, 4, 6 and 8. carried out 8,9. Also, ph solubility profile of the drug was studied. Microbiological assay was performed by diffusion Stability study: method for the strains of E. coli 113D and S. aureus 6538 Selected formulations were kept at controlled conditions to study the antibacterial activity of the drug 1. of 4 o /% RH and 3 o /65% RH for stability studies for 3 mo. The parameters viz. physical appearance, drug Preparation of sustained release granules to be release profile, loss or gain in weight and percent drug filled in capsules: content were studied at the suitable intervals. The sustained release granules containing the drug, Microbiological assay was used as a stability indicating psyllium husk, HPMC K4M, methylparaben and method of assay. propylparaben were prepared using 2% HPMC K4M slurry in 7% alcohol as binder. The mixture of air-dried RESULTS AND DISCUSSION granules (18/36 #) and the compacted drug (18/36 #) as a loading dose was lubricated with aerosil (.5%) and magnesium stearate (1%) and filled in the capsules. Also, the granules using only HPMC K4M as a release retardant were prepared. Preparation of sustained release matrix tablets: The powder mixture of amoxicillin trihydrate, psyllium husk, calcium phosphate dibasic, starch, methylparaben and propylparaben was wet-granulated using 2% HPMC K4M slurry in 7% alcohol as binder. The mixture of air-dried granules (18/36 #) and the compacted drug (18/36 #) as a The drug and the husk were found to be of the pharmacopoeial standards with the desired powder characteristics for the direct compression of the drug. The ph-solubility profile of amoxicillin trihydrate was determined at 37 o and ionic strength.1. A U-shaped curve (fig. 1) with minimum solubility at ph close to 6 was obtained. Standard curves obtained for E. coli 113D and S. aureus 6538 showed linearity between drug concentrations of 1 µg/ml to 8 µg/ml having equations y =.1642x + 14.11 (R 2 =.9966) and y=.1713x + 22.945 (R 2 =.9971), respectively, where y is concentration (µg/ March - April 27 Indian Journal of Pharmaceutical Sciences 27

28 CMYK solubility (mg/ml) 4 35 3 2 15 1 5 2 4 6 8 1 12 ph Fig. 1: ph Solubility profile of amoxicillin trihydrate ml) and x is zone diameter (mm). Various formulations of sustained release granules were prepared as per the formulae given in Table 1. As seen from fig. 2, formulations G4 and G6 were found to show most satisfactory release profile with 1% release over 6.5 to 7 h. Formulation G4 containing husk and around half the quantity of HPMC K4M of formulation G6 gave almost similar t 8% value as G6 at 5% significance level as percent cumulative release 1 1 5 assessed by student s t-test. Also, it was observed that for a multiparticulate system there was a need to use husk in combination with another hydrophilic polymer like HPMC to reduce its immediate swelling on interaction with the surrounding fluid and to make the granules heavier. The granules of formulation G4 were found to be satisfactory with the bulk density of.5 g/ml, angle of repose 6.85 o, flow rate 2 g/sec, loss on drying (6 o ) 4.43% and 98.36% drug content. During in vitro dissolution studies, it was observed that multiparticulate formulations of husk as well as of HPMC showed incomplete aggregation i.e. particles came together to form small groups while still maintaining the multiparticulate system. Drug release profile of the multiparticulate system showed almost complete drug release as compared to the tablet formulations as seen from figs. 2 and 3. Various matrix tablets formulations from F1 to F4 were prepared as per Table 2 with drug:polymer ratio of 1:.5 and evaluated for the physicochemical characters and drug release profile. As seen from fig. 3, formulation F2 was found to show lesser drug release than F1 due to higher amount of calcium phosphate dibasic which increased the hardness and reduced the swelling of the matrix. To 5 1 15 2 3 35 4 45 5 Fig. 2: Dissolution profile of sustained release granules of amoxicillin trihydrate filled in capsules. G1 is granules of husk with drug, total polymer ratio of 1:.5 (- -),G2 is granules of husk with drug, total polymer ratio of 1:1 (- ), G3 is granules of husk and HPMC with drug, total polymer ratio of 1:1 (- -),G4 is granules of husk and HPMC with drug, total polymer ratio of 1:2 (-X-), G5 is granules of HPMC with drug; total polymer ratio of 1:1 (-*-) and G6 is granules of HPMC with drug, total polymer ratio of 1:1 (- -). TABLE 1: FORMULATION OF SUSTAINED RELEASE GRANULES OF AMOXICILLIN TRIHYDRATE. G1 (1:.5) G2 (1:1) G3 (1:1) G4 (1:2) G5 (1:1) G6 (1:2) Drug (mg) 3 3 3 3 3 3 Husk (mg) 163 3 244 3 - HPMC K4M (mg) - 1 81 3 3 65 HPMC K4M 1-12 1-12 1-12 1-12 1-12 1-12 as binder (mg) Aerosil (%).5.5.5.5.5.5 Magnesium stearate (%) 1 1 1 1 1 1 Methylparaben (%).18.18.18.18.18.18 Propylparaben (%).8.8.8.8.8.8 28 Indian Journal of Pharmaceutical Sciences March - April 27

CMYK29 TABLE 2: FORMULATION OF AMOXICILLIN TRIHYDRATE MATRIX TABLETS F1 (1:.5) F2 (1:.5) F3 (1:.5) F4 (1:.5) F5 (1: 1) Drug (Dm) (mg) 3 3 3 3 3 Husk (mg 123 123 123 163 - HPMC K4M (mg) 41 41 41-3 DCP (mg) 65 1 1 1 1.5%.5% - - - Aerosil (%) 1% 1% - - - Mg-stearate (%) - - - 15 15 Starch (intra-granular) (mg) - - 15 15 15 Starch (extra-granular) (mg) 4.5-5 4.5-5 4.5-5 4.5-5 4.5-5 HPMC K4M (as binder) (mg).18.18.18.18.18 Methylparaben (%).8.8.8.8.8 Propylparaben (%) increase the drug release without compromising the hardness, starch was added extra granularly in formulation F3 that produced higher drug release than F2. To increase drug release further, HPMC K4M was eliminated from the polymer composition and starch was incorporated intragranularly as well and the resultant formulation (F4) was found to be most satisfactory with hardness of 4 kg/ cm 2, friability of.78%, swelling index of 3.2, drug content of 97.93% and drug release of 85% over 8 h. Also, this formulation was comparable with F5 having HPMC alone in the drug:polymer ratio of 1:1 with respect to t 8% value of drug release as calculated by student s t-test at 5% level of significance. Thus it was found that husk alone can be effectively used as release retardant in the tablet formulation unlike multiparticulate system, which might be because of the compression force of the tablet that binds the husk firmly. The drug release profiles of the successful granules (G4) and tablet (F4) formulations were studied at different ph values. Figs 4 and 5 showed that the release was higher Percent cumulative release 1 at low ph, which was in accordance with the data reported 12. The formulations G4, G6, F4 and F5 were selected for stability studies. Formulations G6 and F5 containing HPMC alone were found to be more stable than G4 and F4 with percent drug content at the end of 3 mo at 4 o / % RH being 92.66%, 93.81%, 86.74%, 88.31% and the rate of degradation being 8.46 1-4 d -1, 7.1 1-4 d -1, 1.58 1-3 d -1 and 1.38 1-3 d -1, respectively. The instability may be attributed to the higher percentage of moisture in the husk of 8.9%, which was permissible as per IP. Also, it may be enhanced higroscopicity, which was slightly higher in case of formulations containing psyllium husk, during the accelerated stability study. But this problem can be potentially overcome by adopting better packaging methods. Overall, tablets and capsule formulations of the drug using HPMC as a release retardant were formulated with 95-98% drug release over 6-8 h. Formulation containing 1 5 1 2 3 4 5 Cumulative time (min) Fig. 3: Dissolution profile of sustained release matrix tablets of amoxicillin trihydrate. F1 is tablets of husk and HPMC with drug, total polymer ratio of 1:.5, DCP 65 mg per unit, starch not included (- -), F2 is tablets of husk and HPMC with drug, total polymer ratio of 1:.5, DCP 1 mg per unit, starch not included (- -), F3 is tablets of husk and HPMC with drug, total polymer ratio of 1:.5, DCP 1 mg per unit, starch included extragranularly (- -), F4 is tablets of husk with drug, total polymer ratio of 1:.5, DCP 1 mg per unit, starch included extragranularly as well as intragranularly (-X-) and F5 is tablets of HPMC with drug, total polymer ratio of 1:1, DCP 1 mg per unit, starch included extragranularly as well as intragranularly (- * -) March - April 27 Indian Journal of Pharmaceutical Sciences 29

21 CMYK percent cumulative release 1 1 5 psyllium husk as a release retardant produced the similar results but the sensitivity of the drug to moisture may interfere with the long term stability of the formulation 1 2 3 4 5 Fig. 4: Effect of ph on drug release from sustained release granules. Effect of ph on drug release from sustained release granules formulation G4 at ph 2 (- -), effect of ph on drug release from sustained release granules formulation G4 at ph 4 (- -), effect of ph on drug release from sustained release granules formulation G4 at ph 6 (- -) and effect of ph on drug release from sustained release granules formulation G4 at ph 8 (-X-) percent cumulative release 1 1 Fig. 5: Effect of ph on drug release from sustained release matrix tablets. Effect of ph on drug release from sustained release matrix tablets, formulation F4 at ph 2 (- -), effect of ph on drug release from sustained release matrix tablets, formulation F4 at ph 4 (- -), effect of ph on drug release from sustained release matrix tablets, formulation F4 at ph 6 (- -) and effect of ph on drug release from sustained release matrix tablets, formulation F4 at ph 8 (- -) containing husk and there is a need to protect the formulations adequately against the moisture. ACKNOWLEDGEMENTS The authors are grateful to Cipla Pvt. Ltd., Abbott India Ltd. and Glenmark Pharmaceuticals for providing gift samples of the drug and excipients. REFERENCES 1. Physician Desk Reference, Marcel Dekker, 22, 1471. 2. LeBel, M. and Spino, M., Clin. Pharmacokinet., 1988, 14, 71. 3. Vogelman, B. and Craig, W., J. Pediat., 1986, 18, 835. 5 1 2 3 4 5 4. Herman, J. and Remon, J. P., Int. J. Pharm., 199, 63, 21. 5. Tilak, R. B., Kanwar, M., Gupta, V.D., Drug Develop. Ind. Pharm., 2, 26, 1. 6. Reynolds, J.E.F., Eds, Martindale, the extra pharmacopoeia, 3th edition, pharmaceutical press, London, 1993, 1886. 7. Kokate, C.K., Eds., Pharmacognocy, 12th Edn., Nirali Prakashan, 1999, 1. 8. Indian Pharmacopoeia, Vol. 1, Controller of Publication, Delhi, 1996, 416. 9. Alfred Martin, Eds., Physical Pharmacy, 4th Edn., Varghese Publication, 423. 1. Indian Pharmacopoeia, Vol. II, Controller of Publication, Delhi, 1996, A-1. 11. Nafee, N.A., Ismail, F.A., Khan, M.N. Gandhi, H.I., Drug Develop. Ind. Pharm., 24, 3, 985. 12. Hilton, A.K. and Deasy, P.B., Int. J. Pharm. Sci., 1992, 86, 79. Accepted 17 March 27 Revised 23 August 26 Received 22 December 25 Indian J. Pharm. Sci., 27, 69 (2): 26-21 21 Indian Journal of Pharmaceutical Sciences March - April 27